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Abstract 

 

The ability to accurately detect invasive plant species is integral in their management, 

treatment, and removal. This study focused on developing and evaluating RPAS-based 

methods for detecting invasive plant species using image analysis and machine learning and 

was conducted in two stages. First, supervised classification to identify the invasive yellow 

flag iris (Iris pseudacorus) was performed in a wetland environment using high-resolution 

raw imagery captured with an uncalibrated visible-light camera. Colour-thresholding, 

template matching, and de-speckling prior to training a random forest classifier are explored 

in terms of their benefits towards improving the resulting classification of YFI plants within 

each image. The impacts of feature selection prior to training are also explored. Results from 

this work demonstrate the importance of performing image processing and it was found that 

the application of colour thresholding and de-speckling prior to classification by a random 

forest classifier trained to identify patches of YFI using spectral and textural features 

provided the best results. Second, orthomosaicks generated from multispectral imagery were 

used to detect and predict the relative abundance of spotted knapweed (Centaurea maculosa) 

in a heterogeneous grassland ecosystem. Relative abundance was categorized in qualitative 

classes and validated through field-based plant species inventories. The method developed 

for this work, termed metapixel-based image analysis, segments orthomosaicks into a grid of 

metapixels for which grey-level co-occurrence matrix (GLCM)-based statistics can be 

computed as descriptive features. Using RPAS-acquired multispectral imagery and plant 

species inventories performed on 1m2 quadrats, a random forest classifier was trained to 

predict the qualitative degree of spotted knapweed ground-cover within each metapixel. 

Analysis of the performance of metapixel-based image analysis in this study suggests that 

feature optimization and the use of GLCM-based texture features are of critical importance 

for achieving an accurate classification. Additional work to further test the generalizability of 

the detection methods developed is recommended prior to deployment across multiple sites. 
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Chapter 1: Introduction 
 

The introduction of remotely piloted aircraft systems (RPAS) as a remote sensing 

platform has caused a paradigm shift in the acquisition and analysis of geospatial information 

(Hill, Pypker, and Church, 2019; Vivoni et al., 2014; Wing et al., 2013). RPASs are capable 

of bridging the scope, scale, and cost differences between surficial measurements and 

traditional aerial collection methods to provide high-resolution imagery best suited for small 

scale-mapping operations such as invasive species detection, forest stand management, 

precision farming, and other environmental applications (Hill, Pypker, and Church, 2019). 

The availability and relative low-cost of consumer-grade RPASs has lowered the barrier to 

entry for remote sensing studies, culminating in an increase of data collection, exploratory 

study, and interdisciplinary research (Simic Milas et al., 2018; González-Jorge, Martínez-

Sánchez, and Bueno, 2017). The results of this work have helped elucidate many of the 

capabilities, as well as the limitations, of varying RPAS platform and sensor configurations 

for remote sensing applications in the fields of invasive species management, machine 

learning, and image analysis (e.g., Qian et al., 2020; Wijesingha et al., 2020; Abeysinghe et 

al., 2019; Dash et al., 2019; Sandino, Mengerson, and Gaston, 2018; Alvarez-Taboada, 

Paredes, and Julián-Pelaz, 2017; Hill et al., 2017). 

Remotely Piloted Aircraft Systems 

Exploration of RPASs as a sensing platform has in-part focused on application-based 

experimentation and development of research methods in which land-cover mapping is being 

performed at high spatial resolutions relative to aerial and satellite imagery (Adão et al., 

2017). Additionally, RPAS mapping has enabled more comprehensive data collection in 

small-scale applications than would be possible with field-based data collection alone (Hill et 

al., 2017). Considering the relative ease and low cost to conduct RPAS-based remote 

sensing, data collection can occur with increased frequency compared to aerial and satellite 

methods while also covering greater spatial extents than possible with traditional field-based 

methods (Hill & Babbar-Sebens, 2019; Colomina & Molina, 2014; Vivoni et al., 2014; Wing 

et al., 2013). The use of RPASs in conjunction with traditional methods has provided a new 
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framework in which academic studies can be performed (e.g. Baron & Hill, 2020; Baron, 

Hill, and Elmiligi, 2018; Hill et al., 2017). 

RPASs as a research tool have a unique set of benefits and limitations. From a remote 

sensing standpoint, it is inexpensive to fly/re-fly areas of interest, is unobscured by cloud 

cover, and close to earth measurement allows for high resolution image capture (see the 

following reviews and the articles referenced therein: Hill, Pypker, and Church 2019; 

González-Jorge, Martínez-Sánchez, and Bueno, 2017; Vivoni et al., 2014; and Wing et al., 

2013). However, there are limitations when compared to other methods. They are susceptible 

to meteorological conditions such as wind and rain (Shakhatreh et al., 2019; Thibbotuwawa 

et al., 2019; Wing et al., 2013), and low-to-ground capture introduces risks involving 

obstacle avoidance and reliability of sensor calibration (Fraga-Lamas et al., 2019; Lim et al., 

2019; Wang et al., 2019). From a land management perspective, RPASs excel in being able 

to perform comprehensive image capture over wide areas and has the capability of doing so 

frequently (Easterday et al., 2019). Conversely, any collected data must be processed and 

analysed to extract information from captured imagery and will be less reliable than 

manually collected field data (Jurjević et al., 2020). 

Cost plays a significant role in the effectiveness of RPAS-based remote sensing, as 

RPASs are a platform and are limited by the hardware/software being employed (Nezami et 

al., 2020). Leading-edge configurations currently include light distance and ranging (LiDAR) 

and hyperspectral sensors, variable height flight planning software to maintain sensor 

calibration, and narrow swath image capture to collect spatially rectified raw imagery(Hill, 

Pypker, and Church 2019; Gonzalez-Jorge 2017). As such, RPAS-based data collection can 

occur across a spectrum of costs and considerations. However, by reducing the cost of a 

platform, the resulting data quality will be impaired (Nezami et al., 2020). Given this 

impediment, design specifications need to be carefully considered with respect to the 

available budget and data requirements to optimize the quality of collected data with respect 

to desired research outcomes (Ganz, Käber, and Adler, 2019; Torresan et al., 2018). 

The trend of low-cost remote sensing research is providing wider availability of 

sensing equipment to researchers, however, this shift to use consumer-grade for research 

purposes has sparked an interesting debate regarding the validity and reproducibility of the 
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research being conducted (Rasmussen et al., 2020). Prior to data collection, project planning 

should consider the reliability of sensing equipment being used, and whether field work is 

required to ground-truth both the spectral measurements acquired as well as the identification 

of the targets being studied (Coburn et al., 2018). 

Invasive Plant Species 

 Invasive plants are non-native species that have established and spread in foreign 

environments, impacting the structure and function of existing ecosystems, and outcompeting 

existing biotic communities (Pyšek & Richardson, 2010; Qian & Ricklefs, 2006). Detection 

and treatment are critical in the management and suppression of invasion, as the resulting 

changes to ecosystems can cause significant negative environmental impacts (Powell, Chase, 

and Knight, 2011; Davis, 2003). The detection of non-native plants in the early stages of 

invasion can be difficult, given the often-complex structure of existing ecosystems and the 

large areas land managers can be tasked with monitoring. However, early detection of 

invading species has been shown to aid in the overall cost and effectiveness of treatment 

(Malanson & Walsh, 2013; Holden, Nyrop, and Ellner, 2016). In addition to traditional 

management practices, such as field-based visual inspections and plant species inventories, 

remote methods of monitoring and analysis are being explored and implemented. 

Invasive plant species mapping poses many applications for the use of RPASs in land 

management. Satellite and aerial imagery lack the spatial resolution necessary to capture 

individual small plants within a scene (Baron & Hill, 2020). Large scale analysis has been 

performed to accurately identify invasion using satellite imagery through ground-cover 

mapping (Peterson, 2003), however, access to high-resolution imagery has enabled the 

possible detection and discrete measurement of target species within treatment areas (Martin 

et al., 2018; Hill et al., 2017; Tamouridou et al., 2017). 

 The expediency of RPAS-based data collection enables tracking of ecosystem 

changes within and between growing seasons (Klosterman et al., 2018; Klosterman & 

Richardson, 2017). Analyses based off RPAS imagery alone won’t have the same level of 

reliability as field-based manual assessment, however, remote sensing approaches can aid in 

providing accurate, detailed spatial estimations of invasion than by field-based sampling 

techniques alone (Kattenborn et al., 2019; Hill et al. 2017). Additionally, the non-invasive 
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approach to remotely capturing detailed information with RPASs may help mitigate the 

further spread of invasive species by human carriers in the field. 

Machine Learning & Image Analysis 

 Machine learning is the study of computer algorithms that learn and improve from 

data (Russell & Norvig, 2002). In conjunction with image analysis, it has been implemented 

in remote sensing to perform a variety of tasks such as object detection (Cheng, Zhou, and 

Han, 2016), clustering (Xie et al., 2018), ground-cover mapping (Gibril et al., 2018), and 

change detection (Gong et al., 2017). The use of machine learning in remote sensing 

applications has been a target of research for decades (Maxwell, Warner, and Fang, 2018; 

Lary et al., 2016; Ahmad, Kalra, and Stephen, 2010; Pal & Mather, 2005; Huang & Jensen, 

1997). The recent availability of low-cost RPASs has caused a surge in this type of research 

based on their availability and access to the affordable high-resolution imagery they produce 

(e.g., Zha et al., 2020; Ampatzidis & Partel, 2019; Li et al., 2019; Zhou et al., 2019; Näsi et 

al., 2018). 

 The increased spatial resolution of RPAS-gathered imagery and the spectral 

resolution of multispectral imagers provides an increased density of measurable 

characteristics to train classifiers for detection and classification in remote sensing data. 

While it has been shown that hyperspectral imagery is required to produce accurate 

predictive models capable of distinguishing vegetative species based on spectral signature 

alone (Lawrence, Wood, and Sheley, 2006), the capabilities of complex learning algorithms 

utilizing multispectral imagery paired with texture features calculated using grey-level co-

occurrence matrices (GLCMs) (Haralick, Shanmugan, and Dinstein, 1973; Jensen, 2015), 

have shown promise in identifying specific plant species with RPAS-collected images (Baron 

& Hill, 2020). Although the wide range of wavelengths within each multispectral band fails 

to provide strong correlation to an exclusive species within a heterogeneous grassland 

ecosystem (Dewey, Price, and Ramsey, 1991; Woolley, 1971), optimized classifiers with a 

robust feature were shown to modest capacity to distinguish a target species within a diverse 

environmental setting (Baron & Hill, 2020).  
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Rationale and Research Aims 

 In order to assess the capabilities of imagery collected with low-cost RPASs and 

machine learning to identify invasive plant species in natural environments, this work aims to 

develop methods and data processing workflows to automate the detection of invasive plant 

species in both raw imagery and orthomosaicks created using the structure-from-motion and 

multi-view stereo algorithms. In the following chapter (Chapter 2), pixel-based image 

analysis is utilized to detect yellow flag iris (Iris pseudacorus) in a wetland ecosystem using 

raw images collected with an un-calibrated, visible-light camera. In Chapter 3, metapixel-

based image analysis (a subset of object-based image analysis), is used to quantify the 

relative abundance of spotted knapweed (Centaurea maculosa) in a grassland ecosystem 

using orthomosaicks generated from raw images collected with a calibrated multispectral 

imager recording in the green, red, red-edge, and near infrared spectral reflectance bands. 

Chapter 4 will provide a brief summary of the findings of these studies and their implications 

for research and land management purposes. 
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Chapter 2: Combining Image Processing and Machine Learning to 

Identify Invasive Plants in High Resolution Images 
 

INTRODUCTION 

Invasive plants are non-native species that outcompete existing native species when 

introduced to new environments, altering the existing ecosystem and homogenizing biotic 

communities (Pyšek & Richardson, 2010; Qian & Ricklefs, 2006). Invasion by invasive 

species can trigger rapid change in an ecosystem and result in significant negative 

environmental impacts (Hawthorne et al., 2015; Fernandes et al., 2014). Freshwater 

ecosystems are particularly vulnerable, as natural, or human-induced forces are common 

within these ecosystems and can result in significant changes to the ecosystem (Havel et al., 

2015). The treatment and removal of invasive species is critical in reversing their ecological 

impact. Early detection of invasions and mapping the extent of invasions are crucial steps 

toward this goal (Adam, Mutanga, and Rugege, 2010; Malanson & Walsh, 2013). 

Remote sensing in land management and invasive species mapping has become 

increasingly popular with the introduction of remotely piloted aircraft systems (RPASs) as a 

sensing platform (e.g., Hill et al., 2017; Kraaijenbrink et al., 2016; Ma et al., 2015; Mathews, 

2014; Michez et al., 2016; Moranduzzo et al., 2015; Moranduzzo & Melgani, 2014; Pérez-

Ortiz et al., 2016). RPASs are valuable for land management applications, from ground 

mapping and vegetation type identification to vegetation species mapping for monitoring and 

inventory purposes, due to their low investment costs and to the high resolution of images 

they can produce (Yu et al., 2016; Pérez-Ortiz et al., 2016; Hill et al., 2017). Our previous 

work (Hill et al., 2017) compared the performance of manual and automated image analysis 

to traditional field methods for mapping the extent of invasion of a wetland ecosystem by the 

species yellow flag iris (YFI) (Iris pseudacorus L.). This previous work demonstrated that 

manual interpretation of raw colour images acquired by the digital camera integrated into an 

off-the-shelf consumer-grade RPAS provided a more accurate estimate of the location and 

extent of YFI invasion than either traditional field methods or automated pixel-based 

classification by a random forest classifier. Traditional field methods tended to underestimate 

the areal extent of the YFI invasion, while the pixel-based classification of the 
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orthomosaicked colour images tended to overestimate the extent of YFI invasion, due to false 

positive classifications.  Furthermore, the use of orthomosaicked images obscured YFI 

invasion that was obscured by overlying cover, such as tree canopies. 

This study expands our previous work by exploring hybrid image classification 

methods that combine image processing and machine learning tools to more accurately 

identify YFI in a colour image acquired by an un-calibrated digital camera with 1-byte 

encoding for each of the three bands (red, green, and blue) recorded. Building on our 

previous work (Hill et al., 2017), which demonstrated that orthomosaicking can obscure YFI 

growing below the tree canopy and, thus, lead to underestimation of the extent of an 

invasion, this work focuses on performing classification of the individual images acquired by 

the digital camera, which retain the perspective projection of a typical photograph. 

Furthermore, our previous work suggested that eliminating areas unlikely to contain YFI 

from the pixel-based classification, by masking deep water and tree-tops, improved the 

classification performance. 

In the present paper, we investigate combinations of image processing tools to more 

precisely mask areas of the image unlikely to contain YFI. Specifically, we consider images 

pre-processed by colour thresholding, template matching, and/or de-speckling before 

classification by a supervised random forest model. We also explore the use of feature 

selection by recursive feature elimination for improving the performance of the random 

forest classifier. The following section of this paper describes the study site where the images 

were acquired. Next, the methods of image acquisition and data preparation, image 

processing, classification, and performance evaluation will be discussed. Results from the 

classifications are then presented and discussed, and finally, conclusions are provided 

detailing the effectiveness of methods used in improving identification of YFI in images 

collected by RPAS-borne digital cameras. 

STUDY SITE 

The area investigated in this study is the Creston Valley Wildlife Management Area 

(CVWMA), located south of Kootenay Lake in the interior of British Columbia (BC), 

Canada. Figure 2.1 shows the location of the CVWMA, in relation to Vancouver, BC’s 
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largest city. The CVWMA covers 7,000 hectares, including one 15-hectare lake, 17 marshes, 

and a major river extending between the adjacent Selkirk and Purcell mountain ranges 

(Creston Valley Wildlife Management Area, n.d.). The area provides critical support for a 

multitude of biologically diverse species, including many species of birds, mammals, fish, 

reptiles, amphibians, invertebrates, and plants. The high density of lakes, rivers, and marshes 

creates a hospitable environment for YFI to invade and spread. All images considered in this 

work were acquired in regions of the CVWMA known to be infested with YFI. 

 

Figure 2.1: Location of the Creston Valley Wildlife Management Area in relation to 

Vancouver within the province of British Columbia, Canada. Map is rendered in the BC 

Environmental Albers Equal Area Conic projection. 

METHODS 

All data analysis was performed using Anaconda, a free and open-source distribution 

of the Python Programming Language, as well as the Scikit-Image 0.13.0 image processing 

libraries, the OpenCV computer vision libraries, the Scikit-Learn 0.18 machine learning 

libraries, and ArcMap 10.2. 

Image Acquisition and Data Preparation 

The images used in this study were collected from the CVWMA on 6 June 2015 

using a DJI Phantom 3 Professional equipped with an un-calibrated 12.4-megapixel digital 
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camera. The date of acquisition was selected to minimize intra-stand phenological variability, 

which is likely to degrade the performance of the image processing and machine learning 

classifiers explored in this study.  Because YFI at the CVWMA typically bloom from late-

May to early-July, we expect that during the image acquisition, the YFI was nearly all in 

bloom.  Downward (approximate nadir) imagery was acquired from 71 RPAS missions at an 

elevation of 30 meters above the land surface. The images were manually split into two 

categories: scenes containing YFI (939 images) and scenes not containing YFI (1,172 

images).  

From the subset of images containing YFI, 50 images containing a variety of different 

image characteristics (e.g. shade, water, roads, buildings, various vegetative species) were 

selected and used to create a classifier. Another 20 images were then selected at random from 

the remaining images containing YFI. These latter images were used to generate an 

independent validation data set for evaluating how the hybrid image-processing/random 

forest classification methods developed in this study would perform on unseen images. 

Reference data for the YFI locations in these 70 images were generated through 

manual analysis of the imagery and digitization of patches of YFI using ArcMap 10.2, where 

plants are defined by their digitized boundaries. Our previous work (Hill et al., 2017) 

demonstrated that manual digitization provided more accurate maps than field surveys did, so 

these manually digitized images were used as reference data for the location of YFI patches 

within each image. A geographic information system (GIS) polygon was drawn bounding 

each YFI cluster within each image, and these polygons were subsequently integrated and 

converted into a raster layer matching the extent of their respective image. These raster layers 

indicating the extent of YFI will hereafter be referred to as the YFI reference locations. 

Figure 2.2 shows an image with YFI outlined in red. Figure 2.3 shows the corresponding 

mask of YFI locations, where polygons contain both foliage and flowers. 
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Figure 2.2: A sample image containing yellow flag iris acquired from the Creston Valley 

Wildlife Management Area. GPS location of camera at point of image capture, 49.1254°N 

and 116.6277°W. 

 

 

Figure 2.3: An image mask of Figure 2.2, areas in white contain YFI reference locations 

within the image and areas in black do not. GPS location of camera at point of image capture, 

49.1254°N and 116.6277°W. 
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Image Processing 

Colour thresholding was used for image masking on all images considered in this 

work. When in bloom, YFI displays a bright yellow flower that is approximately 8 

centimetres in diameter (Stone, 2009). Because few other yellow objects are found within the 

study region, the colour yellow can be used to generate a mask that will significantly reduce 

the amount of data that must be subsequently analysed to identify YFI within an image. 

Colour thresholding was used to limit the region of the image analysed for containing YFI by 

the hybrid classification methods and was not used to map the spatial abundance or specific 

location of each plant independently.  

Colour boundaries were selected to filter the raw images to remove areas of the image 

that do not express the colour yellow. These boundaries were chosen using the hue, 

saturation, and value (HSV) colour space. The GNU Image Manipulation Program (GIMP) 

and other image processing programs typically represent hue as 0–360, saturation as 0–100, 

and value as 0–100 (GNU Image Manipulation Program, n.d.). OpenCV, which was used for 

this study, stores colour information in a single byte, so hue is represented as 0–180, 

saturation as 0–255, and value as 0–255. Therefore, although pure yellow is typically 

represented (e.g. by GIMP) as H = 60, using OpenCV, pure yellow is represented as H = 30. 

To create the colour threshold, upper and lower bounds were manually tuned through visual 

analysis to maximize the amount of YFI flowers contained within the mask, while limiting 

the amount of area that contained similar colour signatures with no YFI. The tuned colour 

threshold used in this study is the 3-D region of colour space defined in 1-byte HSV as 25 ≤ 

H ≤ 35, 100 ≤ S ≤ 255, 100 ≤ V ≤ 255.  

To mask the images using these colour thresholds, it was first necessary to convert 

the images to the HSV colour space and mask off pixels displaying colours outside of the 

region bounded by the colour thresholds. Figure 2.4 illustrates an image with the colour 

threshold mask applied, and Figure 2.5 displays that image after applying the colour 

threshold mask and a mask of the YFI reference locations. As can be seen in this image, 

while the colour threshold mask removes most of the image from further analysis, a 

considerable amount of the image that corresponds to non-YFI conditions remains unmasked. 

Thus, further image processing and analysis is required to accurately identify YFI within the 
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image. To evaluate the importance of further processing the image using template matching 

and de-speckling prior to classification, experiments were performed using four permutations 

of the two image processing procedures: (1) neither template matching nor de-speckling, (2) 

template matching alone, (3) de-speckling alone, and (4) both template matching and de-

speckling. Both the template matching and de-speckling procedures are described in detail in 

the following sub-sections. 

 

Figure 2.4: A colour threshold mask of Figure 2.2, areas within the colour threshold 

boundary are displayed in their natural colour and areas in black fall outside colour threshold 

boundaries. GPS location of camera at point of image capture, 49.1254°N and 116.6277°W. 
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Figure 2.5: The sample image from Figure 2.2 after having a colour threshold mask applied 

and a mask of YFI reference locations applied. Areas within both the colour threshold 

boundary and YFI reference locations are displayed in their natural colour, areas outside 

these bounds are displayed as black. GPS location of camera at point of image capture, 

49.1254°N and 116.6277°W. 

 

Template Matching 

Template matching searches an image for instances of a template pattern that is 

characteristic of an object of interest. The template pattern is defined as a rectangle that is w 

pixels in width and h pixels in height. This template pattern is then compared to each 

possible w×h subset of the image. The number of chunks of size w×h in an image that is W 

pixels in width and H pixels in height is (W-w+1)×(H-h+1). Each of these subsets is then 

compared against the template pattern, and a zero-to-one ranking is calculated for each subset 

that describes the degree of similarity between the subset and the template pattern. A ranking 

of 0 indicates that the subset is the most dissimilar of all subsets evaluated, while a ranking of 

1 indicates that the subset is the most similar. Positive matches are defined as comparisons in 

which a subset is ranked above a user-defined similarity threshold value. Subsets that are 

evaluated to be positive matches to the template pattern are considered to represent areas 

within the image that contain the object of interest, whereas subsets that are not positive 

matches are considered regions of the image that do not contain the object of interest. 
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Through the optimization of the similarity threshold the total number of subsets that result in 

positive matches yet are not characteristic of the object of interest (i.e. false positive 

matches), are reduced. 

In this study, a template pattern was generated from a 9×9-pixel region of a RPAS-

acquired image of the study site that centred on a blooming YFI flower and contained the 

flower boundaries, defining the flower’s shape. The template pattern was further processed 

by applying the colour thresholding described above and converting the resulting image to 

greyscale. Pattern matching using this template was performed by first converting an image 

to greyscale, and then comparing the template pattern to each 9×9-pixel subset of the image. 

The images in this study were 3,456 pixels in height and 4,608 pixels in width, resulting in 

15,860,800 comparisons between the template pattern and subsets of the image. 

The similarity threshold was tuned by the equal-error-rate (EER) method. This 

method compares the false-positive (FP) and false-negative (FN) rates for a classifier against 

the value of a tuneable parameter, in this case the similarity threshold, and recommends that 

the optimal value of the parameter is the value of the parameter that results in an equal value 

of the FP and FN rates. EER was selected for optimization of the similarity threshold over 

use of a receiver operating curve (ROC) which utilizes the true positive rate (TPR) and false 

positive rate (FPR) as operating characteristics (Fawcett, 2006). Due to YFI only making up 

a small proportion of each image, the number of true negative (TN) classifications greatly 

exceeded all other classifications combined, so the EER method was selected to avoid using 

TN as a metric and instead focus on minimizing each type of false classification. By 

searching possible values of the similarity threshold from 0.01 to 0.99, in 0.01-unit steps, the 

EER was calculated for each of the 50 images selected for creating the classifier. The error 

rates were computed by comparing the regions of the image identified by template matching 

to contain YFI against the YFI reference locations for each image. Figure 2.6 illustrates the 

FP and FN rates versus the similarity threshold as suggested by the EER method. The 

average value of the optimal similarity threshold computed from 50 images was 0.25, and 

this value was used as the similarity threshold for processing all the images in the study. 

Processing an image by template matching removes from the image any regions that do not 

result in positive template matches, and thus are unlikely to contain YFI. 



20 

 

 

Figure 2.6: A plot illustrating the equal error rate (EER) method for identifying the similarity 

threshold.  These data were calculated for the sample image (Figure 2.2) from the Creston 

Valley Wildlife Management Area. 

 

De-speckling 

The colour threshold and template matching image processing steps serve to focus 

further analysis of the image on regions that are likely to contain YFI; however, these image 

processing steps have the tendency to classify single pixels as potentially representing YFI 

despite these pixels being surrounded by pixels that were classified as being devoid of YFI. 

De-speckling is a procedure to remove such speckles from an image. In this study, de-

speckling was performed by evaluating the image pixel by pixel and switching the 

classification of any pixel classified as potentially indicating YFI within the image that was 

not immediately adjacent to at least one pixel that was also positively classified as potentially 

indicating YFI. 

Supervised Classification 

Processing the images using colour thresholding, template matching, and de-

speckling serves to categorize the image into regions that are likely to contain the target 

object (i.e. YFI) and those that are not likely to contain the target object. However, there is 

still more information that can be used to refine the classification based on features derived 
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from the intensity of red, green, and blue (RGB) colour associated with each pixel. Utilizing 

this information to its full potential relies on first computing and selecting features derived 

from these colour intensity values, and then training a supervised classifier to process unseen 

images. 

Generating Training, Testing, and Validation Data 

Data sets for supervised training and testing of the random forest classifier were 

constructed by sampling the YFI reference locations of the 50 images used for creating the 

hybrid classification method. Zhu et al. (2016) have shown that training a classifier using a 

balanced training set consisting of an equal number of positive and negative examples 

improves classifier performance. Thus, both the training and testing data sets were 

constructed as balanced data sets. This was accomplished using stratified random sampling 

(as suggested by Ma et al. 2015) to down-sample the majority class (not YFI) and over-

sample the minority class (YFI). One training/testing set was created for each case of image 

processing: (1) colour thresholding only, (2) colour thresholding and template matching, (3) 

colour thresholding and de-speckling, and (4) colour thresholding, template matching, and 

de-speckling. Table 2.1 shows the characteristics of each of these four testing/training sets.  

Table 2.1: The total number of positive and negative samples generated for the 

training/testing sets using each of the 4 image processing methods, and the total number of 

balanced samples used in training/testing. All methods include colour thresholding as a pre-

processing step. 

Image Processing 
Positive 

Samples 

Negative 

Samples 

Total 

Balanced 

Samples 

Template Matching & De-Speckling 9840 1011369 19680 

Template Matching & No De-Speckling 10975 3769554 21950 

No Template Matching & De-Speckling 183002 13897850 366004 

No Template Matching & No De-Speckling 183002 13897850 366004 

 

Feature Creation 

Features derived from the RGB values of each pixel were computed based on a 

neighbourhood of 9×9 pixels centred at the pixel that is characterized by the derived features. 

This corresponds to the same neighbourhood used for the template pattern-matching 
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processing step previously described. Using this neighbourhood, a set of 68 features were 

created for each pixel positively classified by image processing. These features are based on 

ten colour measures, namely red intensity, green intensity, blue intensity, HSV hue, HSV 

saturation, HSV value, grey-scale intensity, excess-red intensity, excess-green intensity, and 

excess-blue intensity. The excess colour intensity can be computed as: 

𝐸R = 2𝑅∗ − 𝐺∗ − 𝐵∗ (1) 

𝐸G = 2𝐺∗ − 𝑅∗ − 𝐵∗ (2) 

𝐸B = 2𝐵∗ − 𝑅∗ − 𝐺∗ (3) 

𝑅∗ =
𝑅

𝑅 + 𝐺 + 𝐵
 (4) 

𝐺∗ =
𝐺

𝑅 + 𝐺 + 𝐵
 (5) 

𝐵∗ =
𝐵

𝑅 + 𝐺 + 𝐵
 (6) 

where R indicates the red band intensity, G indicates the green band intensity, B represents 

the blue band intensity, ER represents the excess red measure, EG represents the excess green 

measure, and EB represents the excess blue measure. The excess colour intensities were 

included in this work because it has been previously shown that these features have been 

beneficial for distinguishing vegetation species from backdrop vegetation in RGB imagery 

acquired by a digital camera (Ma et al., 2015). For each of these ten colour features, four 

statistical features were calculated: the (1) mean, (2) standard deviation, (3) kurtosis, and (4) 

skew of the colour feature over the pixel neighbourhood. For each of the seven non-HSV 

colour features, four additional texture features were computed: the (1) contrast, (2) 

correlation, (3) energy, and (4) homogeneity over the 9×9-pixel neighbourhood. Thus, each 

pixel that was selected by processing for further analysis is characterized by a total of 68 

features based on the 9×9-pixel neighbourhood in which it is centred. 

Feature Selection 

Recursive feature elimination with 10-fold cross-validation was used to find the 

optimal subset of the 68 features derived from the recorded RGB values for each pixel. 

Optimal features were assigned a rank of 1, whereas other features were ranked in increasing 

order in relation to their performance. To verify the performance of the feature selection, a 
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classifier was trained and tested with the ranked features using the training data. Classifier 

performance was recorded for each subset of the highest-ranking features, beginning with the 

full set of features, and repeating the verification processing until only a single feature 

remained. 

Classification 

A random forest classifier was selected for this experiment. It has been used 

extensively in remote sensing applications (Lawson et al., 2017; Ma et al., 2015; Michez et 

al., 2016; Mitchell et al., 2016; Rodriguez-Galiano et al., 2012; Zhu et al., 2016) and has 

performed reasonably well in previous work (Hill et al., 2017). The random forest classifier 

was trained using 10-fold cross-validation. 

Performance Evaluation 

Classifier performance was calculated using the metrics of precision, sensitivity, and 

accuracy. Precision (P) was computed on a pixel by pixel basis using the formula: 

𝑃 =
𝐶TP

𝑝𝑖𝑥𝑒𝑙

𝐶TP
𝑝𝑖𝑥𝑒𝑙

+ 𝐶FP
𝑝𝑖𝑥𝑒𝑙

 (7) 

where 𝐶TP
𝑝𝑖𝑥𝑒𝑙

 is the number of true positive pixel classifications (i.e. pixels representing YFI 

that are classified as such), and 𝐶FP
𝑝𝑖𝑥𝑒𝑙

 is the number of false positive pixel classifications. 

Precision was only computed for the validation set, because the balanced data sets used as 

training and test data would have overestimated precision because they significantly under-

represent the number of pixels that do not contain YFI. 

Sensitivity (S) was measured on a plant-by-plant basis using the formula: 

𝑆 =
𝐶TP

𝑝𝑙𝑎𝑛𝑡

𝐶TP
𝑝𝑙𝑎𝑛𝑡 + 𝐶FN

𝑝𝑙𝑎𝑛𝑡
 (8) 

where 𝐶TP
𝑝𝑙𝑎𝑛𝑡

 is the number of true positive plant classifications (i.e. an object in the image 

representing YFI that is classified as such), and 𝐶FN
𝑝𝑙𝑎𝑛𝑡

 is the number of false negative plant 

classifications. Sensitivity was measured on a plant-by-plant basis to evaluate the ability to 

detect instances of YFI, as opposed to evaluating the ability to accurately detect every pixel 

contained in a contiguous patch of YFI. 

Accuracy was calculated as: 
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𝐴 =
𝐶TP

𝑝𝑖𝑥𝑒𝑙 +  𝐶TN
𝑝𝑖𝑥𝑒𝑙

𝐶TP
𝑝𝑖𝑥𝑒𝑙

+ 𝐶FP
𝑝𝑖𝑥𝑒𝑙

+  𝐶FN
𝑝𝑖𝑥𝑒𝑙

+  𝐶TN
𝑝𝑖𝑥𝑒𝑙

 (9) 

where 𝐶TP
𝑝𝑖𝑥𝑒𝑙

 is the number of true positive pixel classifications, 𝐶FP
𝑝𝑖𝑥𝑒𝑙

 is the number of false 

positive pixel classifications, 𝐶FN
𝑝𝑖𝑥𝑒𝑙

 is the number of false negative pixel classifications, and 

𝐶TN
𝑝𝑖𝑥𝑒𝑙

 is the number of true negative pixel classifications. 

These performance measures were computed for classifiers consisting of image 

processing only and hybrid image-processing/random forest classifiers trained either using 

feature selection or not using feature selection. 𝐶TP
𝑝𝑖𝑥𝑒𝑙

 was calculated by summing all 

positively identified pixels within the YFI reference locations, and 𝐶FP
𝑝𝑖𝑥𝑒𝑙

 was all positively 

identified pixels found outside of the YFI reference locations. 𝐶FN
𝑝𝑖𝑥𝑒𝑙

 was found by 

subtracting 𝐶TP
𝑝𝑖𝑥𝑒𝑙

 from the total number of pixels contained within the YFI reference 

locations, and 𝐶TN
𝑝𝑖𝑥𝑒𝑙

 was found by subtracting 𝐶TP
𝑝𝑖𝑥𝑒𝑙

, 𝐶FP
𝑝𝑖𝑥𝑒𝑙

, and 𝐶FN
𝑝𝑖𝑥𝑒𝑙

 from the total 

number of pixels within the image.  

RESULTS 

In this study, eight hybrid image-processing/random forest classifiers were developed 

and evaluated to determine the best combination of image processing methods and use of 

feature selection to identify YFI within aerial images acquired by a RPAS-borne digital 

camera. Specifically, the hybrid classification methods explored in this study are (1) colour 

thresholding and no feature selection, (2) colour thresholding and feature selection, (3) colour 

thresholding, template matching, and no feature selection, (4) colour thresholding, template 

matching, and feature selection, (5) colour thresholding, de-speckling, and no feature 

selection, (6) colour thresholding, de-speckling, and feature selection, (7) colour 

thresholding, template matching, de-speckling, and no feature selection, and (8) colour 

thresholding, template matching, de-speckling, and feature selection. 

Feature Selection 

Using recursive feature elimination, an optimum subset of features was determined 

for each of the test cases incorporating feature selection. For each case, it was found that the 

optimum number of features to use in creating a classifier was 10. Of these 10 features, 9 

were constant for each method, and they included: (1) mean HSV hue, (2) mean HSV 
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saturation, (3) mean HSV value, (4) standard deviation of HSV hue, (5) standard deviation of 

HSV saturation, (6) standard deviation of HSV value, (7) kurtosis of HSV saturation, (8) 

skew of HSV hue, and (9) skew of HSV saturation. For the colour thresholding and template 

matching test case, the final feature selected was the contrast of blue intensity. For the 

remaining three cases, the final feature selected was the skew of HSV value. 

Classification Performance 

A random forest classifier was trained for each of the 8 combinations of image 

processing using 10-fold cross-validation to train and evaluate the classifier. Table 2.2 

contains a table ranking the average accuracy computed across all folds for each of the 8 

hybrid classification methods, while training the classifier with the balanced dataset 

generated from the original 50 images. The classification accuracy computed by the cross-

validation was similar for each method, with a mean of 0.82 and a standard deviation of 

0.031. The method that used colour thresholding with template matching (but not de-

speckling) to process the image that was then classified using a classifier trained using 

features selected by feature selection scored the highest, with a classification accuracy of 

86%. The lowest scoring classification method (77%) was the one that did not perform any 

additional image processing beyond colour thresholding and did not utilize feature selection 

to identify an optimal feature set for the random forest classifier. 

Table 2.2: Mean 10-fold cross-validation accuracy computed for the balanced training set for 

each of the hybrid classification methods. All methods include colour thresholding as a pre-

processing step. 

Image Processing Feature Selection Accuracy (%) 

Template Matching & No De-Speckling Yes 86.42 

Template Matching & No De-Speckling No 84.87 

No Template Matching & De-Speckling Yes 82.58 

Template Matching & De-Speckling Yes 81.74 

No Template Matching & De-Speckling No 81.35 

Template Matching & De-Speckling No 80.78 

No Template Matching & No De-Speckling Yes 77.98 

No Template Matching & No De-Speckling No 77.23 

 

The best hybrid classifier created during the training by 10-fold cross-validation was 

then used with the corresponding processing steps to classify the examples in the balanced 
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testing set. The accuracy of the hybrid classification methods evaluated on these data is 

shown in Table 2.3. As was the case during cross-validation using the training set, the 

method that used colour thresholding, template matching, and feature selection performed the 

best, with an overall accuracy of 77%. Alternatively, the method that combined colour 

thresholding, template matching, and de-speckling, but did not use feature selection, had the 

lowest classification accuracy (67%). The mean was 0.71 with a standard deviation of 0.036. 

Table 2.3 ranks the accuracy of the 8 hybrid classification methods evaluated in this study for 

identifying YFI in the test images. 

Table 2.3: Average 10-fold cross-validation accuracy of the hybrid classification methods for 

identifying YFI in test set. All methods include colour thresholding as a pre-processing step. 

Image Processing Feature Selection Accuracy (%) 

Template Matching & No De-Speckling Yes 77.40 

Template Matching & No De-Speckling No 73.46 

No Template Matching & De-Speckling Yes 71.09 

No Template Matching & De-Speckling No 70.94 

Template Matching & De-Speckling Yes 68.46 

No Template Matching & No De-Speckling Yes 68.10 

No Template Matching & No De-Speckling No 67.95 

Template Matching & De-Speckling No 66.10 

 

Validation 

To explore the value of creating hybrid classification methods that combine image 

processing and machine learning steps, each of the 4 combinations of image processing and 

each of the 8 hybrid classifiers were evaluated in terms of their accuracy, precision, and 

sensitivity when tested on the unbalanced validation data set. Table 2.4 shows the accuracy, 

precision, and sensitivity of the YFI classification for the validation images, computed for the 

4 image processing combinations alone and for the 8 hybrid classification methods. As can 

be seen by these data, all the methods performed well.  

The methods with the highest accuracy (>99.3%) were those that used template matching and 

the random forest classifier. This is likely due to the reduction in the number of false positive 

classifications made by these, more selective, classifiers. The methods with the lowest 

accuracy were those that did not use the random forest classifier. The method that processed 
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the images using colour thresholding, template matching, de-speckling, and used feature 

selection to guide supervised training performed the best, achieving an accuracy of 99.37%. 

The method that used colour thresholding only performed the poorest, with a classification 

accuracy of 98.06%. 

The method with the highest classification precision (5.5%) was the method that used 

only colour thresholding for image processing before applying a supervised classifier trained 

using the 10 features identified through feature selection. The method that processed images 

using colour thresholding and template matching and did not use supervised classification 

had the lowest precision (0.29%).  

The maximum number of YFI patches were identified when no further image 

processing beyond colour thresholding and no supervised classification was applied, with a 

sensitivity of 95%. This result indicates that 5% of the YFI is excluded due to it not 

containing any features that were within the limits of the colour threshold. The lowest 

sensitivity was 35%, when the images were processed by colour thresholding, template 

matching, and de-speckling prior to supervised classification by a random forest classifier 

that was trained with all 68 features (no feature selection was used). 

Table 2.4: The accuracy, precision, and sensitivity of the combinations of template matching 

(TM) and De-Speckling (DS) image processing methods alone and hybrid classification 

methods for classifying the validation data. The highest value for each accuracy, precision, 

and sensitivity is displayed in bold, and each method is sorted based on the average of the 

three values. All methods include colour thresholding as a pre-processing step. 

Image 

Processing 

Supervised 

Classification 

Feature 

Selection 

Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Average 

(%) 

No TM & 

DS 

Yes No 99.14 4.83 93.07 65.68 

No TM & 

DS 

Yes Yes 99.15 4.96 92.57 65.56 

No TM & 

No DS 

Yes No 99.19 5.32 92.16 65.56 

No TM & 

DS 

No N/A 98.06 1.67 94.55 64.76 

No TM & 

No DS 

No N/A 98.06 1.67 94.55 64.76 
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TM & No 

DS 

Yes Yes 99.34 1.67 92.08 64.36 

TM & No 

DS 

No N/A 99.04 0.29 91.58 63.64 

No TM & 

No DS 

Yes Yes 99.20 5.55 60.89 55.21 

TM & No 

DS 

Yes No 99.33 1.39 62.87 54.53 

TM & DS No N/A 99.04 1.39 43.07 47.83 

TM & DS Yes Yes 99.37 3.78 37.62 46.92 

TM & DS Yes No 99.37 3.58 35.15 46.03 

 

Computation Times 

This study explored the use of image processing to reduce the volume and variety of 

pixels classified by a supervised random forest classifier. To evaluate the speed-up enabled 

by these image processing methods, the central processing unit (CPU) time to perform each 

step in the classifier development was recorded. The time required to perform colour 

thresholding was negligible; since all methods explored in this study use colour thresholding, 

the time required to perform this step was constant for all methods, and so it is not included 

in the data presented here. All computations were completed on an Intel® Core™ i3-6300 

CPU @3.70GHz dual-core processor with 4.00 gigabytes (GB) of random-access memory 

(RAM). 

 Table 2.5 contains the runtimes required to develop classifiers for each of the image 

processing methods. The method that did not use template matching nor de-speckling took 

the longest at almost 77 hours. The method using both template matching and de-speckling 

was the fastest at approximately 58 hours. In each of the methods that did not use template 

matching, generating features for the 50 images used to train and test the classifier took the 

longest. For the methods that used template matching, optimizing the template matching 

threshold took the longest to perform. 

Table 2.5: Time required to develop hybrid classifiers for the four permutations of the 

template matching (TM) and de-speckling (DS) image processing procedures. Processing 

steps are ordered as the times taken to (1) optimize the template matching threshold, (2) 

generate features for the original 50 images, (3) perform recursive feature elimination, (4) 
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train a classifier using 10 features, (5) train a classifier using all 68 features, (6) test the 

classifier using 10 features, and (7) test the classifier using all 68 features. HH represents the 

number of hours, MI represents the number of minutes, and SS.SS represents the number of 

seconds taken to perform each step. 

 Runtimes (HH: MI: SS.SS) 

Step No TM & No DS No TM & DS TM & No DS TM & DS 

1 N/A N/A 52:00:00.00 52:00:00.00 

2 76:30:40.68 75:42:09.28 18:10:45.19 5:55:26.07 

3 0:06:45.80 0:06:47.45 0:00:22.35 0:00:21.92 

4 0:01:16.39 0:01:12.18 0:00:03.69 0:00:03.01 

5 0:01:17.77 0:01:15.54 0:00:04.59 0:00:04.99 

6 0:00:06.93 0:00:06.88 0:00:00.40 0:00:00.37 

7 0:00:07.18 0:00:07.03 0:00:00.39 0:00:00.36 

Total 76:40:14.74 75:51:38.36 70:11:17.00 57:55:56.70 

 

 Template matching significantly reduces the number of pixels that will need to be 

classified by the random forest; however, the cost of this work reduction is the need to tune 

the similarity threshold value used by the template-matching method. Tuning this threshold 

for one image using the EER method described above took approximately 2 hours. In this 

study, the optimal value of this parameter was calculated by performing the EER method on 

the 50 images used for generating the training and testing sets. The distribution of the 

resulting 50 threshold values was approximately normal, with a mean of 0.25 and a standard 

deviation of 0.017. Using these values to estimate the required number of images to optimize 

the value of the similarity threshold within the 90%, 95%, and 99% confidence intervals 

resulted in estimates of 18, 26, and 45 images, respectively. Table 2.6 shows the approximate 

time required to estimate the similarity thresholds for these numbers of images. For the 

remainder of this discussion, it will be assumed that a 95% confidence interval around the 

true value of the similarity threshold is acceptable, and thus, the time required to estimate this 

parameter will be 52 hours—the time required to perform the EER method on 26 images.  

Table 2.6: Estimated number of images required to achieve a given level of confidence in the 

estimated similarity threshold, and the associated computation time required to perform the 

EER-based optimization of the threshold. 

Confidence Interval (%) Number of Images Approximate Runtime (Hours) 
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99 45 90 

95 26 52 

90 18 36 

 

 Table 2.7 shows the time required for each of the 8 hybrid classification methods to 

fully classify an unseen image. As can be seen in these data, the classification speed 

increases with increased image processing. The hybrid classification methods that combined 

template matching with de-speckling performed the fastest, running on average in under 1 

second per image, where the methods not utilizing template matching required on average 

more than 15 seconds to complete. 

Table 2.7: The average time required to classify an image for each of the 8 hybrid 

classification methods explored in this study. All methods include colour thresholding as a 

pre-processing step. HH represents the number of hours, MI represents the number of 

minutes, and SS.SS represents the number of seconds taken to perform each step. 

Image Processing 

Feature 

Selection 

Runtimes  

(HH: MI: SS.SS) 

Template Matching & De-Speckling No 0:00:00.96 

Template Matching & De-Speckling Yes 0:00:00.97 

Template Matching & No De-Speckling No 0:00:05.00 

Template Matching & No De-Speckling Yes 0:00:05.01 

No Template Matching & No De-Speckling Yes 0:00:15.64 

No Template Matching & De-Speckling Yes 0:00:15.74 

No Template Matching & No De-Speckling No 0:00:16.17 

No Template Matching & De-Speckling No 0:00:16.24 

 

DISCUSSION 

The objective of this study was to evaluate image processing as an effective way to 

improve supervised classification of an invasive species within un-calibrated high-resolution 

aerial RGB imagery. Because of the large number of pixels that compose each image, and the 

relatively small amount of information available from the un-calibrated red, green, and blue 

values recorded for each pixel, it is expected that proper image processing will improve the 

overall classification accuracy as it will allow the classifier to focus on discriminating pixels 

with a smaller variety of characteristics. Furthermore, by reducing the total number of pixels 
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to be processed by supervised classification, we expect that judicious use of image 

processing will significantly improve the speed with which an image can be classified. 

Due to the colour, shape, and size of YFI patches, it can be difficult to distinguish 

them from background vegetation based solely on the properties of foliage. In the application 

of distinguishing YFI from other vegetation based only on foliage, spectral features would 

likely be replaced by shape and textural features to improve classifier performance. In the 

studies performed by Dronova et al. (2012), Jones et al. (2011), and Mitchell et al. (2016), it 

was found that clustering was effective in isolating ground cover types, specific vegetation 

types, and vegetation species. However, these applications were conducted in areas where the 

objects of interest were primary features in the images being studied. In many of the images 

used in this study, YFI was present only in small proportions. Pérez-Ortiz (2016) found the 

method of clustering basic ground cover types to be effective in initially removing non-

vegetative areas from an image, after which point, clustering could be performed on the 

newly masked image to further distinguish unique vegetative species within the image. The 

resulting multi-stage clustering method required human intervention at the completion of 

each stage to assign a classification to each cluster. Such a method will not scale up to large 

regions with highly variable land cover, and thus was not explored in this study. Instead, 

classification of YFI was based on identifying its characteristic yellow flower and not 

attempting to identify the whole plant. 

Environmental factors such as lighting, viewing angle, differences in physical 

attributes and clustering of YFI, and vegetation maturity caused high variability in the 

characteristics of YFI blooms in the images sampled in this study. As the template matching 

similarity threshold was optimized to reduce both the number of false positives and false 

negatives, plants that scored below the similarity threshold value were excluded from further 

classification. When coupled with the small size of YFI flowers in relation to image 

resolution, detection of YFI flowers through image analysis methods alone were ineffective. 

Edge detection methods were evaluated for defining areas of interest along water banks 

where YFI is commonly located; however, due to the marshy nature of the water bodies 

present, edge detection struggled to locate water boundaries. Instead, colour thresholding, 

coupled with template matching and/or de-speckling, was investigated as a method to 
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improve the classification of the image. These image processing steps served to reduce the 

volume and variety of the pixels that were then classified by a supervised random forest 

classifier. 

In the study performed by Hill et al. (2017), it was found that using a supervised 

random forest classifier to classify pixels representing YFI flowers based on the un-calibrated 

RGB intensity values of the pixel alone resulted in high false positive results. For this reason, 

derived features calculated from a 9×9-pixel neighbourhood centred on the pixel of interest 

were used to support the supervised classification step. Although 68 features were derived 

from the RGB intensities, it is expected that some of them may represent redundant or 

misleading information for the random forest, for this reason feature selection was performed 

using the recursive feature elimination method, resulting in an optimal feature subset 

containing 10 features. 

Accuracy can be a measure that considers the impact of both false positive and false 

negative classifications. As illustrated in Table 2.4, the method that combines colour 

thresholding with template matching and random forest classification based on the optimal 

feature subset provided the best results, with a classification accuracy of 99.4%. This 

represents a nearly 1.34% increase in accuracy over applying colour thresholding alone. 

The precision values are all low, as shown in Table 2.4, with a maximum value of 

5.5%. This indicates that all the methods considered in this study have a high number of false 

positive classifications. It can also be seen from these data that, except in one case, all the 

methods that use the random forest classifier as the final step in the classification have higher 

precision than the methods that do not use supervised classification. This suggests that 

supervised classification has a significant benefit for improving the classification based on 

the image processing alone by significantly reducing the number of false positives. 

The sensitivity data, shown in Table 2.4, reveals that application of the colour 

threshold alone incorrectly classifies approximately 5% of the YFI in the image; however, it 

reduces the number of pixels that must be analysed by approximately 99%. The data 

presented in this table also suggest two breaks in the sensitivity values, one at approximately 

75% and one at approximately 50%. The methods with sensitivity higher than 75% do not 
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use template matching as part of the processing of the image, whereas all the methods with a 

sensitivity lower than 25% combine both template matching with de-speckling. Only two 

methods, those that combine colour thresholding, template matching, and random forest 

classification, sit in the range of 75%–25% sensitivity. Template matching serves to reduce 

the sensitivity of the classification method; thus, it is incorrectly identifying YFI flowers in 

the image. This could be due to the selection of a poor template pattern of the flower to the 

effect of distortion caused by the perspective projection of the image, or to lighting 

conditions. This reduction of sensitivity could possibly be mitigated by placing a higher 

importance on recognizing false negatives over false positives when tuning the threshold 

parameter in template matching. However, when it is considered that template matching 

improved the overall accuracy, a metric that combines the impact of false positive and false 

negative classifications, it seems that a reduction in sensitivity is necessary to reduce the 

false positive rate to be more equal to the false negative rate. 

In our previous work (Hill et al., 2017), false positives constituted a majority of the 

positive classifications of YFI in an image classified by a random forest classifier alone.  

Furthermore, all the hybrid classification methods developed in this study had a relatively 

high number of false positives, as indicated by the precision measures for each method.  

Thus, to be useful, a classification method will have to reduce the false positive rate. Based 

on the results found here, the most effective way to reduce the false positive rate while 

maximizing sensitivity is to apply image processing in the form of colour thresholding and 

de-speckling prior to the use of a random forest classifier. While it was found that the 

methods that used template matching and a random forest classifier provided the highest 

accuracy, it functioned to significantly reduce sensitivity. 

Due to the high computational requirements involved in generating the derived 

features used to describe each image pixel, image processing methods that reduced the 

number of pixels that were to be classified by the supervised random forest classifier 

significantly reduced the time required to develop a classifier from training data and to use 

this classifier to evaluate a single image. While colour thresholding reduced the number of 

pixels to be considered by the random forest classifier most significantly, template matching 

came in second, and reduced the number of pixels much more substantially than did de-
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speckling. Thus, the methods that included template matching could classify new images 

more quickly than methods that did not include template matching, with the template 

matching and de-speckling method taking on average 1 second to fully classify the image, 

and the template matching and no de-speckling method taking on average 5 seconds per 

image. In contrast, the methods that did not include template matching required over 15 

seconds each to classify an image. While template matching did require the time-consuming 

step of optimizing the similarity threshold, this was a one-time step that did not need to be 

repeated for successive images. Thus, template matching will scale well as an image-

processing step for the large number of images that are generated by high-resolution aerial 

imaging surveys by RPASs, and may be a viable solution for near-real-time image 

classification needed for adaptive management. 

CONCLUSION 

This study assessed the benefits of combining image processing with supervised 

classification to improve the performance of classification of an invasive weed captured in 

high-resolution imagery acquired by an un-calibrated RPAS-borne digital camera. By 

comparing 8 hybrid classification methods composed of permutations of the image-

processing steps of template matching, de-speckling, and the use (or not) of feature selection 

in training a random forest classifier, we investigated how image processing can be most 

effectively used to improve image classifications in terms of accuracy, precision, sensitivity, 

and speed. Our results suggest that image processing can be combined with supervised 

classification to significantly improve overall classification accuracy at the expense of 

decreased sensitivity. However, this decreased sensitivity is balanced by a significant 

reduction in false positive classifications. Our results also suggest that the type of image 

processing used must be carefully considered, because over-processing of the image serves to 

reduce the overall performance of image classification. 

The best hybrid image-processing/random forest classification method identified in 

this work demonstrated an overall accuracy, precision, and sensitivity of 99%, 4.8%, and 

93%, respectively, on a validation data set comprising 20 images not used in the method’s 

creation. This hybrid method required approximately 16 seconds to classify a 4608-pixel by 

3456-pixel image on an Intel® Core™ i3-6300 CPU @3.70GHz with 4.00 GB of RAM. This 
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classification performance represents a significant improvement over our previous results 

(Hill et al., 2017) and suggests that digital cameras carried aboard consumer-grade RPASs 

have immense potential to improve the accuracy of invasive species mapping. Inexpensive 

equipment such as the DJI Phantom 3 Pro used in this study is increasingly accessible to 

invasive species practitioners; however, the large number of high-resolution aerial images 

captured during an aerial survey of even a modestly sized region is overwhelming for manual 

image analysis. The hybrid classification method developed here presents a pathway for 

automated image classification that will help scale such analyses to larger spatial regions and 

potentially enable adaptive management based on RPAS-acquired imagery. 
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Chapter 3: Monitoring Grassland Invasion by Spotted Knapweed 

(Centaurea maculosa) with RPAS-Acquired Imagery 
 

INTRODUCTION 

Invasive plants are exogenous species that have been introduced to new 

environments, rapidly altering the structure and function of host ecosystems, and 

homogenizing the existing biotic communities (Pyšek & Richardson, 2010; Qian & Ricklefs, 

2006). These changes to ecosystems caused by plant invasions can result in significant 

negative environmental impacts (Powell, Chase, and Knight, 2011; Davis, 2003). Treatment 

of invaded sites is therefore critical in mitigating this outcome. Early detection and mapping 

of the extent of invasion has been found to be beneficial and cost-effective when treating 

invasions (Malanson & Walsh, 2013; Holden, Nyrop, and Ellner, 2016). 

With the introduction of remotely piloted aircraft systems (RPASs) as a remote 

sensing platform, there has been increasing interest in using this technology for the detection 

of biological invasions (Baron, Hill, and Elmiligi, 2018; Hill et al., 2017; Sandino et al., 

2018; Alvarez-Taboada, Paredes, and Julián-Pelaz, 2017). RPASs have shown promise for 

improving land-cover mapping (Kalantar et al., 2017), vegetation mapping for invasive 

species detection (Hill et al., 2017), agricultural monitoring of crop health (Candiago et al., 

2015), and evaluations of crop yield and maturity (Yu et al., 2016). Central to the problem of 

mapping biological invasions using remote sensing is the ability to accurately distinguish 

invasive plants from backdrop vegetation. Previous work has explored the impacts of 

increased spatial resolution and timing of data collection to leverage unique physiological 

features that are associated with a plant’s phenological stage (Huang & Asner, 2009; 

Müllerová, Pergl, and Pyšek, 2013), and increased spectral resolution to leverage differences 

in narrow band reflectance for discriminating between vegetation types (Lass et al., 2002). It 

has been shown that overall accuracy (OA, the percentage of correct classifications relative 

to the total number of classifications) of the classification is affected by the composition of 

invading plants.  Monospecific patches with higher vegetation cover present a clear spectral 

signature that can be leveraged by the classifier to produce higher accuracies.  On the other 

hand, the spectral reflectance of a mixed communities blends the spectral signatures of the 
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plants present within a specific area; obfuscating the signature of the target species and 

degrading the classifier performance (Michez et al., 2016). Furthermore, the availability of 

accurate training data is a limiting factor in classifier performance, as the amount of training 

data available has been shown to have a large impact on classification accuracy when 

selecting a classifier (Huang, Davis, and Townshend, 2002), and poor data quality can 

confound classifiers during training. 

Spotted knapweed (Centaurea maculosa) is a perennial, tap-rooted plant native to 

central Europe and east-to-central Russia, where it grows in relatively low densities as part of 

grassland ecosystems (Sheley, Jacobs, and Carpinelli, 1998). It is highly invasive in North 

America, dominating both rangeland and grasslands, which has made it a target of study and 

control for over four decades (Carson, Bahlai, and Landis, 2014). In its native environment, 

spotted knapweed cultivates soil biota that inhibit its further growth, but in North American 

grasslands, the soil conditions produced by spotted knapweed promote its growth (Callaway 

et al., 2004). This positive feedback mechanism reduces overall biological diversity and 

influences the relative abundance of species within invaded grassland communities 

(Klironomos, 2002). This plant–soil interaction pattern, coupled with the long-term viability 

of dormant seeds (Davis et al., 1993), renders spotted knapweed a particularly virulent 

invasive species in North America that can require long-term management. 

The overall objective of this study was to develop a multispectral image analysis 

method suitable for mapping an invasive herbaceous plant—spotted knapweed—within a 

semi-arid grassland ecosystem. This is challenging because both the native perennial grasses 

(e.g., bunchgrasses) in this ecosystem and the invasive spotted knapweed have small leaves, 

stems, and stalks. Additionally, the ecosystem is characterized by high plant species 

diversity. 

Object-based image analysis (OBIA) permits the use of spatially derived texture 

features such as grey level co-occurrence matrix (GLCM) -based metrics (Haralick, 

Shanmugan, and Dinstein, 1973; Jensen, 2015), metrics used to evaluate the co-occurrence of 

pixel grey level values at given offsets, to enhance image classification. It has shown 

immense promise for species level-classification of forest canopies (Blaschke, 2010; 

Blashcke et al., 2014). Application of OBIA, however, generally requires that the pixel size 

be small, relative to the objects (e.g., plant structural features, such as leaves) within the 
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scene, a condition that is difficult to achieve given the small physical size of grassland plants. 

On the other hand, traditional pixel-based image analysis methods accommodate images in 

which the pixels are much larger than the objects within the scene; however, this type of 

image analysis more often utilizes texture features for generalized ground-cover mapping 

rather than object delineation. Additionally, due to the diversity of plants present and the 

similarity of the spectral signatures of healthy native grassland varieties, both to each other 

and to spotted knapweed in the visible and near infrared (NIR) bands, multispectral imagery 

contains insufficient information to distinguish invasive species from backgrounds of similar 

vegetation (Dewey, Price, and Ramsey, 1991; Woolley, 1971) using pixel-based methods. 

Much denser hyperspectral data has been shown to provide adequate information for 

detecting spotted knapweed in a grassland ecosystem (Lawrence, Wood, and Sheley, 2006); 

however, such data is costly to acquire. 

This study develops a method that can leverage multispectral imagery to predict the 

relative abundance of spotted knapweed across the landscape by applying OBIA to contrived 

objects (which we call metapixels) representing quadrats, a unit area used by grassland 

ecologists to measure species composition. Specifically, this study aims to (1) develop the 

metapixel-based image analysis method for use in grassland environments where the spatial 

resolution is insufficient to segment the image into physical objects present in the scene, and 

(2) explore the utility of incorporating GLCM-based texture metrics as features in metapixel-

based image analysis for predicting the relative abundance of spotted knapweed in an arid 

grassland ecosystem. The next section describes the metapixel-based method in detail and the 

field data collected to evaluate its performance. Next, results from feature selection, 

parameter tuning, and classifier performance are presented, followed by a discussion of these 

results. The paper concludes with a summary of key findings and implications for future 

work.  

STUDY SITE 

The area investigated in this study is the Laurie Guichon Memorial Grasslands 

Interpretive Site (LGMGIS), located south of Merritt, British Columbia (BC), Canada. The 

LGMGIS covers 100 hectares (ha) in the Western Cordillera physiographic region of Canada 

and is within the Interior Douglas Fir dry hot subzone of BC’s biogeoclimatic ecosystem 
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classification system. Three field sites were selected within the LGMGIS, where the study 

was conducted. Each field site is approximately 1ha in size, with a gentle slope and southern 

aspect. 

METHODS 

All analyses were performed using Anaconda, a free and open-source distribution of 

the Python Programming Language, with the Scikit-Image 0.14.1 image processing libraries 

(Van der Walt et al., 2014), and the Scikit-Learn 0.20.1 machine learning libraries 

(Pedregosa et al., 2011). The R statistical computing environment (R Core Team 2018), 

utilizing the raster (Hijmans, 2019) and rgdal (Bivand, Keitt, and Rowlingson, 2019) 

packages, was used for data management and statistical analyses. ArcGIS software ArcMap 

10.5.1 (ESRI, 2018) was used for map generation and visible inspection of image 

orthomosaics. Pix4D photogrammetry software version 4.1.25 (Pix4Dmapper, 2018) was 

used for image orthorectification, mosaicking, and georeferencing. 

Image Acquisition and Data Preparation 

Field data were collected at 93 1m2 quadrats, 31 per site, on July 12, 2018. Plant 

species inventories were conducted within each of the quadrats by visual inspection, 

recording plant species present and the approximate percent canopy cover of each plant 

species within the quadrat boundaries. The locations of the quadrats were selected in March 

2018, before emergence of vegetation, by walking within the site boundaries and tossing 

markers at random intervals and directions. The markers, consisting of 70cm segments of 

steel reinforcement bar (rebar) were then driven into the ground where they landed to a depth 

of 60cm. These markers were used to define the south-west corner of 1m2 quadrats that were 

aligned with the cardinal (North/South and East/West) directions. Six of the markers at each 

site functioned as ground control points (GCPs). These markers were fitted with a 12.7cm 

diameter, high-visibility safety-orange cap. Geographic coordinates of all marker locations 

were determined using an iSXBlue 2+ GPS receiver. The iSXBlue receiver uses a satellite-

based augmentation system (SBAS) that combines a geographic positioning system (GPS) 

with GPS correction data received from the United States’ wide area augmentation system 

(WAAS) to achieve horizontal accuracies below 60cm twice the distance root mean square 
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(2dRMS) at the 95% confidence level. Location of the quadrats within field site 1 and an 

image of a typical quadrat acquired on July 04, 2018 are illustrated in Figure 3.1. 

 

Figure 3.1: Locations of field quadrats at field site 1 shown in the WGS UTM Zone 10N 

coordinate system, and an overlaid close-up view of a typical quadrat captured by the 16-

megapixel digital camera integrated in the Sequoia sensor. 

 

RPAS imaging flights were conducted between the hours of 11:00a.m. and 1:00p.m. 

on July 04, July 12, and July 19, 2018. Images were acquired by a Parrot Sequoia sensor, 

equipped with a 16-megapixel digital camera, four 1.2-megapixel global shutter single-band 

imagers, an incident light sensor, and a global positioning system (GPS), carried aloft by a 

DJI Phantom 4 quadcopter. The sensitivity of the single-band imagers of the Sequoia sensor 

are provided in Table 3.1. A flight height of 30m above ground level at the take-off location 

was selected to maximize spatial resolution while maintaining a safe flight plan. Flights were 

conducted in compliance with Canadian Aviation Regulations, qualifying for exemptions 

from a Transport Canada issued Special Flight Operations Certification (SFOC), generally 

required when flying an RPAS for commercial or research purposes at the time of collection 

(Transport Canada, 2018). All flights were conducted with the characteristics listed in Table 

3.2.  
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Table 3.1: Technical specifications for the Parrot Sequoia sensor, including band number, 

band name, centre wavelength, and full width, half maximum (FWHM). 

Band Number Nominal Reflectance Centred Wavelength FWHM (nm) 

1 Green 550 40 

2 Red 660 40 

3 Red Edge 735 10 

4 NIR 790 40 

 

Table 3.2: Flight parameters when performing data acquisition. 

Height Above 

Ground Level(m) 

Forward 

Overlap (%) 

Side Overlap 

(%) 
Time of Day 

Max Wind 

Speed (km/h) 

30 80 80 
11:00a.m.-

1:00p.m. 
40 

 

Images acquired by each of the Sequoia’s single-band imagers assign a digital 

number (DN) to each pixel within the scene.  These digital numbers are related to the 

radiance (Wm-2sr-1) reflected by the land surface over the pixel footprint according to the 

following equation (Parrot, 2017): 

𝑳 = 𝒇𝟐
(𝑫𝑵 − 𝑩)

(𝑨𝜺𝜸 + 𝑪)
 (1) 

where, 𝑫𝑵 is the digital number recorded for each pixel; 𝜺 is the exposure time of the image 

in seconds, 𝜸 is the ISO; 𝒇=2.2 is the f-number of the imager, which represents the ratio of 

the focal length to the aperture diameter of the lens; and  𝑨, 𝑩 and 𝑪 are calibration 

coefficients.  These values are recorded in the exchangeable image file (EXIF) metadata at 

the time of image acquisition.  

Simultaneously with image acquisition by the single-band imagers, the incident light 

sensor of the Sequoia sensor measures a radiance level 𝚿, which is related to the irradiance 𝑬 

(Wm-2sr-1) received by the land surface over the pixel footprint according to the following 

equation (Tu et al., 2018): 
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𝑬 = 𝑎
𝚿

𝑮𝚪
 (2) 

where 𝑎 is a constant, 𝚿 is the radiance level measured by the sensor, 𝐆 is the sensor gain, 

and 𝚪 is the measurement acquisition time. The values 𝚿, 𝐆 and 𝚪 are recorded in the EXIF 

metadata of the image at the time of image acquisition. 

Surface reflectance (𝝆) is calculated during post processing of the images from the 

single band imagers using the following equation (Tu et al., 2018):  

𝝆 = 𝚱
𝑳

𝑬
 (3) 

where, 𝑳 is calculated from the image pixel and EXIF metadata using equation 1, 𝑬 is 

calculated using equation 2 and measurements from the incident light sensor stored in the 

image EXIF data, and 𝚱 is a normalization constant that represents the ratio of the solid 

angles subtended from the incident light sensor to the solid angle subtended from each pixel 

within the imager and includes the constant 𝑎 in equation 2. The normalization constant 𝚱 is 

estimated during each flight using data from a ground-based, calibrated reflectance target. 

Following the manufacturer’s recommended procedure, a calibration target specially 

designed for use with the Sequoia sensor was deployed adjacent to the location of take-off 

and landing and images containing the calibration target were captured prior to and 

immediately following the scheduled flight plan. During data processing, the calibration 

target is automatically detected in the Sequoia imagery by the Pix4D software.  Because the 

calibration target’s reflectance is known, equation 1, 2 and 3 can be used to estimate the 

value of the normalization constant (𝚱) from the image pixels corresponding to the 

calibration target. 

Metapixel-Based Image Analysis 

Due to the small physical size of grassland vegetation, the wide variety of plants that 

live in grassland communities, and the potential for bare soil to be visible through the 

canopy, grassland composition is commonly expressed in terms of percent cover of dominant 

species types. Percent cover is a spatially averaged characteristic that is commonly measured 



46 

 

in the field, and, in this study, it was evaluated at the 1m2 scale using a quadrat-based 

approach. Taking inspiration from this approach for measuring grassland composition, we 

performed a chessboard segmentation to split each image orthomosaic into a set of non-

overlapping squares, which we call metapixels and use as objects for OBIA.  The size of the 

metapixels was selected to be consistent with the size of the quadrats used for the field data 

collection (i.e., 1m2) to avoid representativeness issues that would result from changing the 

spatial support of the relative abundance calculation between the field- and image-based 

methods.  Features describing each metapixel can then be derived from the spectral 

reflectance values of each pixel falling within the bounds of the metapixel. 

In this work 84 features were derived to describe each metapixel.  The mean and 

standard deviation of pixel-level reflectance values for each spectral band constitute eight 

features.  The mean and standard deviation of three multiband spectral indices calculated for 

each pixel falling within the bounds of the metapixel constitute another six features, and the 

remaining 70 features are composed of GLCM-based texture features calculated for each of 

the five spectral bands and three multiband indices. 

Three multiband spectral indices, adaptations of the normalized difference vegetation 

index (NDVI), were calculated for each pixel within the metapixels. Each index was 

calculated by comparing NIR to each remaining spectral reflectance bands. Spectral indices 

calculated using the red and NIR band reflectance values are labelled NDVI. Indices 

comparing the green and NIR band reflectance values are labelled gNDVI. Indices 

comparing the red-edge and NIR band reflectance values are label reNDVI. Each index was 

calculated as: 

𝐍𝐃𝐕𝐈 =
𝛒𝑵𝑰𝑹 − 𝛒𝑹

𝝆𝐍𝐈𝐑 + 𝝆𝑹
 (4) 

𝐠𝐍𝐃𝐕𝐈 =
𝛒𝑵𝑰𝑹 − 𝛒𝑮

𝛒𝑵𝑰𝑹 + 𝛒𝑮
 (5) 

𝐫𝐞𝐍𝐃𝐕𝐈 =
𝛒𝑵𝑰𝑹 − 𝛒𝑹𝑬

𝛒𝑵𝑰𝑹 + 𝛒𝑹𝑬
 (6) 
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where 𝛒𝑮, 𝛒𝑹, 𝛒𝑹𝑬, and 𝛒𝑵𝑰𝑹 stand for the values of the green, red, red-edge, and NIR 

spectral reflectance values.  

For each metapixel, the following GLCM-based texture metrics were computed from 

the pixel-level values for each of the four spectral bands measured by the Sequoia imager and 

for each of the three multiband indices: angular second moment (ASM), correlation, entropy, 

sum entropy, and difference entropy. ASM is a measure of homogeneity of the image, 

correlation is a measure of grey-tone linear-dependencies in the image, entropy measures the 

disorder within an image (and is inversely proportional to the ASM), sum entropy measures 

the sum of the entropies across pixels, and the difference entropy measure the difference of 

entropies across pixels. These GLCM-based texture metrics were selected because they are 

invariant under grey-tone transformation (Haralick, Shanmugan, and Dinstein, 1973), and 

thus, are expected to be less sensitive to changes in irradiance during imaging (e.g. as caused 

by intermittent cloud cover) and sensor calibration errors. Texture features for each spectral 

band and multiband index within a metapixel were calculated from GLCMs representing the 

co-occurrence of pixel grey levels within a 1-pixel neighbourhood in the vertical (0°), 

horizontal (90°), diagonal-up (45°), and diagonal down (135°) directions. These directional 

relationships were defined as being reciprocal, so, for example, co-occurring grey-levels in 

both the up and down position constitute a vertical co-occurrence relationship. Thus, for each 

metapixel four directional variants of each GLCM are computed and each matrix is 

symmetric. ASM, correlation, sum entropy, entropy, and difference entropy were calculated 

using each directional GLCM; resulting in four directional texture values, which were 

generalized using their mean and range statistics. The mean and range statistics were selected 

because they are invariant under rotation of the metapixel (Haralick, Shanmugan, and 

Dinstein, 1973), and thus constitute omnidirectional versions of the GLCM-based spatial 

statistics. Rotation invariant GLCM-based spatial statistics were chosen to increase the 

generalizability of these features across a landscape where geographic features (e.g., aspect, 

breaklines, and ridges) are not expected to be co-aligned.  This process generates 70 

aggregate GLCM-based texture features for each metapixel, namely, the mean and range of 

the directional ASM, correlation, sum entropy, entropy, and difference entropy texture 

metrics for each of the four spectral bands and three multiband indexes. 



48 

 

Training data were created by defining each surveyed quadrat as a metapixel in the 

image, calculating the 84 spectral and textural features for this metapixel and labelling these 

features with the field measured species abundance of the quadrat. These data were used to 

train a random forest classifier to predict the percent cover of the target species based on the 

spectral and textural signature of each metapixel.  

Image Processing 

RPAS images were georeferenced and mosaicked with Pix4Dmapper 

photogrammetry and RPAS mapping software, an implementation of the structure-from-

motion (SfM) algorithm (Turner, Lucieer, and Watson, 2012). Georeferencing of the 

orthomosaicked images created by Pix4D, based on coordinates acquired by the global 

navigation satellite system (GNSS) embedded in the imaging sensor and recorded in the 

EXIF data of the image, can be considered a 1st order approximation due to error in the 

GNSS positioning system (on the order of 10m). To improve spatial registration across data 

acquisition dates, the GCPs (6 per site) were used for final georeferencing of the image 

orthomosaic. The digital camera data was not considered in this study and only the 

orthomosaics generated from data acquired by the four calibrated single-band sensors were 

selected for further analysis. The ground-resolved distance (GRD) of the single-band 

orthomosaics created by Pix4D is 2.9cm. 

Field survey locations were used to mask the orthomosaics and extract georeferenced 

sub-images for each surveyed quadrat. This mask was created by first visually identifying the 

markers defining the south-west corner of each quadrat within the orthomosaic and then 

manually digitizing a square snapped to the location of the marker and extending 1 metre in 

the north and east directions. Because of the 60cm accuracy of the GPS used in this work, 

visual identification of the markers, rather than GPS-acquired location coordinates, was used 

to define the sub-image mask to ensure that the extracted sub-images corresponded as closely 

as possible to the physical quadrat analysed in the field. Each extracted sub-image 

corresponds to a 1m2 metapixel for which the species composition was measured by field 

survey and comprises 1156 pixels (34 rows by 34 columns). In total 868 sub-images were 

generated representing 93 metapixels across four spectral bands collected on July 04, 2018, 
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62 metapixels across 4 bands on July 12, 2018 due to sensor failure at field site 1, and 62 

metapixels across 4 bands on July 19, 2018 due to sensor failure at field site 2. 

Data Compilation 

Due to the high variability of spotted knapweed density encountered in the field-

surveyed quadrats relative to the number of quadrats surveyed, it was necessary to convert 

the percent cover measurements into qualitative classes representing increasing degrees of 

spotted knapweed cover. This was done to increase the number of examples representing 

each degree of spotted knapweed cover, a necessary consideration for training a classifier. 

The number of classes was selected based on two criteria: (1) there should be enough classes 

to show relative abundance and distribution over space, and (2) classes should be general 

enough to compensate for under-represented concentrations of spotted knapweed sampled 

during data collection. Based on these criteria, three non-overlapping classes of spotted 

knapweed relative abundance were created. Sixty-seven sites were identified where spotted 

knapweed was not present or only present in trace amounts, these were classified as “None”. 

Eighty-seven sites were identified where concentrations did not exceed 25% cover, these 

were classified as “Moderate”. Sixty-seven sites were found exceeding 25% cover and were 

classified as “High”.  

The data was then split into training data and a validation set. The validation set was 

comprised of the data collected from site 3 on July 04, 2018, while the remaining data was 

used for training. Because balanced training sets have been shown to improve classifier 

performance (Zhu et al., 2016), these training data were sampled to create a balanced set of 

training examples. This was done using stratified random sampling, where the minority class 

is over-sampled while the remaining classes are down-sampled to match the sample size of 

the limiting class (Ma et al., 2015). Classifier performance was evaluated during training 

using 10-fold cross-validation, a training method that is suitable for quantifying training error 

in stochastic classifiers, such as random forests.  During 10-fold cross validation, the data 

was randomly partitioned into 10 non-intersecting subsets of equal size folds by random 

sampling.  The classifier was then trained 10 times, each time reserving one of the subsets as 

a validation set on which to evaluate the classifier error, while training the classifier using the 

remaining 9 subsets. The classifier with the lowest mean squared error among the 10 trained 
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classifiers is selected for the final model, and the accuracy of this model on the training set, 

referred to as the cross-validation score, is calculated as the average accuracy overall 10-

folds of the training process. 

Feature Selection 

To evaluate the importance of the GLCM-based texture metrics for metapixel-based 

image analysis, we compared the performance of the method using the full set of 84 potential 

features, comprising the mean and standard deviation value of each of the four spectral bands 

and three multi-band indices and the mean and range values of the five texture features for 

each spectral band and index (hereafter referred to as the “GLCM-enhanced” version of the 

method) to a method restricted to the 14 potential features representing the mean and 

standard deviation value of each of the 4 spectral bands and 3 multi-band indices (hereafter 

referred to as the “no-GLCM” version of metapixel-based image analysis). 

For both versions of metapixel-based image analysis performed in this study, 

recursive feature elimination was used to identify the optimal feature subset. Recursive 

feature elimination was performed by training random forest classifiers (Breiman, 2001) for 

both the no-GLCM and GLCM-enhanced versions of the method. Features were sorted based 

on feature importance, and the classifiers were retrained recursively removing the single least 

important feature from the sorted list. This process was repeated iteratively to find the best 

performing subset of features (Pedregosa et al., 2011) and the optimum feature subset for 

each classifier was recorded. 

Classification 

A random forest classifier was selected for this study based on its extensive use in 

remote sensing applications (Baron, Hill, and Elmiligi, 2018; Michez et al., 2016; Marceau et 

al., 1990; Breiman, 2001). This work employed a multi-class, single-output classifier to 

predict the percent cover of spotted knapweed, the target invasive species, at each image 

metapixel. Figure 3.2 illustrates the image classification workflow. 
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Figure 3.2: Image classification workflow used in this study. 

 

The classifiers used in the no-GLCM and GLCM-enhanced versions of metapixel-

based image analysis were trained using 10-fold cross-validation on training datasets with the 

optimal feature subsets identified for that classifier through recursive feature elimination. 

Hyperparameter tuning was then performed on the classifiers. Hyperparameter tuning began 

with a random search cross-validation method as a computationally efficient means of 

approximating hyperparameter values, followed by a grid search cross-validation method on 

a refined search area to identify the optimum hyperparameter values for the random forest 

classifier (Pedregosa et al., 2011). The optimized classifiers’ performances were evaluated 

using the mean cross-validation accuracy scores, and the performance of the optimized 

classifiers were verified by testing the tuned classifiers on the validation data set. The 

parameters optimized for the random forest classifiers developed for both versions of 

metapixel-based image analysis explored in this study are summarized in Table 3.3. 

Table 3.3: Definitions of the parameters used when optimizing the random forest classifier. 

Parameter Definition 

n_estimators Number of trees in the forest. 

max_depth Maximum depth of the tree. 

min_samples_split Minimum number of samples required to split an internal node. 

min_samples_leaf Minimum number of samples required to be at a leaf node. 
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max_features Number of features to consider when looking for the best split. 

bootstrap Whether bootstrap samples are used when building trees. 

 

RESULTS 

Metapixel-Based Image Analysis without Texture Features 

The classifier developed for the no-GLCM version of metapixel-based image analysis was 

trained using 14 features, namely the mean and standard deviation values of the pixel-level 

spectral reflectance and multiband indices contained within the 1m2 quadrats. The mean 

cross-validation score for a classifier trained using all 14 features was 62.7%. The optimum 

feature subset identified by recursive feature elimination contained 10 of the 14 possible 

features. The selected features were 1) mean green reflectance, 2) standard deviation green 

reflectance, 3) standard deviation red reflectance, 4) mean red-edge reflectance, 5) standard 

deviation red-edge reflectance, 6) mean NIR reflectance, 7) standard deviation NIR 

reflectance, 8) mean gNDVI reflectance, 9) standard deviation gNDVI reflectance, and 10) 

mean reNDVI reflectance. The mean cross-validation score improved slightly, when 

compared to the classifier trained using the full feature set, to 64.0%. Hyperparameter tuning 

of the random forest classifier using the optimized feature set resulted in another small gain 

in performance achieving a mean cross-validation score of 68.0%. Optimized hyperparameter 

values for the metapixel-based classifiers are presented in Table 3.4. When applied to the 

validation set, the classifier achieved an accuracy of 55.7%. Classification results for each 

stage of optimization are presented in Table 3.5. 

Table 3.4: Parameters found through hyperparameter tuning of the classifiers developed for 

the no-GLCM and GLCM-enhanced versions of metapixel-based image analysis. A max 

features value of ‘sqrt’ indicates that the maximum number of features to use is the square 

root of the total number of features. 

Version 
n 

estimators 

max 

depth 

min 

samples 

split 

min 

samples 

leaf 

max 

features 
Bootstrap 

no-GLCM 196 90 7 1 ‘sqrt’ FALSE 
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GLCM-

enhanced  
528 80 2 1 ‘sqrt’ FALSE 

 

Table 3.5: Performance of the classifiers developed for the no-GLCM and GLCM-enhanced 

versions of metapixel-based image analysis. Performance metrics include: mean 10-fold 

cross-validation accuracy scores for the initial un-optimized classifiers, the intermediary 

classifiers optimized through feature selection, the final classifiers optimized through feature 

selection and hyperparameter tuning, and the accuracy of the final classifiers when tested on 

the validation set. 

Version 
Un-optimized 

(%) 

Feature 

Optimized 

(%) 

Hyperparameter & 

Feature Optimized 

(%) 

Validation 

Set Accuracy 

(%) 

no-GLCM 62.7 64.0 68.0 55.7 

GLCM-enhanced 58.0 68.7 71.3 66.0 

 

Metapixel-Based Image Analysis with Texture Features 

The classifier developed for the GLCM-enhanced version of metapixel-based image analysis 

was initially trained using the full set of 84 features. The mean cross-validation score of the 

classifier when using all 84 features was 58.0%. The optimum feature subset identified by 

recursive feature elimination contained 19 of the 84 possible features. The selected features 

were 1) mean green ASM, 2) mean green sum entropy, 3) mean green entropy, 4)  mean 

green difference entropy, 5) range green ASM, 6) range green correlation, 7)  range green 

sum entropy, 8) standard deviation red reflectance, 9) mean red difference entropy,  10) 

range red entropy, 11) mean red-edge reflectance, 12) mean red-edge entropy, 13) range NIR 

ASM, 14) range NIR sum entropy, 15) mean NDVI sum entropy, 16) range NDVI sum 

entropy, 17) standard deviation gNDVI reflectance, 18) range gNDVI sum entropy, and 19) 

mean reNDVI reflectance. The mean cross-validation score improved substantially (68.7%), 

when compared to the classifier trained using the full feature set. Hyperparameter tuning of 

the random forest classifier using the optimized feature set resulted in another gain in 

performance achieving a mean cross-validation score of 71.3%. Optimized hyperparameter 

values for this classifier are presented in Table 3.4. When applied to the validation set, this 
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classifier achieved an accuracy of 66.0%. Classification results for each stage of optimization 

are presented in Table 3.5. A classification map derived from applying this classifier to the 

orthomosaicked image from field site 3 on July 04, 2018, the image selected as the validation 

set, can be seen in Figure 3.3. 

 

Figure 3.3: Orthomosaic generated from flight data collected at field site 3 on July 4, 2018 

(left), and the classification map (right) generated using GLCM-enhanced metapixel-based 

image analysis using the optimized and tuned random forest classifier , which displays the 

relative concentrations of spotted knapweed. Images are projected in the WGS UTM Zone 

10N coordinate system. 

 

Model Generalizability 

The performance of GLCM-enhanced metapixel-based image analysis was further 

explored to evaluate its ability to classify areas spatially distant from the area used for model 

development by developing three additional classifiers to evaluate model generalizability 

across sites. Using a leave-one-out approach, classifiers were trained on each combination of 

two sites following the workflow defined in Figure 3.2 and validated using the third unseen 
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site. For each combination of training sites, feature selection and hyperparameter tuning was 

performed to improve classification performance. The results of analysis are presented in 

Table 3.6. 

Table 3.6: Performance of GLCM-enhanced metapixel-based image analysis developed using 

training data from each combination of two field sites and tested on the third, held-out site.  

The performance metrics of classifier performance and validation score correspond to the 

mean 10-fold cross-validation accuracy scores for classifiers optimized through feature 

selection and hyperparameter tuning, and the accuracy of the final classifiers when tested on 

the unseen validation site, respectively. 

Training Sites Test Site Classifier Performance (%) Validation Score (%) 

1, 2 3 66.7 64.9 

1, 3 2 69.2 56.0 

2, 3 1 73.3 68.0 

 

The performance of these classifiers, trained using a substantially smaller set of examples, 

show similar results to those obtained using a subset of data from all three sites for training. 

For each binary grouping of sites, the optimized classifiers performed well during cross-

validation and when applied to data from the held-out site. 

DISCUSSION 

The objective of this study was to develop and evaluate a multispectral image 

analysis method suitable for identifying the extent of spotted knapweed invasion within a 

semi-arid grassland ecosystem. The metapixel-based image analysis method developed in 

this work took inspiration from grassland field surveys to quantify relative abundance of the 

target species, in terms of percent cover, within square reference units which we termed 

metapixels. Metapixel-based image analysis can be considered a type of OBIA, where the 

objects are not physical objects visible within the image scene, but rather contrived objects 

necessary to calculate spatially averaged measures of land cover, such as percent cover. It 

was necessary to develop the metapixel-based image analysis method because neither OBIA, 

based on a segmentation of the image into physical objects present in the scene (e.g. by edge-

based segmentation), nor pixel-based methods could be readily applied to estimate the 
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relative abundance of spotted knapweed present within the image orthomosaics produced in 

this study. The 2.9cm spatial resolution of the Sequoia images was insufficient to resolve the 

physical characteristics of individual spotted knapweed plants and could not support edge or 

region-based methods to segment the image into constituent objects. The image resolution 

was also insufficient to provide examples of pixels representing pure spectral signatures of 

spotted knapweed, among other vegetation present within the scene, and thus pixel-based 

methods could not be applied without data from field-spectrometry or a spectral library to 

provide the spectral signatures of the vegetation present within the scene. Additionally, the 

metapixel-based approach enabled the calculation of GLCM-based texture metrics, which 

substantially increased the data density of the 4-band multispectral imagery used in this 

study.  

To evaluate the performance of metapixel-based image analysis for identifying the 

relative abundance of spotted knapweed, we applied it to RPAS-acquired multispectral 

imagery and field data collected at three sites located in the semi-arid grasslands of BC, 

Canada. The multispectral imagery comprised 4-bands, green, red, red-edge, and NIR. These 

bands were considered both on their own, and as part of three multiband indices to calculate 

84 spectral and textural features for each metapixel.  To gauge the importance of the GLCM-

based features (i.e., ASM, correlation, entropy, sum entropy, and difference entropy), we 

compared the performance of metapixel-based image analysis using GLCM-based texture 

features (GLCM-enhanced) to metapixel-based image analysis that did not use GLCM-

derived features (no-GLCM). 

The results show that a random forest using the entire set of 84 features generated by 

the GLCM-enhanced method performed marginally with a mean cross-validation score of 

58.0%, while the no-GLCM analysis performed comparably, exhibiting a mean cross-

validation score of 62.7%. Feature optimization and hyperparameter tuning of the random 

forest used in the no-GLCM method provided a moderate increase in the performance of this 

method, resulting in a mean cross-validation score of 68.0%. However, this gain is primarily 

the result of hyperparameter tuning, as feature optimization of the no-GLCM method 

provided only a small increase in classifier performance. This result suggests that the mean 

and standard deviation of the spectral reflectance and multiband indices contain insufficient 

information to produce a robust classifier capable of classifying the relative abundance of 
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spotted knapweed within each metapixel.  Thus, if pure pixel data were available to create a 

pixel-based classifier, this classifier would also struggle to identify the relative abundance of 

spotted knapweed within the image. This outcome corroborates previous work that suggested 

that multispectral imagery alone contains insufficient information for detecting spotted 

knapweed from a background of similar vegetation using pixel-based methods (Dewey, 

Price, and Ramsey, 1991; Woolley, 1971), and that more descriptive data, such as 

hyperspectral imagery is required to accomplish this objective (Lawrence, Wood, and Sheley, 

2006).   

The use of GLCMs enables the computation of additional descriptive features for 

each metapixel.  However, when using this expanded feature set to build a classifier, feature 

optimization was required to achieve a classifier that outperformed classifiers that did not use 

GLCM-based features (i.e., those developed for the no-GLCM version of metapixel-based 

image analysis). Performing feature optimization and hyperparameter tuning together 

improved the mean cross-validation score for the GLCM-enhanced method to 71.3%. These 

results suggest that, by incorporating texture features, GLCM-enhanced metapixel-based 

image analysis improves classification performance over metapixel-based image analysis that 

does not use texture features for detection of a target species from a background of similar 

vegetation using multispectral imagery. Thus, the outcome of this study is significant because 

it suggests that metapixel-based analysis using GLCM-based texture features could provide 

an avenue for weed mapping using more readily accessible RPAS-acquired multispectral 

imagery. 

As evidenced by the performance of GLCM-enhanced metapixel-based image 

analysis (66% validation score) over the no-GLCM version (56% validation score), the 

inclusion of GLCM-based texture features provided the most substantial improvement in our 

ability to detect the relative abundance of spotted knapweed. Given the variable levels of 

infestation across the study area and the ability of the GLCM-enhanced method to produce 

reasonably accurate results with a limited number of training data, we suspect that the unique 

physical structure of spotted knapweed can be characterized by the GLCM metrics 

considered in this study, despite the plant not being plainly visible within the orthomosaicked 

images.  We attribute this to the distinct physical characteristics of spotted knapweed (e.g. 

thin, radially extending stems, frequent branching, and ovate bracts).  The mean values of 
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ASM green, sum entropy green and entropy green were three of the most important features 

identified by feature selection.  Both ASM and entropy are measures of orderliness of the 

intensity of the green reflectance within the metapixel (though they are inversely correlated). 

We suspect that the way spotted knapweed overlays background vegetation and bare soil 

within the metapixel reduces the orderliness of the green band grey level, decreasing the 

ASM green metric and increasing the entropy green metric, and that this behaviour is 

sufficiently characteristic of the relative abundance of spotted knapweed within a metapixel 

to aid in the metapixel’s classification. 

The initial, un-optimized feature set selected for the metapixel-based classifier using 

GLCM-based metrics was designed to provide a suite of features intended to be robust to the 

high environmental variability expected when capturing a natural scene. From the list of 

texture features presented in Haralick, Shanmugan, and Dinstein (1973), only features that 

were invariant under rotation and grey-tone transformation were explored. Features that vary 

with respect to rotation were avoided in attempts to improve the overall generalizability of a 

resulting classifier when introduced to new scenes where changes in hillslope angle, 

direction, and plant orientation within the landscape varied from examples provided in 

training data. Additionally, features invariant under grey-tone transformation were selected to 

compensate for possible changes in solar irradiance due intermittent cloud cover during data 

collection, changes in distance between imager and vegetation canopy across the imaged 

area, and difference between the calibration height and the true height of the imager over the 

canopy during the aerial survey due to topography, canopy, and wind. We suspect that by 

selecting only features invariant under rotation and grey tone transform, we provided the 

classifier with texture features that generalized well throughout the imaged area. 

GLCM-based texture metrics are second-order spatial statistics describing the spatial 

relationship between pixels within a spatial neighbourhood. Thus, there is an underlying 

assumption of spatial and temporal stationarity of these statistics.  Clearly spatial stationarity 

is required if the statistics are to characterize specific patterns across space, while temporal 

stationarity is required if the statistics are used to derive classifiers that are trained on 

historical data and applied to data collected at some point in the future.  We did not test for 

spatial stationarity within or between our field sites, and, while it might be reasonable to 

assume spatial stationarity within each 100 m x 100 m field site, it is probably unreasonable 
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to assume that this stationary regime encompasses all three field sites, which are separated by 

a minimum and maximum centroidal distance of 160 m and 750 m, respectively. None-the-

less, our results show that when trained on data sampled across all three sites, GLCM-based 

metrics did not degrade classifier performance, but rather improved the ability of the 

classifier to predict the relative abundance of spotted knapweed within metapixels across 

multiple sites. This could be because the random forest classifier used in this study is 

sufficiently expressive to model inter-site differences in the metrics or because the use of 

rotation and grey-tone transform invariant metrics coupled with the similarity between the 

field sites rendered the statistics stationary when calculated in the imaged areas. 

To further explore the impacts of spatial extrapolation of GLCM-enhanced metapixel-

based image analysis, we explored classifiers trained exclusively on examples from two of 

the field sites and validated the performance of the derived classifier on the third, held-out 

field site.  The performance of these classifiers (average training score 70%, average 

validation score 63%) was very similar to the performance of the classifier trained using 

examples from all three sites (training score 71%, validation score 66%).  In fact, when 

trained using the two nearest field sites (2 and 3) and validated against data from the most 

distant field site (1), which is over 500 m away, the method achieved the highest accuracy of 

all the classifiers developed in this study (training score 73%, validation score 68%).  These 

results suggest that sufficient information was available from two of the field sites to classify 

relative abundance of spotted knapweed at a distant third site.  These results also suggest that 

the GLCM-enhanced metapixel-based method can extrapolate from a small plot-scale 

training site to a larger field-scale mapping project.  This is important, as often it is 

impractical to collect field data at spatially random locations across large regions, because 

some locations may have restricted access due to legal boundaries or fragile ecosystems (Hill 

et al., 2017).   

The ability of the classifiers to extrapolate to the held-out field site without loss of 

performance suggests that the GLCM-based features are (at least approximately) stationary 

across the field sites  Despite the distances separating them, the field sites were selected to be 

similar in terms of slope, aspect, and setting at the outset of the project.  These sites are also 

all located within the same protected grassland and as such are subject to the same land 

management treatments.  Additionally, by using only rotation and grey-tone transform 
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invariant GLCM-based statistics in defining our feature set, we selected statistics that are 

more likely to remain stationary within an image. 

The performance of classifiers when approximating the relative abundance of spotted 

knapweed, despite limitations in both spectral and spatial resolution, suggest that this method 

is capable of providing qualitative estimates of infestation when monitoring targeted plant 

invasions in grassland ecosystems. Though unable to quantify areal coverage of spotted 

knapweed, the method produced estimates of relative cover within 1m2 quadrats. Using 

RPAS platforms to collect data over wide areas, this method could be used to monitor 

changes in the relative abundance of an invading species using a grid-based approach over 

wide areas, and track changes to invasion boundaries. Though traditional field-based data 

collection will produce more accurate estimates within quadrats, it is too laborious to be used 

for comprehensive coverage over even moderate areas. Based on the results of this study, we 

believe that this method used in conjunction with traditional field-based data collection will 

aid management strategies and planning through improved mapping of the extent of 

invasions and changes over time. 

 Based on the results of this study, we believe that further research into GLCM-

enhanced metapixel-based image analysis is warranted. Overall, despite being unable to 

identify individual plants of the target species, it was able to perform basic detection and 

provide relative abundance estimates of spotted knapweed within the scene. Due to the high 

degree of spotted knapweed infestation within the study area, the use of spatial random 

sampling biased the training data towards classification of this category of relative 

abundance.  Within these data, there were many more quadrats/metapixels characterized by a 

moderate spatial abundance of spotted knapweed than there were with no or high 

abundances.  This is a known limitation of spatial random sampling in situations where there 

is a large difference in proportion between the class categories.  Spatial stratified sampling 

could be used to ensure that there are enough examples of each class. However, creating a 

stratified sampling plan is impractical for invasive species mapping since it requires a priori 

knowledge of where examples of each category can be encountered within the study area. 

To overcome the bias in the training data caused by spatial random sampling, we used 

a balanced sample to train the classifiers.  This is only a partial solution, however, because 

there is a greater number of training examples for moderate spatial abundance, and thus, the 
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classifier was likely exposed to a greater variability of patterns for this class than for other 

classes during training.  For this reason, the resulting classifier is expected to be better at 

classifying the moderate spatial abundance class than it is at predicting the other classes. 

Increasing the number of training data through additional field sampling would likely 

improve classification accuracy of the relative abundance of spotted knapweed.  

A second limitation caused by the low number of examples of quadrats with no and 

high spatial abundance is that we were unable to use more than three categories (High (>25% 

cover), Moderate (<=25% cover), and None (<1% cover)) for the spatial abundance.  Had 

there been more data across the range of degrees of infestation, we could have defined a 

larger number of narrower qualitative classes defining the relative abundance of spotted 

knapweed.  Finally, due to the highly variable composition and concentration of backdrop 

vegetative species present within the scene, spatially random sampling did not provide 

sufficient training examples to attempt to predict relative abundance of other species in 

addition to spotted knapweed.  In future work, sampling design should be carefully 

considered to ensure that there is sufficient data to train the classifier. 

CONCLUSION 

The metapixel-based analysis method proposed in this work proved suitable for 

mapping the relative abundance of spotted knapweed (Centaurea maculosa) in a highly 

diverse grassland ecosystem using four-band multispectral data captured with a RPAS. The 

relative abundance of knapweed in each metapixel was categorized into three qualitative 

classes, “High”, “Moderate”, and “None”, to increase the number of examples available to 

train the classifier using a balanced training set. Using metapixels to calculate texture 

features substantially increased the data density available from the four-band multispectral 

measurements. An evaluation of the benefits of feature optimization and hyperparameter 

tuning revealed that feature optimization is more significant than hyperparameter tuning in 

terms of improving the performance of the metapixel-based image analysis. With feature 

optimization and hyperparameter tuning, we were able to achieve a mean cross-validation 

score of 71.3% for classifying the relative abundance of spotted knapweed within the 1m2 

metapixels. The optimal feature set identified included texture features representing first and 

second moments of both spectral reflectance and multiband indices. 



62 

 

Additionally, this study shows the importance of including GLCM-based texture 

metrics in metapixel-based image analysis.  Inclusion of these features significantly 

improved the performance of the method for classifying spatial abundance of spotted 

knapweed across the study area.  Due to the potential non-stationarity of GLCM-based 

statistics across a field site, we recommend using only rotation and grey-tone transform 

invariant GLCM-based statistics to increase the chance that approximate stationarity exists 

within the study area.  In our study site, GLCM-enhanced metapixel-based image analysis 

extrapolated well to distances greater than 100m. 

 Finally, while this study has only considered the target species of spotted knapweed, 

the results of this study suggest that metapixel-based image analysis may be successful in 

mapping other grassland invasive species that are characterized by small physical size and 

spectral signature similarity to native grasses, such as cheatgrass. It also may be successful 

for mapping target forest species at the global scale using moderate-resolution multispectral 

imaging, such as is acquired by the moderate resolution imaging spectroradiometer 

(MODIS). 
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Chapter 4: Summary and Conclusions 
 

 The use of RPASs and machine learning in remote sensing applications of invasive 

species mapping were shown to provide otherwise unobtainable information useful for 

planning and decision-making in land management. This study found that when used in 

conjunction with traditional field-based collection, these methods provided a more 

comprehensive visual representation of the target areas being studied than traditional point-

based field data alone. There were distinct limitations across each method evaluated, 

however, these limitations can be addressed as the technologies available continue to develop 

and improve. By continuing to study ecosystems with this emerging technology, the extent of 

their capabilities can be better understood, methods for more efficient and effective land 

monitoring and management can evolve, and understanding of design limitations can 

hopefully affect the direction of further technological development to improve and meet the 

requirements of end-users. 

 In the study conducted for Chapter 2, pixel-based classification of raw, uncalibrated 

imagery provided an effective means for automatically detecting an invasive plant species 

that expressed a distinct spectral signature within the ecosystem. This can provide a means 

for quickly evaluating large areas captured by RPASs to evaluate the extent of invasion, 

distinct areas being invaded, and a means for easily identifying key areas of high 

concentration of the invading species. However, there were limitations to this work that 

could be immediately addressed and improved. First, data collection was conducted with an 

uncalibrated RGB camera. By utilizing a calibrated imager, the spectral signature of the 

target species would be more accurately recorded, reducing the number of conflicting data 

points that confound the classifier during training and testing. Second, raw imagery was used 

as orthomosaicks generated using the structure-from-motion algorithm did not retain 

sufficient detail to distinguish individual, unmixed examples of the target of interest. 

Unfortunately, this meant that outputs could not be easily adapted to a map for use in 

planning. This could be remedied by higher quality sensing equipment, such as a narrow 

swath imager that captures geo-rectified raw imagery that circumvents the need for the 

structure-from-motion algorithm, or by modifying the structure-from-motion algorithm to 
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handle orthorectification of additional non-spectral fields generated after image capture. 

Finally, increased spectral resolution (as provided by multispectral or hyperspectral imagers) 

could help better define the target of interest. Overall, the limitations found in this study may 

naturally be addressed as the technologies and their availability continue to improve. 

 In the study conducted for Chapter 3, predictions of the relative abundance of spotted 

knapweed provided a means for estimating total cover over large areas. This was performed 

in imagery where the target species was not clearly identifiable in orthomosaicks generated 

from multispectral imagery using the structure from motion algorithm. This analysis method 

could be best applied to tracking the boundaries of invasion, as well as the density of 

invasion within target areas. Major limitations to the effectiveness of this method are 

threefold. Classifiers developed to work with multispectral imagery alone struggled to 

distinguish the spectral signature of the target species in the diverse, grassland ecosystem, 

spatial resolution after generating orthomosaicks was too coarse to distinguish the structure 

of spotted knapweed, and considerable field-work was necessary to construct a training data 

set. Again, the biggest improvement to the overall effectiveness of this work would be to 

remove the need to rely on the structure-from-motion algorithm to generate an orthorectified 

image.  

 Remote sensing of invasive herbaceous plant species is difficult, as the size of the 

target species is often small relative to the spatial resolution of collected imagery. The end-

goal of this study was to develop and evaluate methods for automating the detection of 

invasive plant species for mapping and land management purposes. Though the methods 

were unable to provide results reliable enough to entirely replace traditional field-based data 

collection, they do offer additional information useful for planning. As the technologies 

continue to develop and become more accessible, these methods and their reliability should 

continue to improve. 

 


