THOMPSON RIVERS

Course Outline

Department of Economics School of Business and Economics

ECON 3200-3 Introduction to Mathematical Economics (3,0,0)

Calendar Description

Students examine the mathematical methods and tools most commonly used in analyzing economic problems. Topics include a review of set theory, functions, and limits; linear models and matrix algebra; application of single and multivariable calculus; unconstrained and constrained optimization; integration and difference and differential equations; application of dynamic analysis; and linear and non-linear programing.

Educational Objectives/Outcomes

Upon completing this course, students will be able to:

- 1. Exhibit a sound understanding of mathematical technique studied.
- 2. Formulate economic problems in mathematical terms.
- **3.** Construct a mathematical model given the information.
- 4. Demonstrate the application of linear algebra.
- 5. Solve constraint optimization problems.
- **6.** Apply derivatives to solve economic problems.
- 7. Perform comparative statics analysis with and without optimization.
- 8. Compute dynamic market price using difference and differential equations.

Prerequisites

ECON 1900; ECON 1950; MATH 1170 or equivalent

Co-requisites

Texts/Materials

Chiang, A, C. and Wainwright, K., <u>Fundamental Methods of Mathematical Economics</u>, McGraw-Hill Irwin, New York, 2005.

Student Evaluation

Revised May 2014

Participation	0-20%
Assignments/quizzes	0-20%
Project	0-25%
Midterm(s)	30-60%

Course Topics

- 1. Review of Some Introductory Concepts
 - Math versus non-math economics
 - Math economics versus. econometrics
 - Real number system
 - A few aspects of logic
 - Essentials of set theory
 - Types of functions
 - Properties of functions

2. Linear Models and Matrix Algebra

- Matrix and vector
- Matrix operations
- Geometric interpretation of vectors
- Different types of matrices
- Transpose and inverse matrix
- Finding inverse matrix
- Cramer's rule
- Applications

3. Comparative Statics with Specific Function and the Derivative

- Derivative and slope
- The concept of limit
- Rules of differentiation
- Partial differentiation
- Applications

4. Comparative Statics with General Function

- Derivative and differentials
- Total differentials and their rules
- Total derivatives
- Derivative of implicit function
- Applications
- 5. Optimization with One Choice Variable
 - First derivative test
 - Second derivative test
 - Applications

- General function
- Exponential function
- Logarithmic function
- 6. Optimization with more than one Choice Variables
 - Necessary condition
 - Sufficient condition
 - Concavity and convexity with respect to second order condition
 - Unconstrained optimization
 - Constrained optimization
 - Applications in utility and production
- 7. Dynamic Analysis and Integration
 - Indefinite integrals and their rules
 - Definite integrals and their properties
 - Applications
- 8. First Order Difference Equations
 - Solving first order difference equations
 - Dynamic stability of equilibrium
 - Cobweb model
- 9. First Order Differential Equations
 - First order linear differential equations with constant coefficient and constant term
 - Dynamics of market price
 - Variable coefficient and variable term
 - Exact differential equations
 - Applications
- 10. Linear and Non-linear Programming
 - Duality theory
 - Economic interpretations
 - Complementary slackness
 - Kuhn-Tucker conditions

Methods for Prior Learning Assessment and Recognition

As per TRU policy.

Attendance Requirements – Include if different from TRU Policy

As per TRU policy.

Special Course Activities – Optional

Use of Technology – Optional