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Abstract 
 

Mining is a strong contributor to Canadian and British Columbian economies. Mining 

yields raw materials without which human society would not be able to function. Also, this 

industry is a source of income for thousands of households. However, because of the large 

scale of operation, mining has an impact on landscapes and ecosystems including fragile and 

unique ones such as grasslands. This highlights the need for an effective and ecologically-

based reclamation strategy. The reclamation of mine lands is a challenge because mine soils 

following mining activity are often deprived of organic matter, nutrient-poor, possess adverse 

physicochemical properties, and can be contaminated by heavy metals. Due to the large size, 

the capping of reclaimed land by topsoil is often not possible, the attention of reclamation 

practitioners has focused towards subsoil which is generated as a waste product and often 

stockpiled in large quantities. It is an open question whether mine subsoil can play a role of 

starting substrate for mine lands ecological reclamation. This is the overarching question of 

this thesis: can subsoil be transformed into operational topsoil? It is hypothesized that this 

process will not be successful if the proper nitrogen cycling is not fully restored as nitrogen is 

one of six elements called biogenic and is intrinsic to all living organisms. The objectives of 

this thesis were to investigate (1) whether subsoils collected from New Afton New Gold and 

Teck Highland Valley Copper mines were suitable to sustain a viable vegetation cover, (2) 

whether an application of biochar, woodchips, biosolids (nitrogen-rich) and a mixture thereof 

ameliorate subsoil futures and help in subsoil transformation, (3) whether nitrogen influences 

revegetation and what transformation this element passes on the way of its cycling during the 

early stages of reclamation. Two potting experiments were conducted to address the research 

objectives. The first one took place in the controlled conditions of a greenhouse and worked 

with native in BC graminoids and legume (nitrogen fixer). The second one was conducted in 

open-air conditions and worked with three native shrubby species including one non-

leguminous nitrogen fixer.  

The results indicated that none of the analyzed mine subsoils, due to their low fertility 

and adverse physicochemical properties, was capable of sustaining viable vegetation when 

unamended. The situation changed when subsoils were amended by biosolids or a mixture. 

An addition of 25% of woodchips or 5% of biochar did not help. The vegetation response to 

nutrient input related to biosolids application was positive in the case of both mines, however, 

productivity on Teck Highland Valley Copper mine subsoil was significantly larger than 

productivity on New Afton New Gold mine subsoil in both experiments (experiment 1 
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Kruskal-Wallis p < 2.2e-16; experiment 2 Kruskal-Wallis, p = 1.7e-08). Physicochemical 

tests revealed that New Afton New Gold mine subsoil’s high pH and salinity posed a 

hindrance to overcome for vegetation growth. Additionally, throughout both experiments, the 

contents of total nitrogen, mineralizable nitrogen, and ammonium decreased, while the nitrate 

content increased. That in turn might indicate that in the early stage of reclamation, when 

biosolids are applied as a source of nitrogen, the nitrification step of the nitrogen cycle takes 

prevalence. Seven native plant species were used in this research and all demonstrated that 

they can cope with harsh growing conditions created by two mines’ subsoils, however, they 

need to be provided with initial nutrient sources. This research provided valuable information 

about subsoil, soil amendments, and native vegetation (including nitrogen fixers) to consider 

when undertaking mine lands reclamation.  

Keywords: mine reclamation, subsoil, soil amendments, native plant species, nitrogen cycling, 

nitrogen fixers 
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CHAPTER 1: GENERAL INTRODUCTION 
 

RECLAMATION 
 

Reclamation is a complex process aimed at rebuilding the functionality of areas 

previously disturbed by either human activity or an occurrence of a forceful natural disaster. 

Reclamation is a deliberate human intervention to restore an ecosystem to a functioning, self-

sustaining, and desirable state (Brown and Amacher, 1999, Garris et al., 2016). Reclamation 

of disturbed areas usually consists of the reconstruction of the physicochemical and biological 

features of the soil layer in the first phase, re-vegetated soon after. Therefore the reclamation 

of soil is generally the first step in the process. Soil is a living space of organisms that form 

the beginning of most land food chains. When soil structure, fertility, and productivity are 

restored along with the diversity of microorganisms, it facilitates the colonization of other 

organisms (Rigby et al., 2016). Environmental disturbance can disrupt soil biophysical 

processes, such as elemental cycling of nitrogen. Vegetation plays a pivotal role in nitrogen 

cycle. If, as a result of disturbance, the vegetation cover is destroyed, the cycle becomes 

strongly interrupted and the pool of nitrogen in the soil quickly decreases (Wanic and Pająk, 

2012). In reclamation, plants that enrich the soil with organic matter and biogenic elements 

are particularly beneficial. In this context, plants from the Leguminosae family, such as 

lupine, pea, alfalfa, and vetch are particularly valued because they fix atmospheric nitrogen 

(Jefferies et al., 1981 (1); Jefferies et al., 1981 (2); Aschenbach et al., 2012).  

Mine Reclamation 
 

British Columbia, Canada, mining regulations require that land disturbed as a result of 

human mining activity must be reclaimed (MAC, 2018; BC Mines Act, 2021; Ministry of 

Energy and Mines, 2017). A modern approach to mine reclamation does not begin at the 

moment of operation termination but much earlier, even before the operation commences. It 

takes place by planning and ensuring the availability of funds, technical solutions, and 

specialist knowledge (BC Mines Act, 2021; Ministry of Energy and Mines, 2017; 

Malaschenko et al., 2017).  

Post-mining Soils 
 

Mine soils which are dedicated for reclamation are typically low in fertility 

(Bradshaw, 1997). Moreover, often such soils are also contaminated with heavy metals such 

as copper, molybdenum, or zinc (Qiu and Sego, 2001; Wijesekara et al., 2016). In such 

oligotrophic soils, only a few species of specialized microorganisms can survive and thrive 
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(Madigan et al., 2012). Nitrogen-fixing bacteria can often cope with such conditions and 

enrich the soil with essential nitrogen, but their growth is strongly inhibited by the 

concentration of heavy metals (Wanic and Pająk, 2012).  

High pH constitutes a twofold effect: firstly it negatively affects soil microorganisms, 

and secondly, it influences the solubility of some soil minerals and in this way reduces the 

availability of some necessary elements for enzymes construction such as iron (Campbell et 

al., 2008; Freeman et al., 2011; Brown and Chaney, 2016). Excessively high pH cannot be 

tolerated by many bacteria that play important roles, for example in the decomposition of 

dead matter. In post-mining soils, adverse pH seems to be one of the most important factors 

suppressing the composition and function of the microbial community (Bru et al., 2011). 

Low soil organic matter is typical for mine subsoil. The use of organic amendments 

can help remediate this problem (Brown and Chaney, 2016). Organic amendments change pH 

to more preferable, neutral or slightly acidic levels, provide organic substances which bond 

with metallic cations, provide nutrients that could be utilized at least at the beginning of the 

succession process.  

Legumes and other symbiotic plants with nitrogen-fixing microorganisms may be 

excellent tools for post-mining soil restoration (Elias and Chadwick, 1979; Jefferies et al., 

1981 (1); Wanic and Pajak, 2012; Santi et al., 2013; Perry et al., 2014 (1); Perry et al., 2014 

(2)). For the period when the co-operation with symbiotic microorganisms is being 

established, legumes use fertilizer as a source of nitrogen. Then, after developing the nodules 

and N-fixing bacteria activation, they switch to nitrogen provided by hosted diazotrophs 

(Strzelczyk, 2000). Legumes, though, are rarely good competitors; therefore, after 

transforming the soil to a more preferable state for other plants, they can be displaced by 

stronger competitors (Smyth, 1997). That naturally increases biodiversity and drives 

succession. Moreover, legumes are often good forage for wildlife and livestock, which 

stimulates the introduction of organic matter and nutrient cycling through feces (Elias and 

Chadwick, 1979; Jefferies et al., 1981 (2)). 

Soil restoration should actively use a range of tools such as soil agricultural 

preparation, phytomelioration, fertilization, and soil amendments application.  

 

 



3 
 

Ecological Background for Mine Reclamation 
 

Organisms sharing the same ecological niche constantly interact. They compete for the 

same resources and living space, or conversely, form networks of symbionts to co-operate for 

more efficient resource exploitation (Ratzke et al.; 2020). Therefore, mine soil reclamation 

should initiate and steer processes targeting the rebuilding of these complex interactions. 

Microorganisms play a pivotal ecological role. They conduct decomposition of dead matter 

releasing nutrients for other organisms, they are plant and animal pathogens, but also 

symbionts e.g. Frankia (Pokojska-Burdziej and Strzelczyk, 2000). Therefore, the condition of 

successful reclamation is to rebuild the complexity of microbial communities and their 

interactions because the course of most of the processes that take place in the soil depends on 

microbes (Zornoza et al., 2016). 

It is a challenge to reclaim mine soils as an environment for living organisms. Every 

organism to thrive must find the necessary conditions and resources. These, according to 

ecological Shelford’s law, must be embedded within brackets defining their minimum and 

maximum of the tolerance. Shelford (1931) presented that each of resources and conditions 

cannot go beyond either required minimum or maximum of a certain organism. If that 

happens, that organism would not be able to remain in a given environment. Mine soils are 

often difficult to colonize for most organisms because many conditions and/or resources go 

beyond either minimum or maximum level of tolerance. For instance, often the nutrient 

content is below the minimum, while simultaneously the concentration of heavy metals 

exceeds the maximum of tolerance. Due to low nitrogen concentrations, only microorganisms 

able to fix this element from the atmosphere may be able to primarily colonize such soils, but 

the microbial activity is strongly inhibited by high heavy metal concentration and salinity 

(Campbell et al., 2008; Freeman et al., 2011; Madigan et al., 2012). A deliberate provision of 

nitrogen at relatively low amounts at the initial stage of reclamation could act as a succession 

starting factor and heavy metals/salinity deactivation. The addition of selected soil 

amendments and/or organic fertilizers target at both aims at once (Larney and Angers, 2012; 

Zornoza et al., 2016).  

Some organisms have special adaptations and abilities to harvest such resources that 

are unavailable to other organisms. Nitrogen-fixing microorganisms are a good example here. 

Their unique ability to fix atmospheric nitrogen opens a range of possibilities as they become 

demanded partners for a symbiotic co-operation with a range of plants. Plants cannot fix 

nitrogen on their own. Plants may only uptake nitrogen in the mineral forms from soil water 
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solution with an exceptions of some small organic molecules (Carson and Phillips, 2021). The 

alternative to that is to be provided with nitrogen by microorganisms. Thus, many species of 

plants and microorganisms established mutual co-operation. Plants that have the ability to co-

exist with nitrogen-fixing organisms might play a special ecological role in reclamation 

because they quickly enrich the soil with organic matter as well as release available nitrogen 

while decaying (Brożek and Wanic, 2002; Wanic and Pająk, 2012). 

In the soil, at any given moment, despite the complex composition of the soil 

microbiome, most bacteria are present in the inactive forms such as spores or cysts. Many 

microorganisms can survive the presence of adverse conditions as spores that can persist for 

many decades (Madigan et al., 2012; Bottos et al., 2014). Factors that inhibit bacterial 

development are of two natures. The first is anthropogenic, e.g., depleted fertility and 

productivity, ruined soil structure and heavy metals contamination caused by industrial 

processes (Wijesekara et al. 2016). The second is natural and seminatural factors such as 

bacterial phages, adverse climate or weather, lack or excess of oxygen, nutrient-poor soil-

forming rock, secreted antibiotics, and many others (Zornoza et al., 2016; Kumar et al., 2010). 

Therefore, debilitating the negative influence of the above-mentioned factors by reclamation 

techniques should enhance microbial life and thus increase chances for successful mine soils 

reclamation. 

Applied Reclamation Tools 
 

The upper layer of stripped soil, so-called topsoil, is collected separately from the 

material excavated from deeper ‘sub-soil’ layers. Topsoil is the preferred material in the soil 

restoration process because it is rich in plant nutrients and has a developed microbial 

community, but it is almost always scarce in mine reclamation projects. There is an interest 

whether subsoil, if not heavily contaminated, might play a role of the basic soil substrate in 

mine reclamation. This master thesis proposes experiments in which two mine subsoils, 

various soil amendments, and a range of plant species with nitrogen fixers among them will 

be used as the tools for effective mine reclamation with the proper nitrogen cycling 

restoration. 

Subsoil 
 

The proposed experiments will be based on the use of subsoil from the two mines: 

New Afton New Gold [NA] and Teck Highland Valley Copper [HVC]. Subsoils from those 

two mines have a list of common features, however, they also differ largely. 
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New Afton New Gold Subsoil 
 

Initial observations were that subsoil collected from New Afton New Gold was light 

brown, rather dense but with rocks. Rocks tended to break easily and fall apart when hit.  

Physicochemical tests show such features of the New Afton New Gold subsoil as pH 

above 9, very high electroconductivity (EC), rather low organic matter content which 

translates to low organic carbon and low nitrogen content. Additionally, phosphorus and 

potassium content was rather low, calcium and boron elevated, but sodium concentration was 

very high. Additionally, New Afton New Gold subsoil heavy metals content is elevated in 

terms of copper and molybdenum (See Chapters 2 and 3, Appendices A and B). 

Teck Highland Valley Copper Subsoil 
 

Subsoil collected from Teck Highland Valley Copper was grayish in color, rather 

sandy in texture but with a large amount of rocks. Rocks were solid and did not tend to break 

apart. Some rocks had intensive green color resulting from a content of oxidized copper. 

Physicochemical tests show such features of HVC subsoil as pH above 8, EC low, 

very low organic matter content that translates to very low organic carbon. HVC subsoil 

characterizes by extremally low nitrogen content, very low phosphorus content, potassium 

content low, calcium, sodium not elevated and boron only slightly elevated. Additionally, 

HVC subsoil heavy metals content is strongly elevated in terms of copper and molybdenum 

(See Chapters 2 and 3, Appendices A and B). 

Soil Amendments 
 

Over the last decades, many ecological restoration experiments have been carried out 

in which various soil amendments were tested (Pichtel et al., 1994; Gould Gizikoff, 2002; 

Wanic and Pająk, 2012; Brown et al., 2014; Kelly et al., 2014). One of the important features 

of soil amendments is its ready availability, in terms of proximity to site and economic 

feasibility. Often they are produced as waste in many industrial or municipal processes. Thus, 

reclamation practitioners may easily acquire valuable products useful to them.  

Each soil amendment has different properties, therefore, it must be used properly and 

in a manner well thought through. The selection of soil amendments depends on the 

objectives. They are often used to enrich the soil with organic matter (Larney and Angers, 

2012), provide nutrients, increase water holding capacity, introduce strains of beneficial 

microorganisms (Zornoza et al., 2016), improve soil buffering, reduce the negative impact of 



6 
 

toxic substances such as heavy metals, change pH, and increase cation exchange capacity 

(Curtis and Claassen, 2009; Brown et al., 2014; Kelly et al., 2014; Aschenbach and Poling, 

2015; Hunt et al., 2015; Brown and Chaney, 2016).  

The proposed experiments will use three different soil amendments: biosolids, biochar, 

and wood chips, as well as the mixture thereof. Each of the above soil amendments targets to 

ameliorate specific subsoil problems. 

Vegetation  
 

Vegetation is a crucial element of most reclamation projects. Once successfully 

established, plants transform reclaimed post-mining soils on their own. When reclamation is 

intended on soil substrate deeply transformed to unfavorable for vegetation, the process of 

spontaneous colonization may be unsatisfactorily slow. It might even collapse if additional 

factor such as harsh climate or herbivores pressure is exerted on plants. On deeply 

transformed soil substrates, as mines’ subsoils are, it is recommended to support revegetation 

(Smyth, 1997). 

With constantly growing interest and shifting cultural values, more attention is being 

paid to increase our understanding and appreciation of native plants. Scientists and 

reclamation practitioners highlighted a selection of native plant species that may be 

successfully used in reclamation (Elias and Chadwick, 1979).  

NITROGEN 
 

Nitrogen is an intrinsic part of the most important molecules building organisms’ cells 

(Galloway et al., 2004; Salt, 2004). This element constitutes parts of such biological 

molecules as DNA, RNA, ATP, amino acids, chlorophyll, and many others. Therefore, it is 

indispensable in such processes as photosynthesis, respiration, heredity, tissue building, or 

regulation (Imsande and Touraine, 1994; Salt, 2004; Campbell, 2008; Freeman et al., 2011).  

However, the uptake of nitrogen for living organisms is often difficult. Nitrogen is 

present in the lithosphere in abundance but usually absent in the rock bed on which the soil is 

formed. Therefore, the only primary source of nitrogen for organisms is the air possessing 

only 6.2% of Earth’s nitrogen (Rosswall, 1981). Moreover, this source of nitrogen is still 

unavailable for most organisms. Only some microorganisms have the ability to fix 

atmospheric nitrogen. That element, on one hand, is necessary for all living organisms, but on 

the other hand, it is difficult to obtain. That is why the low nitrogen content in the topsoil is 
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often the growth limiting factor. Plants deprived of nitrogen grow slowly and are unhealthy 

(Troeh and Thompson, 2005; Bernhard, 2010).  

Nitrogen as an Element and its Cycling in the Environment 
 

Nitrogen may exist in oxidation states from -3 to +5, which allows this element to 

form a broad array of compounds, both organic or inorganic. The biological uptake of this 

element is extremely specific. Earth’s atmosphere contains 38x108 Tg of nitrogen, while the 

entire biosphere maintains only 0.009 x108 Tg (Rosswall, 1981). Even though N is present in 

abundance in the atmosphere, constituting as much as 78% of it, in the atmospheric form (N2) 

is unavailable to the vast majority of organisms due to its inertia. Strong triple bonds hold two 

nitrogen atoms together (Bernhard, 2010). This, in turn, means that a lot of energy and 

specific enzymes are required to take up this element from the atmosphere and transform it 

into mineral forms before it can be utilized (Campbell, 2008; Freeman et al., 2011; Madigan 

et al., 2012). Although every organism needs nitrogen only certain prokaryotes can fix it from 

atmosphere. Those microorganisms are responsible for the primary provision of nitrogen to 

the entire animate world (Galloway et al., 2004; Bernhard, 2010; Santi et al., 2013). 

To restore nitrogen cycling in reclaimed mine soil substrate it is necessary to know 

what nitrogen transformations happen at every step of its cycling, and what influences those 

steps. Knowing this, the mine reclamation practitioners may exert efforts supporting those 

organisms which are involved in each step of the cycle. 

Nitrogen Biogeochemical Cycle  

In terms of nitrogen acquisition, all living organisms may be divided into two 

fundamental groups: nitrogen fixers and non-nitrogen fixers. The first group acquires nitrogen 

through atmospheric nitrogen fixation. That is called diazotrophy. Non-nitrogen fixers, in 

turn, divide into two groups again: organisms intaking nitrogen in mineral forms e.g. NH4
+ or 

NO3
- from the soil water solution or organisms feeding on living or dead organic matter 

containing nitrogen. Organisms that take up nitrogen through the consumption and digestion 

of organic matter deplete at first the environmental pool of available nitrogen. However, while 

they carry out their metabolism, they excrete end products of digestion and metabolism which 

are still rich in organic nitrogen (undigested food residues) or mineral nitrogen (e.g. urea), 

returning it to the environment. At the end of their life, the whole bodies, which consist of 

about 15% nitrogen, return it to the environment in which organisms lived (Rosswall, 1981). 

That is how nitrogen once introduced into the system moves alternately in between living 
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biomass and dead matter, forming a small sub-cycle until it ultimately comes back to the large 

cycle and gets returned to the atmosphere (Fig. 1.1).  

Many organisms that are not able to self-provide the needed nitrogen tackle this 

problem by entering into symbiosis with organisms that do have the ability to provide them 

with available nitrogen forms. Such co-symbionts divide into two categories: 

 The first category is formed by organisms able to extract intensively the nitrogen 

compounds from the soil water solution, as in the case of fungi.  

 The second category of symbiosis is formed with organisms that have the ability for 

direct nitrogen fixation from the atmosphere. 

The final stage of this multi-step process is usually the conversion of mineral nitrogen 

back to atmospheric nitrogen. All these processes, starting from the fixation of atmospheric 

nitrogen, through its transformation, up to the return back to the atmosphere, make up the 

nitrogen cycling in the environment. In terrestrial ecosystems, most of these processes are 

carried out by soil microbes (Rosswall, 1981; Campbell, 2008; Zornoza et al., 2016). 

 

 

Figure 1.1 Schematic diagram of biological nitrogen cycle. Yellow arrows stand for oxidation 
reactions, green arrows stand for reduction. Anammox – anaerobic ammonium oxidation;  
DRNA – dissimilative nitrate reduction to ammonia. 
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Nitrogen Fixation 
 

Introducing nitrogen from the atmosphere into the biosphere by nitrogen fixation is a 

first step of the cycle (Figure 1.1; Bernhard, 2010). It occurs according to the following 

reaction: N2 + 8H+ + 8e− + 16ATP → 2NH3+ 16ADP + H2 + 16Pi 

The nif genes encode the enzyme nitrogenase which is responsible for N-fixation. 

Many varieties of this enzyme are known. N2 is fixed and transformed into NH3 or glutamine. 

NH3 is either taken up by plants straight away or after the reaction with water in which it is 

converted into an ammonium ion (NH4
+) (Imsande and Touraine, 1994). 

In the soil, nitrogen-fixing microorganisms live freely or enter into symbiotic 

relationships with plants or fungi. Many forms of such co-operation have developed during 

early evolution (Pokojska-Burdziej and Strzelczyk, 2000). The strength of these relationships 

varies. Bacteria from the families of Arthrobacter, Azotobacter, Azospirillum and some others 

live freely in the soil, but often their accumulations occur in the rhizosphere of the plant roots 

(rhizospheric bacteria) as plants create preferential living conditions for them (Zornoza et al., 

2016). In turn, plants use nitrogen-rich compounds produced by these microorganisms. Other 

bacteria colonize outer spaces in root tissues. These are still rhizospheric bacteria but their co-

operation with plant hosts is stronger. The strongest form of symbiotic relations happens 

when bacteria penetrate plant root tissues. When some bacteria only colonize the apoplastic 

root space, the co-evolution of other bacteria along with the host plant led to the penetration 

and colonization of the interior of the host root cells. The host plant often produces special 

tissues – nodules (See Figure 1.2). In nodule’s cells symbiotic bacteria find a favorable living 

space. Plants that can co-exist with nitrogen-fixing bacteria often gain a competitive 

advantage and are first colonists in areas of succession (Santi et al., 2013). 

In terrestrial ecosystems, in terms of amounts of fixed atmospheric nitrogen, bacteria 

have varying efficiency. Bacteria that live freely in the soil are less productive. It is estimated 

that soil bacteria are able to fix 5 - 50 kg N/ha/year. The intensity of nitrogen fixation depends 

on many abiotic and biotic factors such as temperature, pH, the presence of competitors, 

predators, antibiotics, etc. Bacteria that form advanced symbioses with plants can fix up to ten 

times more nitrogen than free-living ones (Król and Zielewicz-Dukowska, 2005). The 

efficiency of such endosymbionts in terms of the production of mineral forms of nitrogen is 

strongly dependent. The performance depends on the species, and even strain of bacterium, 

plant species, the season, plant physiological state, the presence of other nutrients, climate, 
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etc. It is estimated that some plant species of the Fabaceae family fix up to 500 kg N/ha/year 

(Troeh and Thompson, 2005).  

Bacteria that form a symbiosis with vascular plants can be divided into two groups. 

The first is built by bacteria from the Rhizobiaceae family that form a symbiosis with 

legumes. Those are genera: Rhizobium, Bradyrhizobium, Azorhizobium and others (Madigan 

et al., 2012). The second group is formed by bacteria that form a symbiosis with non-

leguminous plants. Representatives of eight plant families form the symbiosis with 

Actinobacteria from the genus Frankia. Such a relationship with Actinobacteria is called 

actinorrhizae (Huguet et al., 2004; Strzelczyk, 2000; Pokojska-Burdziej and Strzelczyk, 2000; 

Santi et al., 2013). 

In the mine reclamation process supporting nitrogen fixation may play an important 

role (Jefferies et al., 1981) as this will take over the duty of nitrogen provision to the system 

when the pool of this element provided initially by fertilization gets eventually depleted. 

Decomposition and Decay  

From the mine reclamation point of view decomposition and decay are very important 

processes that must be supported because they enrich mine soil substrate with strongly needed 

organic matter and release the entire list of nutritional elements with nitrogen among them. 

Nitrogen-containing compounds excreted by one organism become available for the uptake 

and metabolism to other organisms. Substances excreted by many organisms are further 

Figure 1.2 Nodulation on roots of field locoweed (Oxytropis campestris) on the left and soopolallie 
(Shepherdia canadensis) on the right. 

Photos credit Piotr Dzumek  
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decomposed by a range of microorganisms and fungi equipped with the appropriate enzymes 

(Imsande and Touraine, 1994; Bernhard, 2010; Figure 1.1). Dead animal and plant tissues 

pass atrophy and end up in the soil, where they undergo rotting and decomposition. Dead 

organic matter plus excrements build the pool of soil detritus (Biology Online, 2020). There is 

a broad range of organisms which are soil detritivores, they feed on detritus, decomposing it, 

to obtain nutrients and energy. The production of mineral forms of nitrogen as a result of 

decay and decomposition is called nitrogen mineralization. This way nitrogen is mobilized 

and becomes again available for uptake (Rigby et al., 2016). 

As a result of decomposition of organic matter an amine group -NH2 becomes 

detached from an organic compound and becomes transformed to ammonia (NH3). This 

process is named ammonification (Figure 1.1). In the soil, the ammonia, readily reacts with 

water forming ammonium ion: NH3 + H2O → NH4
++ OH−. Plants intake nitrogen from the 

soil mostly in the mineralized forms. These forms, however, account only for around 1 - 2% 

of total nitrogen in the soil (Carson and Phillips, 2021). Organic nitrogen is gradually 

mineralized and slowly released. Mineralization might provide 20 to 200 kg N/ha (Curtin and 

Campbell, 2008). Overall nitrogen uptake may exceed 100 kg N/ha/year (Imsande and 

Touraine, 1994; Troeh and Thompson, 2005). 

NH4
+ produced primarily by nitrogen fixers and secondarily in a process of 

decomposition and decay is taken up by organisms e.g. plants through roots for their 

metabolism or is utilized by nitrification microorganisms to produce energy. 

Nitrification 

The next group of organisms in the nitrogen cycle are bacteria and archaea carrying 

out the nitrification process (Figure 1.1; Bernhard, 2010). Nitrification is the oxidation of 

ammonium ion to nitrogen oxides carried out by obligatory aerobic nitrifiers (Madigan et al., 

2012). Therefore, the nitrification process takes place in aerated soils. Nitrification does not 

occur in soil horizons that are permanently flooded. The nitrification has two major stages. 

The first stage involves the transformation of ammonium ion and leads to the formation of 

nitric acid, the second stage involves the conversion of nitric acid and leads to the formation 

of nitrous acid. Typically, each step is carried out only by one type of nitrifying bacteria. 

Nitrosomonas conduct oxidation of NH4
+ to NO2

−. Nitrobacter conduct oxidation of NO2
− 

to NO3
−.  
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The deeper in the ground, the less oxygen. Here the denitrification bacteria begin to 

manifest their activity (Madigan et al., 2012). 

Denitrification 

Denitrification consists of the gradual conversion of nitrogen oxides back to nitrogen 

gas (Figure 1.1; Bernhard, 2010). However, for this process to be energy-efficient, the 

denitrification stages require different conditions than the nitrification ones. Here, nitrogen 

oxides are back reduced while the organic compounds are oxidized. Therefore, denitrifying 

bacteria are usually anaerobic. 

Complete denitrification from NO3
- to N2 encompasses a series of steps. Passing every 

step entails certain enzymes which are produced only by certain types of bacteria. Therefore, 

the entire sequence of various bacteria is needed to complete the entire denitrification. The 

denitrification takes place in the following stages: 1) NO3
-→ NO2

-, 2) NO2
- → NO,  

3) NO → N2O, 4) N2O → N2 (Madigan et al., 2012).  

Denitrification leads to nitrogen loss, therefore is not required at the initial steps of 

mine reclamation. However, it is an intrinsic step closing entire nitrogen cycling. 

 

Dissimilative Nitrate Reduction to Ammonia (DNRA)  
 

 

DNRA is a process similar to denitrification, but the final product is not atmospheric 

nitrogen but NH4
+ (Madigan et al., 2012). DNRA takes place in two stages: 1) NO3

- → NO2
-, 

2) NO2
- → NH4

+. Not only prokaryotic organisms conduct DNRA but also some eukaryotes 

(Putz et al., 2018). As DNRA does not lead to nitrogen loss, it is more preferred than 

denitrification in the attempt of preserving nitrogen in the reclaimed mine soil substrate.  
 

Anammox 
 

In some ecosystems anammox conducting bacteria are responsible for most of the 

entire N2 return to the atmosphere. Those bacteria inhabit anoxic environments. Based on 

metagenomic studies, it is believed that there may be thousands of species carrying out 

anammox in specific environments (Long et al., 2013; Solanki et al., 2017). Anammox is the 

oxidation of NH4
+ by nitrogen oxides with molecular nitrogen as the final product. Reaction 

conducted is: NH4
+ + NO2

- → N2 + 2H2O (Madigan et al., 2012). Anammox is not demanded 

in the initial phases of mine reclamation as this process leads to even faster nitrogen loss. 
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How Nitrogen Transformation Influence on Other Soil Properties  
 

Nitrogen cycling influences a wide spectrum of other soil processes, and vice versa. 

All soil processes remain in a sort of balance as well as all elements’ cycles interact with each 

other (Rosswall, 1981). Having at least a bit of nitrogen to start, pioneering organisms can 

begin to influence reclaimed land, exerting further transformation (Ratzke et al., 2020). 

Nitrogen available in the environment has usually a positive effect on the production of plant 

biomass. This, in turn, increases the content of organic matter in the soil and the carbon 

sequestration (Brożek and Wanic, 2002). Thus nitrogen influences the carbon cycle.  

Phosphorus has a strong influence on nitrogen cycling because P together with N are 

important elements of many molecules in organisms’ cells. Deficiency of phosphorus limits 

especially N fixation as well as nitrification (Rosswall, 1981). 

The individual stages of the nitrogen cycle often have opposing vectors of bio and 

physicochemical change in the soil (Ratzke et al., 2020). For instance, nitrogen fixation and 

denitrification increase pH by uptake of H+. Protein decay also increases the pH by releasing 

of OH- anions. In turn, the nitrification results in acidification due to H+ release. If nitrogen 

cycling is balanced, the pH of the soil does not change much, but if any of those processes 

overweight, the soil pH changes. This is an important hint for mine reclamation practitioners 

indicating that all steps of the nitrogen cycle have to be rebuilt to maintain the proper pH. Soil 

pH influences the rate of N-fixation. Nitrogenase has atoms of Fe and Mo in the structure. So 

Fe and Mo are necessary in the N-fixation (Campbell et al., 2008; Freeman et al., 2011). In 

soils of high pH, Fe and Mo are not soluble. Thus, high pH may inhibit nitrogenase synthesis. 

Apart from plants, some microbes use products of nitrifiers’ metabolism: anammox 

and DNRA bacteria, as well as denitrifiers. Their role in the reclaimed soil should not be 

forgotten. They prevent leaching of nitrogen oxides to the groundwater, take part in organic 

matter mineralization, take part in soil microbial food chain, and increase pH (Campbell et al., 

2008; Freeman et al., 2011; Madigan et al., 2012). 

 

Importance of Nitrogen in Mine Reclamation 
 

Mine reclamation will not be successful if nitrogen cycling is not rebuilt, often 

requiring human intervention to increase the speed of recovery. There are two major targets. 

Firstly, it is to provide an initial nitrogen portion ensuring starting it to cycle, and secondly, it 

is to prevent nitrogen loss at least at the initial stage of reclamation. Nitrogen may be provided 
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to the reclaimed mine soils in two ways: artificially by fertilization or naturally by nitrogen 

fixation. Artificial fertilization in the case of deeply transformed mine soils is often necessary. 

That initial introduction of nitrogen along with other nutrients intends to increase the level of 

lacking elements above the minimum of tolerance for organisms to colonize. Often microbes 

are present in the soil substrate in an abundance, however, they try to wait out the adverse 

conditions in a form of spores (Madigan et al., 2012). Fertilizers may activate them (Suhag, 

2016). This may be done with the use of mineral fertilizers, organic ones, or even with the use 

of nutrient-rich soil amendments. Commercial organic fertilizers or soil amendments seem to 

be better solution than mineral for initial complex nutrients provision in reclaimed mine soils 

(Larney et al., 2009, Gardner et al., 2010). Some soil amendments may remediate the problem 

of lacking soil nutrients. 

When initial portions of nutrients are provided, it is a time to introduce organisms that 

will facilitate further nitrogen provision as these nutrients may be quickly depleted or lost. 

Plants that co-exist with N-fixing bacteria can fulfill this role. They are used by people in 

agriculture, in the phytomelioration process, as well as in the bioremediation or the 

reclamation (Elias and Chadwick, 1979; Jefferies et al., 1981; Santi et al., 2013, Wanic and 

Pająk, 2012). Legumes such as Lupinus, Trifolium, Medicago are most commonly used here. 

BC flora has many species forming co-existence with N-fixing microbes (Brown and 

Amacher, 1999; Antos et al., 1996).  

In mine reclamation nitrogen cycling may be supported and its loss limited. In the case 

of mine soils, in which microbiological life is negatively affected (Baker et al., 2011; Larney 

and Angers, 2012), it is unlikely that the plant will find its symbiotic partner. To increase the 

chances, bacteria can be inoculated by commercial inoculants. To support plants forming 

actinorrhizae with Frankia, it may be most effective to add a portion of natural soil 

(Strzelczyk, 2002). Nitrifying bacteria are obligately aerobic. In clay and loamy soils, the 

ground tends to long water holding. This results in unfavorable aerobic conditions. Therefore, 

an intervention, such as tillage, aiming in better aeration of reclaimed soils, supports nitrifiers 

and other topsoil aerobic organisms. Tillage, by oxygen provision, limits denitrifiers, and 

anammox bacteria in the topsoil (Long et al., 2013). Therefore, if their activity is limited, 

tillage contributes to available nitrogen lost prevention. Supporting DNRA bacteria also 

prevents nitrogen loss. Providing of organic matter and sulfide (S2-) also supports DNRA 

bacteria while inhibiting denitrifiers (Putz et al., 2018). 
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AREA OF RESEARCH 
 

New Afton New Gold is located just 15 km away from the city of Kamloops, BC. 

Teck Highland Valley Copper is located around 50 km away. Both mines lie within 

Thompson-Nicola Regional District of British Columbia. Although not very far from each 

other both these mines differ strongly (New Gold Inc., 2021; Teck Resources Limited, 2019; 

“Highland Valley Copper”, 2021). Differences encompass such aspects as elevation above the 

see level, climate, soils, vegetation, bedrock, and others.  

New Afton New Gold lies in the area of Bunchgrass Biogeoclimatic Zone which is 

characterized by high biodiversity and its uniqueness. Bunchgrass covers merely about 1% of 

the BC area (Province of British Columbia, 1999) but only within this zone 30% of 

endangered species of BC have their populations.  

HVC, on the other hand, is characterized by its large size and, consequently, a 

significant impact on the environment (Teck Resources Limited, 2019; “Highland Valley 

Copper”, 2021; Malaschenko et al., 2017).  

Reclamation undertakings withing both mines are challenging due to several facts: 

climatic severity, large scale, a vulnerability to species invasiveness, areas’ local water 

retention importance, elevated fire threat and many more. 

Mines Characteristics  
 

Both mines extract and pre-treat ores and possess open pits. NA pit is inactive, while 

HVC has several active and inactive pits. As a result of an ore production within the mines, 

there is a large scale constant hauling and heavy machinery movement in soil and rock 

transportation. Earthy waste material is gathered on large stockpiles that transforms the 

surface creating vast areas for future reclamation. Additionally, both mines possess tailings 

storage facilities (TSF). 

New Afton New Gold Mine  
 

New Afton site is one of New Gold Inc. assets. All New Gold’s claims within the New 

Afton Group span the area of 124.5 km2. Chiefly it comprises an open pit, underground 

mining operation, support facilities, a concentrator, and tailings facilities. An underground 

operation began in 2012, located underneath an open pit which had been exploited under the 

operation of the historic Afton Mine (New Gold Inc., 2021). The New Afton reserves are 

estimated for 1.0 million ounces of gold, 2.8 million ounces of silver, and 802 million pounds 
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of copper. The mine produces annually over 75 thousand ounces of gold and over 85 million 

pounds of copper (New Gold Inc., 2021). 

New Afton is located within the Bunchgrass biogeoclimatic zone (Province of British 

Columbia, 1999). The Bunchgrass zone’s principal environmental factor determining its 

distinctiveness is mean annual precipitation below 300 mm. Most of the precipitation falls 

within the coldest period of the year. This zone is classified as semi-arid characterized by cool 

winters and hot, dry summers. Plants native to these growing conditions have developed 

mechanisms for the effective use of water from the thaw, and to endure long periods of 

drought. Here grasses are dominating, e.g. bluebunch wheatgrass Pseudoroegneria spicata or 

prairie junegrass Koeleria macrantha. Other plants well adapted to these conditions are shrubs 

with the dominants big sagebrush Artemisia tridentata and common rabbitbrush Ericameria 

nauseosa. Their adaptive strategy is intensive root growth. The soils of this zone, mainly due 

to the abundance of grasses, are more fertile and have a favorable pH. Besides, they are 

sufficiently airy and are not excessively dense. (Antos et al., 1996; Province of British 

Columbia, 1999). 

Teck Highland Valley Copper Mine 
 

Highland Valley Copper mine is one of many Teck assets located in Canada. It is one 

of the largest open-pit mines in the world. This site exploits mainly copper and molybdenum. 

The entire mine area comprises the open pits, the transportation network, rocks grinding and 

ores concentration facilities, tailings storage facilities and large areas of terrains already 

subjected to reclamation. HVC produces over 150,000 tonnes of copper annually (Teck 

Resources Limited, 2019). The Teck Highland Valley Copper mine is one of British 

Columbia’s high-value assets but, being one of the world’s largest open-pit production 

highlights the need for reclamation research. A large number of reclamation projects are 

conducted presently either on an operational level as well as on experimental (Teck Resources 

Limited, 2019; “Highland Valley Copper”, 2021; Malaschenko et al., 2017). 

HVC is located around 1,300 m above sea level, while NA’s elevation is only around 

700 m. Therefore, in the place of HVC location, there are different climatic conditions. HVC 

biogeoclimatic zones are Interior Douglas-Fir and Montane Spruce. These zones, in particular 

Montane Spruce, are characterized by a cool climate, shorter vegetation season, but receiving 

a significantly larger mean precipitation. These zones are covered with woody vegetation, 

where douglas fir Pseudotsuga menziesii, white spruce Picea glauca, and even subalpine fir 
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Abies lasiocarpa dominate alternately. The nitrogen fixer soopolallie Shepherdia canadensis 

is also typical here. In these zones, the soils are usually characterized as nutrient-poor, stony 

with an acidic pH. Nitrogen fixers can play an extremely important role here as the suppliers 

of nitrogen (Imsande and Touraine, 1994; Antos et al., 1996; Province of British Columbia, 

1999). 

RESEARCH OBJECTIVES 
 

Two proposed experiments focused on: 

I. Testing whether the mine subsoils from New Afton New Gold and Teck Highland 

Valley Copper have a potential to be applied as a mine reclamation starting 

medium, without the addition of an amendment, on selected native grasses, forb 

and shrubs. 

II. Testing whether applied soil amendments influence plant productivity and 

mortality of selected native grasses, forb and shrubs on the New Afton New Gold 

and Teck Highland Valley Copper subsoil substrates; 

III. The qualitative and quantitative change of total nitrogen, mineralizable nitrogen, 

NH4
+, NO3

- in the soil following soil amendments and plant species application. 

First study experiment 1 was conducted in optimal plant-growth conditions of the 

greenhouse. In contrast, second study experiment was conducted in semi-natural conditions in 

open-air. Eventually, results of both experiments were compared.  

Figure 1.3 New Afton New Gold and Teck Highland Valley Copper mines location.  
Retrieved from Google Earth. 

New Afton 

HVC 
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CHAPTER 2: HOW AN ADDITION OF BIOSOLIDS, BIOCHAR, AND WOODCHIPS 
INFLUENCE SUBSOIL PHYSICOCHEMICAL PROPERTIES, GRASSES AND LEGUME 
PERFORMANCE, AND NITROGEN CYCLING IN GREENHOUSE CONDITIONS. 
 

INTRODUCTION 
 

As awareness of environmental values increase, an ecosystem-oriented reclamation 

constantly gains importance (Brown and Amacher, 1999; MAC, 2018). This branch of human 

activity is complex and interdisciplinary, combining knowledge from many fields of science. 

Reclamation achieves the best results when it emulates natural processes (Jefferies et al., 

1981; Bradshaw, 1997; Bradshaw, 2000). To rebuild an ecosystem, the original ecosystem 

must be well known. The ecosystem is a very complex network of mutual interdependencies 

between its biotic and abiotic components. Moreover, organisms occupying a certain niche 

organize in food webs (McCann, 2007; Egerton, 2007). Energy and matter flow through every 

level of trophic interactions, allowing for the cycling of elements (Madigan et al., 2012). 

Restoration of such relations between living organisms and their ecological niche should be 

the aim of the reclamation process to make it effective (Fraser et al., 2015). Reclaiming areas 

disturbed by mining is challenging. Mines alter the landscape, transform and remove soils, 

influence hydrology, increase dust emission, and can leach contaminants into water bodies 

and soils (Wijesekara et al., 2016). Additionally, mine degraded soils are usually infertile. 

These issues, and other factors like high salinity or extreme pH, result in the low productivity 

of these soils (FAO et al, 2020). 

An efficient way to reclaim mine barren land is to cap with a layer of fresh topsoil. 

The problem is that topsoil is scarce or is deeply transformed after many years of stockpiling 

(Strohmayer, 1999). In such a case attention is turned toward subsoil, which is abundant on 

mine sites, also stored as stockpiles. There is interest in whether subsoil can be used as a 

reclamation starting soil medium. In subsoil characterization, the potential obstacles to 

ecosystem restoration might be identified, and then these obstacles can be addressed in a 

planned manner.  

Another question is whether soil amendments could help transform subsoil. 

Knowledge about the properties of soil amendments is increasing, particularly as applied to 

mine reclamation (Brown et al., 2014; Brown and Chaney, 2016; Gunarathne et al., 2020), 

nonetheless, still requires deepening, in particular about the proper selection, doses, and 

methods of application. Little is known about the influence of the soil amendments on the 
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properties of mine subsoils. Three amendments have received particular attention in this 

study: class A biosolids, biochar, and woodchips, as well as the mixture thereof. Biosolids 

result from wastewater treatment (Sullivan et al., 2015; Ippolito et al., 2021). Annacis 

Biosolids used in this study were provided by Metro Vancouver. This class A biosolids, 

through anaerobic digestion and dewatering, pass very strict requirements for pollutants, 

pathogens and vector attraction reduction along with others. Biosolids is an amendment very 

rich in readily available nutrients, as well as with organic matter (Sullivan et al., 2015). 

Biosolids provide a large portion of available and mineralizable nitrogen. Available nitrogen 

is predominantly in a form of NH4
+. Apart from nitrogen, biosolids enrich the soil substrate 

with phosphorus and zinc, and also increase soil buffering, cation exchange capacity, reduce 

substrate salinity, as well as the adverse impact of heavy metals (Brown and Chaney, 2016). 

The biosolids application rate strongly depends on substrate N and P deficiency. It might also 

vary regarding to the biosolids class, composting time etc. (Sullivan et al., 2015). Cogger and 

Stahnke (2013) suggest an application of 15 to 20% by volume to land being prepared for new 

lawn but also inform that the rate for new gardens should be larger. Larney and Angers (2012) 

state that reclaimed mine soils are usually subjected to the largest organic amendment dosing 

due to its deep degradation. Woodchips is an amendment rather poor in readily available plant 

nutrients (Cheng, 2008). Moreover, this material decomposes very slowly, mainly due to 

lignin content (Datta et al., 2017). Woodchips get produced as a waste in the sawmills 

processes. This material is rough, contains different sized fractions of woody tissues, mainly 

coniferous tree cortex. The addition of woodchips lowers the pH of overly alkaline soil 

substrates, helps in increasing recalcitrant carbon, increases water penetration and aeration, 

and constitutes a food source for a range of organisms (Yuan et al., 2020). In his work on 

potting media Bugbee (2008) combined 10, 20 and 30% (v/v) of hardwood sawdust 

(woodchips) with municipal biosolids compost to observe an influence of this amendment on 

Coreopsis grandiflora and Rudbeckia hirta individuals performance, as well as on mineral 

nitrogen leaching. He found that an application of woodchips in such rates did not affect NH4
+ 

leaching from biosolids and did not affect plants performance. Cheng (2008) determined that 

an application of 30% sawdust applied with NPK fertilizer gave the highest yield. Biochar is a 

charcoal. It is a slow-release fertilizer rich in phosphorus and potassium and acting 

beneficially on soil physicochemical properties (Taylor, 2010; Canadian AgriChar, 2020). 

This soil amendment has a strongly alkaline pH – around 10. It enriches soil substrate with 

organic matter. Biochar may increase soil buffering, cation exchange capacity, reduce salinity, 

and an adverse impact of heavy metals (Kelly et al., 2014). AgriChar, which is a manufacturer 
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of biochar product used in this research, suggests using 5% of this product by volume 

(Canadian AgriChar, 2020). Gunarathne et al. (2020) in their experiment with salt-affected 

acidic soil used 1.0% - 5.0% detecting that eventually an addition of 5.0% of biochar brought 

the best results.  

Vegetation is one of the key factors in mine reclamation. Intentionally introduced 

plants species are generally selected according to plant traits such as rate of growth, 

ecological requirements and function, the potential in competition with other plant species, 

the ability to enrich the soil substrate with essential nutrients, for example nitrogen (Elias and 

Chadwick, 1979). The ecosystem will likely not be rebuilt stably if the normal cycle of 

elements is not restored. Nitrogen-fixing plants can play a special role in reclamation of mine 

soils that are particularly nutrient-poor. Lupine, clover, or alfalfa are more commonly used 

nitrogen-fixers for phytomelioration and green fertilization worldwide. However, many of 

these plants do not belong to the local flora. Four native plant species were selected: three 

grass species: bluebunch wheatgrass Pseudoroegneria spicata, rough fescue Festuca 

campestris, prairie junegrass Koeleria macrantha, and one legume field locoweed Oxytropis 

campestris. Three selected graminoids are turf-forming perennial bunchgrasses. They may be 

found in many ecosystems but are typical and commonly present in grasslands. Those plants 

are well adapted to semi-arid conditions with hot and dry summers (Antos et al., 1996). That 

legume may be found in many ecosystems but thrives the best on rocky, gravelly soils with 

plenty of insolation. It stands well with harsh climate pressure but is not a good competitor 

(Douglas at al., 1998), which potentially, coupled with an ability for nitrogen fixation, makes 

this species a good candidate for post-mining reclamation tool. 

The study objectives were: 

I. To determine similarities and differences between New Afton New Gold and Teck 

Highland Valley Copper subsoils with or without amendments by observing plant 

mortality, above-ground biomass productivity, and subsoil physicochemical 

properties; 

II. To test the relative effects of various proportions of the three soil amendments 

(biosolids, woodchips, biochar) on subsoil physicochemical properties; 

III. To measure qualitative and quantitative change of nitrogen compounds related to 

soil amendments. 
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METHODS 
 

Study Site  
 

Subsoil substrate was collected from stockpiles at two mine sites: Teck Highland 

Valley Copper (August 17, 2018) and New Afton New Gold (September 9, 2018). The 

experiment was located in the Research Greenhouse at Thompson Rivers University. The 

experiment began on December 22, 2018, and ended on April 13, 2019. It lasted 16 weeks 

counting from when the seeds were sown to the day of the above-ground biomass harvesting.  

Experiment Design 
 

Pots and Seeding 
 

1.2 L square-shaped pots were filled with 10 combinations of subsoils with soil 

amendments (See Table 2.1). To increase chances for successful germination, seeds were 

sown in batches instead of sowing just one seed. One batch of seeds (20 seeds in each) was 

sown in each of the pot corners. This way four one-species monoculture treatments and one 

four-species mix treatment were created. Grass seeds were sown on the surface of the 

substrate and legume seeds were covered by a thin layer of soil substrate. After germination, 

excess seedlings were eliminated such that one individual plant at each pot corner remained. 

Pots were marked and numbered.  

To boost the presence of N-fixing microbes, the legume seeds were inoculated with 

use of commercial preparation McKENZIE SEEDS GARDEN INOCULANT containing 

bacteria Rhizobium leguminosarum and Bradyrhizobium sp. Before seeding, legume seeds 

were subjected to scarification and 24 h water imbibition (Baskin and Baskin, 1998).  

Greenhouse Settings 
 

The greenhouse was on a 14h/10h day/night lighting schedule with three 1,000W 

lamps operating. 24-hour temperature variation was kept within 15 - 30°C interval.  

The substrate was kept moist but not wet. As this experiment did not account for the drought 

effect, the watering need was visually assessed only. To maintain proper air humidity, the 

automatic mister was switched on and activated whenever the humidity sensors detected the 

air humidity below 40%. Apart from that, the mister was activated daily at 7.30 AM for 15-

minutes-continuous misting regardless of the sensor readings. The pod was ventilated by the 

built-in ventilator or by the automatic side and rooftop whenever the temperature approached 

30°C or the air humidity exceeded 80%. 
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Pest Control 
 

The principal adopted was to not influence the physicochemical properties of the soil 

substrate. Applied: 1. insecticide DOCTOR DOOM GO GREEN TOTAL RELEASE 

FOGGER containing the active ingredients Pyrethrins 0.4% and Piperonyl Butoxide 2.0%;  

2. yellow color sticky traps to fight flying pest; 3. plant protection product NEMASYS, which 

contains nematodes Steinernema feltiae, was applied to the subsoil treatments to fight fungus 

gnats as this nematode species is a parasite of fungus gnat larvae living in the soil.  

Applied Subsoil Substrate Combinations 
 

Subsoils collected from both mines were treated the same way with the addition of soil 

amendments. Amendments were applied in the volumetric proportions shown in Table 2.1.  

Table 2.1 First study experiment soil medium composition percentage breakdown. 
 SUBSOIL BIOSOLIDS WOODCHIPS BIOCHAR 

CONTROL 100% 0% 0% 0% 

BIOSOLIDS 75% 25% 0% 0% 

WOOD CHIPS 75% 0% 25% 0% 

BIOCHAR 95% 0% 0% 5% 

MIXTURE OF ALL 

AMENDMENTS 
75% 10% 10% 5% 

 

Regarding low subsoil organic matter content it was decided to apply high volumetric 

dosing of soil amendments (Larney and Angers, 2012). Biochar was an exception because this 

material has very high pH (Canadian AgriChar, 2020) and an addition of biochar in larger 

quantity could potentially even elevate the subsoil pH which was already high (above 8).  

An addition of 5% biochar followed the AgriChar suggestions of application.  

 

Experiment 1 Overall Treatments Combination 
 

The experiment was a 2 x 5 x 5 factorial design, with 50 treatment combinations: 

  2 subsoil types: 1. New Afton New Gold subsoil, 2. Teck Highland Valley Copper subsoil; 

  5 soil amendment treatments: 1. control [no soil amendments], 2. biosolids alone, 3. 

woodchips alone, 4. biochar alone, 5. mixture of all three soil amendments (see Table 2.1); 

  5 plant treatments: 1. bluebunch wheatgrass alone, 2. rough fescue alone, 3. prairie 

junegrass alone, 4. field locoweed alone, 5. mix of all four species. 
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Replicated 7 times for a total of 350 individual pots. A randomized block design was arranged 

in the greenhouse. 

Soil Sampling 
 

Before seeds were sown, but after subsoil substrate mixing with amendments, and 

following 7 days for the mix to settle, ten soil samples were collected (2 mine subsoils x 5 

subsoil treatments). Additionally, two reference sites were selected near the vicinity of the 

two mine sites, which served as a source of undisturbed topsoil samples from the natural 

ecosystem. All samples were collected in labeled 1L plastic bags and frozen at -20°C 

immediately after sampling. Each time, prior to testing, a portion of the frozen sample was 

removed from the bag and the rest was deposited back into the freezer to avoid unwanted 

defrosting. At the experiment termination, the soil substrate from 7 pot-replicates was mixed 

thoroughly together, and then one sample was collected in a 1L labeled plastic bag. The same 

procedure was repeated for each of the 50 treatments. Then, the samples were frozen at -20°C 

immediately after collection. This way all together a pool of 62 1L-samples were obtained: 10 

samples of the initial subsoil substrates combinations, 50 treatment-resulting samples at the 

end of the experiment, and 2 undisturbed topsoil samples for reference. All samples were 

collected and stored in the same manner until the test was performed. 

Tests and Instrumentation Used 
 

Plant Productivity 
 

Plant productivity was measured by harvesting above-ground biomass of each 

individual plant from each corner of each pot for a total of 1400 specimens. All plants oven-

dried in Constant Temperature Oven DKN 812 for 48h at 45°C right after collection. Dried 

plants were weighed on an analytical scale Fisher Scientific accuSeries accu-225D.  

Mortality 
 

Mortality was assessed at the moment of the above-ground biomass clipping and 

collection. 

Soil Physicochemical Tests 
 

Part of the tests was conducted in Dr. Lauchlan Fraser's laboratory at TRU. These 

were: the soil pH, soil electroconductivity, soil organic matter (SOM) content, as well as total 

nitrogen and total carbon contents. In addition, soil samples were sent to the Ministry of 
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Environment and Climate Change Strategy - Analytical Lab in Victoria to analyze them for 

the content of mineralizable nitrogen and available nitrogen forms: NH4
+, NO3

-, as well as 

basic elements content: Al, B, Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P, S, Zn.  

Before testing, according to the procedures, all soil samples were subjected to 

desiccation in Constant Temperature Oven DKN 812 at 65°C for 24h, then manually crushed 

in a mortar and sieved through a 0.5 mm laboratory soil sieve. Samples for pH and 

electroconductivity were excepted from this procedure, as fresh soils are used for these tests. 

Also, SOM samples were exempted from sieving. In the case of SOM, the desiccation was 

conducted for 24h at 105°C.  
 

pH and Electroconductivity 
 

Measurements were taken by PALINTEST WATERPROOF 800 pH 

/CONDUCTIVITY/TDS METER from fresh substrate samples sunk in the distilled water. 

Prior to measurements taking, the instrument was calibrated. 

SOM 
 

Immediately after drying, samples were weighed on analytical scale Fisher Scientific 

accuSeries accu-225D and results were noted. Samples’ weights were between 1.00 – 1.50 g. 

Then, samples were placed in a muffle oven Furnace 62700 and subjected to 500°C for 5h to 

volatize all organic matter. After burning samples were weighed again and then the SOM got 

calculated from the difference between pre-burning and after-burning results.  

Total C, Total N 
 

Prior to testing 10 to 15 µg samples got prepared in small tin containers, weighed on 

analytical scale Sartorius CP 2P, then tightly sealed and weighed again for the weight 

confirmation. Each of the 62 1L-sample-bags were tested three to five times using 

FLASHSMART Elemental Analyzer / Flash IRMS EA IsoLink operating with EagerSmart 

software. Proper levels of gases: N, O, He were checked every time before testing. Technical 

gases were provided by Praxair. Additionally, proper functioning of the instrumentation was 

verified every time before and after testing by observing of reactor’s temperature and other 

specific measurements accordingly to the manual. Eventually, the final results were subjected 

to a comparison with standards provided by the manufacturer. 
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Mineralizable Nitrogen, Available Nitrogen Forms: NH4
+, NO3

- 

 

Mineralizable nitrogen and available nitrogen forms tests were conducted by the 

Ministry of Environment and Climate Change Strategy - Analytical Lab in Victoria. Tests 

performed by the lab were KCl Extraction with UV Analysis for mineralizable nitrogen and 

KCl Extraction with Autoanalyzer Analysis for available nitrogen forms.  

Basic Elements 
 

Basic elements test was conducted by the Ministry of Environment and Climate 

Change Strategy - Analytical Lab in Victoria. Test performed by the lab was Metals via Acid, 

Microwave Digestion with ICP-OES Analysis.  

Statistical Analyses 
 

The software applied was R Studio 1.3.1093 and Excel Microsoft 365. Statistical 

analyses were divided into 3 sections which align with the study objectives. 

Section 1 - mortality and productivity were analyzed to answer the first study question 

on similarities and differences between two mine subsoils. As a first step, the plant 

productivity and mortality data sets were tested for following the parametric assumptions 

(Greenacre and Primicerio, 2013; Lander, 2014). Shapiro-Wilk test followed by residuals plot 

and Normal Q-Q plot revealed that the data sets violate the normality and homoscedasticity 

assumptions, therefore, non-parametric models had to be applied. Mortality and productivity y 

data were subjected to Kruskal-Wallis one-way analysis of variance. To compare subsoil 

treatments, when the Kruskal-Wallis test was showing a significant difference, populations 

were subjected to Wilcoxon pairwise comparison. To confirm the revealed overall difference 

between New Afton New Gold and Teck Highland Valley Copper subsoils the entire sets of 

both subsoil physicochemical parameters were compared using PERMANOVA test based on 

Euclidean distance and then visualized by Principal Component Analysis. 

Section 2 - After detection that NA and HVC subsoils differ strongly 17 predictors 

were analyzed one by one to determine which stand behind the detected difference. Tests 

between two mine subsoils were followed by comparison between subsoil treatments within 

each mine separately. Analyzed predictors were: pH, electroconductivity, soil organic matter 

(SOM), total carbon, as well as all the basic elements. All mentioned predictors were analyzed 

the same way. After revision of results, charts of the most influential predictors were prepared 

and presented in the main body of the thesis, while all others are presented in the Appendix A.  
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Section 3 - The remaining 4 predictors related to nitrogen: total nitrogen content, 

mineralizable nitrogen content, available NH4
+ and NO3

- contents were analyzed separately in 

section 3. Additionally, the last set of analyses takes on qualitative and quantitative change in 

NH4
+ and NO3

- contents throughout the experiment. Firstly the sum of initial NH4
+ and NO3

-  

contents were compared with the final sum and then the initial and final ratios of those two 

available N-forms were compared as second. This analysis worked only with biosolids-

containing subsoil treatments, these were: “75%sub25%bios” and the “mixture”. All other 

subsoil treatments poor in available nitrogen were disregarded for these tests. Boxplots 

combine together datapoints from both New Afton New Gold and the Teck Highland Valley 

Copper. These tests intended to resolve which nitrogen cycling step is prevailing at the initial 

stage of the mine reclamation with the uncured biosolids application. 
 

RESULTS 
 

Mortality, Productivity, Overall Subsoils’ Difference 
 

Section 1: Mortality 

Kruskal-Wallis test showed that mortality of plants growing on New Afton New Gold 

subsoil combinations was significantly larger than mortality of plants growing on Teck 

Highland Valley Copper subsoil combinations (Figure 2.1). 

 

 

Figure 2.1 Mortality comparison between two mines’ subsoils: HVC – Teck Highland Valley Copper, 
NA – New Afton New Gold. Boxplots describe the number of dead plants per pot. Horizontal line 
indicates the median of plants per pot which did not survive to the end of the experiment. Kruskal-
Wallis test was used to compare the medians of plant mortalities. n = 175 
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New Afton New Gold Plant Mortality Analysis 
 

Kruskal-Wallis test showed that the mortalities of New Afton New Gold subsoil 

treatments were not equal (Figure 2.2). 

Wilcoxon pairwise comparison test showed that: the treatment with an addition of 

25% of biosolids alone resulted in significantly larger mortality than unamended subsoil, than 

treatment with 25% of woodchips, than treatment with 5% of biochar, as well as than 

treatment with a mixture of soil amendments. The treatment with a mixture of soil 

amendments resulted in significantly larger mortality than unamended subsoil, than treatment 

with 25% of woodchips, than treatment with 5% biochar, as well as significantly lower 

mortality than treatment with 25% of biosolids. The unamended subsoil treatment resulted in 

significantly larger mortality than the treatment with 25% of woodchips. There were no 

significant differences in terms of mortality between unamended subsoil and the treatment 

with 5% of biochar as well as between the treatment with 5% of biochar and the treatment 

with 25% of woodchips (Figure 2.2). 

Figure 2.2 Mortality comparison between the New Afton New Gold (New Afton) subsoil treatments:  
100%sub – unamended subsoil, 75%sub25%bios – subsoil amended by 25% of biosolids alone, 
75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended 
by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Boxplots describe the 
number of dead plants per pot. Horizontal line indicates the median of plants per pot which did not 
survive to the end of the experiment. Kruskal-Wallis test was used to compare the medians of plant 
mortalities. Wilcoxon test was used for pair-wise comparison: * - p < 0.05, ** - p < 0.01,  
**** - p < 0.0001, ns – difference not significant. n = 35 



32 
 

Teck Highland Valley Copper Plant Mortality Analysis 
 

Kruskal-Wallis test showed that the mortalities of Teck Highland Valley Copper 

subsoil treatments were not equal (Figure 2.3). 

Wilcoxon pairwise comparison test showed that: the treatment with an addition of 

25% of biosolids alone resulted in significantly larger mortality than unamended subsoil, than 

treatment with 25% of woodchips, than treatment with 5% of biochar, as well as than 

treatment with a mixture of soil amendments. The treatment with a mixture of soil 

amendments resulted in significantly larger mortality than unamended subsoil, than treatment 

with 25% of woodchips, than treatment with 5% biochar, as well as significantly lower 

mortality than treatment with 25% of biosolids. There were no significant differences in terms 

of mortality between unamended subsoil, the treatment with 5% of biochar, and the treatment 

with 25% of woodchips (Figure 2.3). 

 

Figure 2.3 Mortality comparison between the Teck Highland Valley Copper (HVC) subsoil treatments: 
100%sub – unamended subsoil, 75%sub25%bios – subsoil amended by 25% of biosolids alone, 
75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended 
by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Boxplots describe the 
number of dead plants per pot. Horizontal line indicates the median of plants per pot which did not 
survive to the end of the experiment. Kruskal-Wallis test was used to the medians of plant mortalities. 
Wilcoxon test was used for pair-wise comparison: ** - p < 0.01, *** - p < 0.001, **** - p < 0.0001, ns 
– difference not significant. n = 35 
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Plant Species Mortality Analysis 
 

Kruskal-Wallis tests showed that individuals of bluebunch wheatgrass, field locoweed, 

and rough fescue growing on New Afton New Gold subsoil combinations experienced larger 

mortality than individuals of these species growing on Teck Highland Valley Copper subsoil 

combinations. Mortalities of prairie junegrass on two mines’ subsoils did not differ 

significantly (Figure 2.4).  

 

 

 

 

 

 

 

 

 

Figure 2.4 Plant species mortality comparison between two mines’ subsoils: HVC – Teck Highland 
Valley Copper, NA – New Afton New Gold. Horizontal line indicates the median mortality rate. 
Kruskal-Wallis test was used to compare the medians of plant species mortalities. n = 35 
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Kruskal-Wallis tests showed that on New Afton New Gold subsoil treatments 

mortalities of plant species were not equal. Wilcoxon pairwise comparison tests showed that 

prairie junegrass individuals performed significantly better than bluebuch wheatgrass, field 

locoweed, and rough fescue. There was no significant difference between all other species in 

terms of survivorship/mortality on New Afton New Gold subsoil treatments (Figure 2.5 right).  

Kruskal-Wallis tests showed that on Teck Highland Valley Copper subsoil treatments 

all species performed equally in terms of survivorship (Figure 2.5 left).  

 

  

Figure 2.5 Plant species mortality comparison on two mines’ subsoils: HVC – Teck Highland Valley 
Copper, NA – New Afton New Gold. Horizontal line indicates the median mortality rate. Kruskal-
Wallis test was used to compare the medians of plant species mortalities. n = 35 
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Section 1: Productivity 

Kruskal-Wallis test showed that dry above-ground biomass productivity of plants 

growing on New Afton New Gold subsoil combinations was significantly lower than dry 

above-ground biomass productivity of plants growing on Teck Highland Valley Copper 

subsoil combinations (Figure 2.6). 

Average dry above-ground biomass productivity of plants growing on New Afton 

New Gold subsoil combinations was more than three times lower than average dry above-

ground biomass productivity of plants growing on Teck Highland Valley Copper (Figure 2.7). 

Figure 2.6  Dry above-ground biomass productivity comparison between two mines’ subsoils: HVC 
– Teck Highland Valley Copper, NA – New Afton New Gold. Boxplots describe dry biomass weight. 
Horizontal line indicates the median of weights of individual plants at the end of the experiment. 
Kruskal-Wallis test was used to compare the medians of plant dry above-ground biomass 
productivity. n = 700 
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Figure 2.7  Mean dry above-ground biomass productivity comparison between two mines’ 
subsoils: HVC – Teck Highland Valley Copper, NA – New Afton New Gold. Error bars are 
standard error of the mean. n = 700 
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New Afton New Gold Subsoil Treatments Productivity Analysis 
 

Kruskal-Wallis test showed that the dry above-ground biomass productivities of New 

Afton New Gold subsoil treatments were not equal (Figure 2.8). 

Wilcoxon pairwise comparison test showed that the treatment with a mixture of soil 

amendments resulted in a significantly larger dry above-ground biomass productivity than 

unamended subsoil, than treatment with 25% of woodchips, than treatment with 5% of 

biochar, as well as than the treatment with 25% of biosolids. The treatment amended by 25% 

of biosolids resulted in a significantly larger dry above-ground biomass productivity than 

unamended subsoil, than treatment with 25% of woodchips, than treatment with 5% of 

biochar. The treatment with unamended subsoil resulted in a significantly larger dry above-

ground biomass productivity than the treatment with 25% of woodchips only. There was no 

significant difference in terms of dry above-ground biomass productivity between the 

treatment with 5% of biochar and the treatment with 25% of woodchips (Figure 2.8). 

Figure 2.8 Dry above-ground biomass production comparison between the New Afton New Gold (New 
Afton) subsoil treatments: 100%sub – unamended subsoil, 75%sub25%bios – subsoil amended by 25% 
of biosolids alone, 75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar 
– subsoil amended by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. 
Boxplots describe the weights of individual plants’ dry above-ground biomass. Horizontal line 
indicates the median of plants’ above-ground biomass. Kruskal-Wallis test was used to compare the 
medians of plant productivity on particular subsoil treatments. Wilcoxon test was used for pairwise 
comparison * - p < 0.05, ** - p < 0.01, *** - p < 0.001, **** - p < 0.0001, ns – difference not 
significant. n = 140 
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Teck Highland Valley Copper Subsoil Treatments Productivity Analysis 
 

Kruskal-Wallis test showed that the dry above-ground biomass productivities of Teck 

Highland Valley Copper subsoil treatments were not equal (Figure 2.9). 

Wilcoxon pairwise comparison test showed that the treatment with a mixture of soil 

amendments resulted in a significantly larger dry above-ground biomass productivity than 

unamended subsoil, than treatment with 25% of woodchips, than treatment with 5% of 

biochar, as well as than the treatment with 25% of biosolids. The treatment with 25% of 

biosolids resulted in a significantly larger dry above-ground biomass productivity than 

unamended subsoil, than treatment with 25% of woodchips, and than the treatment with 5% 

of biochar. The treatment with unamended subsoil resulted in a significantly larger dry above-

ground biomass productivity than the treatment with 25% of woodchips only. There was no 

significant difference in terms of dry above-ground biomass productivity between the 

treatment with 5% of biochar and the treatment with 25% of woodchips (Figure 2.9). 

Figure 2.9 Dry above-ground biomass production comparison between the Teck Highland Valley 
Copper (HVC) subsoil treatments: 100%sub – unamended subsoil, 75%sub25%bios – subsoil 
amended by 25% of biosolids alone, 75%sub25%wchip - subsoil amended by 25% of woodchips 
alone, 95%sub5%bchar – subsoil amended by 5% of biochar alone, mixture - subsoil amended by a 
mixture of amendments. Boxplots describe the weights of individual plants’ dry above-ground 
biomass. Horizontal line indicates the median of plants’ above-ground biomass. Kruskal-Wallis test 
was used to compare the medians of plant productivity on particular subsoil treatments. Wilcoxon test 
was used for pairwise comparison * - p < 0.05, *** - p < 0.001, **** - p < 0.0001, ns – difference not 
significant. n = 140 
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Section 1: Both Mines’ Subsoil Overall Difference; Principal Component Analysis 

The two mines’ data sets of predictors characterizing physicochemical properties were 

compared and the analysis presented strong evidence that the two subsoils were overall 

significantly different: Pseudo F = 322.34; p < 0.001 (Figure 2.10). Datapoints representing 

pots containing subsoil with biosolids as the only amendment clustered together separately 

from all other treatments showing that they distinguished from other treatments. The same 

with pots containing subsoil with a mixture of amendments. Datapoints representing three 

other treatments clustered altogether showing that there was similarity between them (Figure 

2.11). 

 

Figure 2.11 Principal Component Analysis of two mines’ subsoil treatments: 100%sub – unamended 
subsoil, 75%sub25%bios – subsoil amended by 25% of biosolids alone, 75%sub25%wchip - Subsoil 
amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended by 5% of biochar alone, 
mixture - subsoil amended by a mixture of amendments. hvc – Teck Highland Valley Copper, new 
afton – New Afton New Gold. 

Figure 2.10 Principal Component Analysis of two mines’ subsoils in terms of 21 predictors: pH, 
EC, SOM, total N and C content, mineralizable N content, NH4

+ and NO3
- contents, as well as the 

content of 13 basic elements. hvc – Teck Highland Valley Copper, new afton – New Afton New Gold. 
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Physicochemical Properties of Mines’ Subsoils When Unamended and Amended 
 

Section 2: pH 

New Afton New Gold subsoil pH was significantly higher than Teck Highland Valley 

Copper both in the initial and the final stages (Figure 2.12 left). Within each mine separately 

there was no significant difference between the initial and the final pH either in the case of 

New Afton New Gold or in the case of Teck Highland  Valley Copper (Figure 2.12 right). 

In the case of both mines the final pHs were statistically not equal (Figure 2.13). In 

both cases, the biosolids-containing treatments had the lowest pH. In both cases as well, pHs 

seemed to drop throughout the experiment (Figure 2.13). 

Figure 2.12 Two mines’ subsoil pH comparison in the initial and final stages of the experiment (left), 
comparison of the subsoil pH in the initial and final stages of the experiment within each mine (right). 
HVC – Teck Highland Valley Copper, NA – New Afton New Gold. Horizontal line indicates the 
median. Kruskal-Wallis test was used to compare the medians. initial n= 5, final n= 25 

Figure 2.13 New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil treatments 
pH comparison in the initial and final stages of the experiment. Subsoil treatments: 100%sub – 
unamended subsoil, 75%sub25%bios – subsoil amended by 25% of biosolids alone, 75%sub25%wchip 
- subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended by 5% of biochar 
alone, mixture - subsoil amended by a mixture of amendments. Horizontal line indicates the median. 
Kruskal-Wallis test was used to compare the medians. initial n= 1, final n= 5 
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Section 2: Electroconductivity (EC) 

New Afton New Gold subsoil electroconductivity was significantly higher than Teck 

Highland Valley Copper both in the initial and the final stages (Figure 2.14 left). Within each 

mine separately there was no significant difference between the initial and final 

electroconductivities either in the case of NA or in the case of HVC (Figure 2.14 right). 

In the case of both mines the final pHs were statistically not equal (Figure 2.15). In the 

case of Teck Highland Valley Copper subsoil treatments, the addition of biosolids or mixture 

seemed to increase the EC (Figure 2.15 right). Such a pattern was not visible though in the 

case of New Afton New Gold subsoil treatments (Figure 2.15 left). 

Figure 2.14 Two mines’ subsoil electroconductivities comparison in the initial and final stages of the 
experiment (left), comparison of the electroconductivities in the initial and final stages of the 
experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New Gold. 
Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. 
 initial n= 5, final n= 25 

Figure 2.15 New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil treatments 
electroconductivities comparison in the initial and final stages of the experiment. Subsoil treatments: 
100%sub – unamended subsoil, 75%sub25%bios – subsoil amended by 25% of biosolids alone, 
75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended 
by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 1, final n= 5 
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Section 2: Soil Organic Matter (SOM) Content 

New Afton New Gold subsoil SOM content was significantly larger than Teck 

Highland Valley Copper but in the case of the final stage only (Figure 2.16 left). Within each 

mine separately there was no significant difference between the initial and the final SOM 

content either in the case of NA or in the case of HVC  (Figure 2.16 right). 

In the case of both mines the final SOM contents were statistically not equal. In both 

cases, the biosolids-containing treatments had the largest SOM contents (Figure 2.17). 

 

Figure 2.16 Two mines’ subsoil soil organic matter content comparison in the initial and final stages 
of the experiment (left), comparison of the soil organic matter content in the initial and final stages of 
the experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New 
Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. 
Initial n= 5, final n= 25 

Figure 2.17 New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil treatments 
soil organic matter contents comparison in the initial and final stages of the experiment. Subsoil 
treatments: 100%sub – unamended subsoil, 75%sub25%bios – subsoil amended by 25% of biosolids 
alone, 75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil 
amended by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal 
line indicates the median. Kruskal-Wallis test was used to compare the medians.  
initial n= 1, final n= 5 
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Section 2: Sodium (Na) Content 

New Afton New Gold subsoil Na content was significantly larger than Teck Highland 

Valley Copper both in the initial and final stages (Figure 2.18 left). Within each mine 

separately there was a significant difference between the initial and final Na contents both in 

the case of NA and in the case of HVC (Figure 2.18 right). 

Final Na contents were statistically not equal in the case of NA subsoil treatments only 

(Figure 2.19 left). In the case of both mines, nearly each subsoil treatment contained more 

sodium in the initial than in the final stage of the experiment (Figure 2.19). 

 

Figure 2.18 Two mines’ subsoil sodium content comparison in the initial and final stages of the 
experiment (left), comparison of the sodium content in the initial and final stages of the experiment 
within each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New Gold. 
Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. initial 
n= 5, final n= 25 

Figure 2.19 New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil treatments 
sodium contents comparison in the initial and final stages of the experiment. Subsoil treatments: 
100%sub – unamended subsoil, 75%sub25%bios – subsoil amended by 25% of biosolids alone, 
75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended 
by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 1, final n= 5 
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Quantitative and Qualitative Nitrogen Content Analyses 
 

Section 3: Total Nitrogen (N) Content 

New Afton New Gold subsoil total nitrogen content was significantly larger than Teck 

Highland Valley Copper one both in the initial and final stages (Figure 2.20). Within each 

mine separately there was no significant difference between the initial and the final total 

nitrogen content either in the case of New Afton New Gold or in the case of Teck Highland 

Valley Copper (Figure 2.21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 Two mines’ subsoil total nitrogen content comparison in the initial and final stages of the 
experiment. HVC – Teck Highland Valley Copper, NA – New Afton New Gold. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 25, final n= 75 

Figure 2.21 Comparison of the total nitrogen content in the initial and final stages of the experiment 
within each mine. HVC – Teck Highland Valley Copper, NA – New Afton New Gold. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 25, final n= 75 
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In the case of New Afton New Gold and the case of Teck Highland Valley Copper 

subsoil treatments, the initial and final total N contents were statistically not equal (Figures 

2.22, 2.23). Both, in the case of New Afton New Gold and the case of Teck Highland Valley 

Copper subsoil treatments initially there was a statistical difference between the 

“95%sub5%bios” treatment and the “mixture” treatment. The difference persisted until the 

end of the experiment. Also, these two treatments differed statistically from all other 

treatments. This had place in the case of both mines’ subsoil treatments. Treatments 

“75%sub25%wchip”, “95%sub5%bchar” and “100%sub” in the case of both mines did not 

differ statistically either in the initial or final stage (Figures 2.22, 2.23). 

 

 

Figure 2.22 New Afton New Gold subsoil treatments total nitrogen contents comparison in the initial 
and final stages of the experiment. Subsoil treatments: 100%sub – unamended subsoil, 
75%sub25%bios – subsoil amended by 25% of biosolids alone, 75%sub25%wchip - subsoil amended 
by 25% of woodchips alone, 95%sub5%bchar – subsoil amended by 5% of biochar alone, mixture - 
subsoil amended by a mixture of amendments. Horizontal line indicates the median. Kruskal-Wallis 
test was used to compare the medians. Wilcoxon test was used for pairwise comparison ** - p < 0.01, 
*** - p < 0.001, **** - p < 0.0001, ns – difference not significant. initial n= 5, final n= 15 
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In the case of New Afton New Gold and the case of Teck Highland Valley Copper 

subsoil treatments only the “mixture” treatment was not significantly different at the end of 

the experiment from the reference of the undisturbed topsoil in terms of the total nitrogen 

content (Figures 2.24, 2.25). All other treatments differed significantly from the reference. In 

the case of “75%sub25%wchip”, “95%sub5%bchar”, and “100%sub” treatments the total 

nitrogen contents were significantly lower than the reference’s total nitrogen content both in 

the initial and the final stages of the experiment. “75%sub25%bios” treatment’s total nitrogen 

content was significantly larger than the reference’s one both in the initial and the final stages 

of the experiment (Figures 2.24, 2.25). 

Figure 2.23 Teck Highland Valley Copper subsoil treatments total nitrogen contents comparison in 
the initial and final stages of the experiment. Subsoil treatments: 100%sub – unamended subsoil, 
75%sub25%bios – subsoil amended by 25% of biosolids alone, 75%sub25%wchip - subsoil amended 
by 25% of woodchips alone, 95%sub5%bchar – subsoil amended by 5% of biochar alone, mixture - 
subsoil amended by a mixture of amendments. Horizontal line indicates the median. Kruskal-Wallis 
test was used to compare the medians. Wilcoxon test was used for pairwise comparison ** - p < 0.01, 
**** - p < 0.0001, NS. – difference not significant.  initial n= 5, final n= 15 
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Figure 2.24 New Afton New Gold subsoil treatments total nitrogen contents comparison in the initial 
and final stages of the experiment to the reference of undisturbed topsoil. Subsoil treatments: 
100%sub – unamended subsoil, 75%sub25%bios – subsoil amended by 25% of biosolids alone, 
75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil 
amended by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal 
line indicates the median. Kruskal-Wallis test was used to compare the medians. Wilcoxon test was 
used for pairwise comparison * - p < 0.05, ** - p < 0.01, *** - p < 0.001, ns – difference not 
significant.  initial n= 5, final n= 15, undisturbed n=5 

Figure 2.25 Teck Highland Valley Copper subsoil treatments total nitrogen contents comparison in 
the initial and final stages of the experiment to the reference of undisturbed topsoil. Subsoil 
treatments: 100%sub – unamended subsoil, 75%sub25%bios – subsoil amended by 25% of biosolids 
alone, 75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil 
amended by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal 
line indicates the median. Kruskal-Wallis test was used to compare the medians. Wilcoxon test was 
used for pairwise comparison ** - p < 0.01, *** - p < 0.001, ns, NS. – difference not significant.  
initial n= 5, final n= 15, undisturbed n=5 
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Section 3: Mineralizable Nitrogen Content 

NA subsoil mineralizable nitrogen content did not differ statistically from HVC 

subsoil mineralizable nitrogen content in the initial stage of experiment. At the end of 

experiment the difference became significant (Figure 2.26 left). Within each mine separately 

there was no significant difference between the initial and final mineralizable N contents 

either in the case of NA or in the case of HVC (Figure 2.26 right). 

In the case of NA and the case of HVC subsoil treatments the final mineralizable N 

contents were statistically not equal (Figures 2.27). In both cases, biosolids-containing 

treatments had the largest mineralizable N contents. Mineralizable N contents seemed to drop 

during the experiment (Figures 2.27). 

Figure 2.26 Two mines’ subsoil mineralizable nitrogen content comparison in the initial and final 
stages of the experiment (left), comparison of the mineralizable nitrogen content in the initial and final 
stages of the experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – New 
Afton New Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the 
medians. initial n= 5, final n= 25 

Figure 2.27 New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil treatments 
mineralizable nitrogen contents comparison in the initial and final stages of the experiment. Subsoil 
treatments: 100%sub – unamended subsoil, 75%sub25%bios – subsoil amended by 25% of biosolids 
alone, 75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil 
amended by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal 
line indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 1, final n= 5 
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Section 3: Available Nitrogen Content – Ammonium Cation (NH4
+) 

New Afton New Gold subsoil NH4
+ content differed statistically from Teck Highland 

Valley Copper subsoil but only at the final stage (Figure 2.28 left). Within each mine 

separately there was no significant difference between the initial and final NH4
+ contents 

either in the case of NA or in the case of HVC (Figure 2.28 right). 

In the case of NA and the case of HVC subsoil treatments the final NH4
+ contents 

were statistically not equal (Figures 2.28). In both cases, biosolids-containing treatments had 

the largest NH4
+ contents. NH4

+ contents seemed to drop throughout the experiment (Figures 

2.29). 

Figure 2.28 Two mines’ subsoil NH4
+ content comparison in the initial and final stages of the experiment 

(left), comparison of the NH4
+content in the initial and final stages of the experiment within each mine 

(right). HVC – Teck Highland Valley Copper, NA – New Afton New Gold. Horizontal line indicates the 
median. Kruskal-Wallis test was used to compare the medians. initial n= 5, final n= 25 

Figure 2.29 New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil treatments 
NH4

+contents comparison in the initial and final stages of the experiment. Subsoil treatments: 100%sub 
– unamended subsoil, 75%sub25%bios – subsoil amended by 25% of biosolids alone, 
75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended 
by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 1, final n= 5 
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Section 3: Available Nitrogen Content – Nitrate Anion (NO3
-) 

NA subsoil NO3
- content did not differ significantly from HVC NO3

- content either in 

the initial or in the final stages (Figure 2.30 left). Within each mine separately there was no 

significant difference between the initial and final NO3
- contents either in the case of NA or in 

the case of HVC (Figure 2.30 right). 

In the case of NA and the case of HVC subsoil treatments the final NH4
+ contents 

were statistically not equal (Figures 2.31). In both cases, biosolids-containing treatments had 

the largest NO3
- contents. NO3

- contents seemed to increase throughout the experiment 

(Figures 2.31). 

Figure 2.30 Two mines’ subsoil NO3
- content comparison in the initial and final stages of the 

experiment (left), comparison of the NO3
- content in the initial and final stages of the experiment within 

each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New Gold. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 5, final n= 25 

Figure 2.31 New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil treatments 
NO3

-contents comparison in the initial and final stages of the experiment. Subsoil treatments: 100%sub 
– unamended subsoil, 75%sub25%bios – subsoil amended by 25% of biosolids alone, 
75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended 
by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 1, final n= 5 
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Section 3: Available Nitrogen Content – NH4
+, NO3

-; Sum and Ratio 

There was no significant difference between the sums of NH4
+ and NO3

- in the initial and 

final stages of the experiment at α= 0.05. However, at α= 0.1 the difference was significant 

(Figure 2.32). 

There was a significant difference between the ratios of NH4
+ to NO3

- in the initial and 

final stages of the experiment at α= 0.05 (Figure 2.33). 

 

 

Figure 2.32 Comparison of the sum of NH4
+ and NO3

- in the initial and final stages of the 
experiment. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the 
medians. initial n= 4, final n= 20 

Figure 2.33 Comparison of the ratio of NH4
+ to NO3

- in the initial and final stages of the experiment. 
Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 4, 
final n= 20 
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DISCUSSION 
 

Results demonstrated that New Afton New Gold and Teck Highland Valley Copper 

subsoils differed strongly in terms of many physicochemical properties. Differences in 

physicochemical properties resulted in a broad variability in plant responses such as mortality 

and above-ground biomass productivity on these two mines’ subsoil combinations. The 

influence of individual soil amendments on subsoil properties also differed strongly.  

The nitrogen analyses confirmed that this element's presence and transformation have great 

importance on the reclaimed subsoil metamorphosis and vegetation response.  

Mortality, Productivity, Overall Subsoils’ Difference 
 

Mortality 
 

Results showed that the more biosolids added, the higher mortality. Biosolids-free 

subsoil combinations resulted in significantly lower mortality rates (See Figures 2.2, 2.3). 

Biosolids contain large amounts of organic but also inorganic, readily available nitrogen 

(Sullivan et al., 2015; Brown and Chaney, 2016). Nitrogen is essential to plant development, 

however, overfertilization might be harmful to vegetation by increasing tissue concentration 

to toxicity levels (Elhanafi et al., 2019). Additionally, overfertilization enhances negative 

interactions between soil microbial species leading to decrease on biodiversity and 

elimination of some microbial functions (Ratzke  et al., 2020). Thorne et al. (1998) found that 

overdosing of nitrogen-rich organic amendments can be harmful to arbuscular mycorrhizal 

fungi. Subsoil, due to low organic matter content, has low potential to bond nutrients such as 

nitrogen compounds causing vegetation being exposed to high concentration of inorganic 

nitrogen when large amounts of organic amendments are applied. Castillejo and Castello 

(2010) pointed out the risk of over-fertilization as an important issue in applying organic 

amendments to degraded quarry soils. Fenn et al. (1998) reported that observed forests 

experienced increased mortality and decline in productivity as a result of excessive nitrogen 

input.  

The mortality of the plants growing on New Afton New Gold subsoil treatments was 

significantly higher than plants growing on Teck Highland Valley Copper subsoil treatments 

(See Figure 2.1). In terms of mortality rate all applied species except prairie junegrass 

performed significantly worse on New Afton New Gold than on Teck Highland Valley 

Copper subsoil treatments (See Figure 2.4). This difference might be associated to the large 
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difference in physicochemical properties of these two mine subsoils. New Afton New Gold 

subsoil might be named saline and sodic due to high concentrations of salts and sodium, while 

Teck Highland Valley Copper subsoil is not burdened with this problem. Hanay et al. (2004) 

demonstrated that vegetation on degraded soils might suffer from high soluble salts and 

exchangeable sodium content. They proposed gypsum application coupled with organic soil 

amendments as possible remedy. 

Plant mortality in experiment 1 was increased by the infestation of the plant pest 

fungus gnat. The larvae of this insect feed on dead matter, fungi thallus, but also on tiny living 

plant roots (Cransaw and Cloyd, 2021). Indeed, the insect attacked in particular these plants 

which were growing on subsoils amended by biosolids solely or by a mixture, finding in these 

treatments the best food base. It was noticeable that the more biosolids, the greater the 

infestation. Additionally, the insects selected those pots in which field locoweed seedlings 

germinated. Attacked young plants of this species got destroyed quickly after germination 

causing larger mortality of this species seedlings (See Figure 2.5). Graminoids seemed to be 

not selected by insects that much. Especially prairie junegrass was avoided by fungus gnats 

what resulted in significantly larger survivorship of this species individuals growing on New 

Afton New Gold subsoil treatments (See Figure 2.5). Combinations containing biosolids (lots 

of SOM and nutrient), field locoweed (preferred plant), and New Afton New Gold subsoil 

were visibly attacked more than the same combinations but containing Teck Highland Valley 

Copper subsoil. This is another indicator that subsoils from those two mines differ. The insect 

control measures gave an unsatisfactory and short-lived effect. 

Productivity 
 

The dry above-ground biomass productivity achieved by all plants growing on Teck 

Highland Valley Copper subsoil combinations was over three times larger than the one 

achieved by all plants growing on New Afton New Gold subsoil combinations (See Figure 

2.7). That demonstrated that physicochemical properties of New Afton New Gold subsoil 

posed a hindrance for vegetation striving to develop. Plants growing on Teck Highland Valley 

Copper subsoil combinations did not have to overcome such obstacles to perform. That 

explains why the above-ground biomass productivity of plants growing on Teck Highland 

Valley Copper subsoil combinations was significantly larger (See Figure 2.6). 

It is striking that, despite the highest mortality rates, biosolids-containing subsoil 

treatments from both mines were more productive than biosolid-free subsoil treatments. 



53 
 

Biosolids contain large amounts of nutrients in forms ready to take up (Sullivan et al., 2015). 

Thus, plants growing on subsoils with addition of biosolids reacted immediately (Larney and 

Angers, 2012). Applied biosolids were provided straight after production, not composted prior 

to delivery and application. This amendment at the moment of application had an uncured 

form. Despite the fact that the most of total nitrogen is still in organic form, biosolids in un-

composted form contain and release also available nitrogen giving an outburst of fertility 

(Senesi and Loffredo, 1999; Paschke et al. 2005). Results showed that within a short term of 

the experiment plants response to organic soil amendments were significant only to this 

treatments which obtained biosolids. Larney et al. (2000) demonstrated that an addition of 

organic amendment (manure) rich with available nitrogen and phosphorus to reclaimed soil 

increased the yield much more than the additions of topsoil or fertilizer. The single addition of 

organic amendment kept bringing better results over topsoil and fertilizer in terms of the 

productivity even 16 years after first application (Larney et al. 2009). Shrestha et al. (2009) 

demonstrated that after 5 years from application nutrient-rich cow manure resulted with 

significantly larger above-ground biomass productivity on reclaimed coal mine sites than 

nutrient-poor oat straw. This study presented similar results as an addition of the nutrient-rich 

biosolids resulted with significantly larger above-ground biomass productivity than nutrient-

poor woodchips and biochar (See Figures 2.8, 2.9).  

In the case of both Teck Highland Valley Copper and New Afton New Gold subsoils 

the treatment amended by a mixture of soil amendments resulted in significantly larger above-

ground biomass productivity than all other treatments (See Figures 2.8, 2.9). The “mixture” 

treatment contained biosolids but in lower concentration (10% v/v) than the 

“75%sub25%bios” treatment (25% v/v). Albornoz (2016) states that high nitrogen 

fertilization rates are detrimental for crop yield. It seems that the addition of biosolids in a 

dose of 10% v/v, as in the “mixture” treatment, did not cause the overfertilization problem 

unlike 25% v/v of “75%sub25%bios” treatment. Additionally, other organic amendments 

acted in protective way. The addition of woodchips and biochar blended into the mixture 

bettered the soil physicochemical properties facilitating the plant development. Both 

woodchips and biochar have potential for exchangeable binding with mineral nutrients 

slowing down its availability and eventual release. The slower release of nutrients such as 

nitrogen is important in establishing viable and resilient plant communities on reclaimed 

disturbed sites (Claassen and Carey, 2007). de Varennes and al. (2010) states that 

combinations of amendments may work better than each applied singly. In a blend more 
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reluctant to decomposition amendments may provide nutrients and carbon slowly but long 

lasting, while readily decomposable amendments can act intensively but for shorter time 

initiating the nutrients cycling (Larney and Angers, 2012). 

Overall Difference of Both Mines’ Subsoil Physicochemical Properties 
 

Principal Component Analysis confirmed clearly that in terms of physicochemical 

properties the subsoils from Teck Highland Valley Copper and New Afton New Gold mines 

differ strongly (See Figure 2.10). 

Datapoints representing “75%sub25%bios” as well as the “mixture” treatments tended 

to cluster together and separately from other treatments which mean that they possessed their 

specific features different from other treatments. All biosolid-free treatments tended to cluster 

together which means that an addition of 5% biochar or 25% woodchips did not change 

enough to cause a distinct difference in terms of physicochemical properties (See Figure 

2.11). 

Physicochemical Properties of Mines’ Subsoils When Unamended and Amended 
 

pH 
 

Both mine subsoils are alkaline. New Afton New Gold unamended subsoil pH (9.3) 

was much higher than Teck Highland Valley Copper’s one (8.50). The difference between 

both mines’ subsoil treatments in terms of pH was statistically significant (See Figure 2.12). 

Majority of plants perform the best in neutral or slightly acidic pH. That results from nutrients 

solubility which is optimal in such conditions (Rodriguez, 2020). Elevated pH, especially in 

the case of New Afton New Gold subsoil, could be a reason of lower above-ground biomass 

productivity and elevated plant mortality rate. Brown and Chaney (2016) point out the 

substrate pH as critical variable for metal uptake, availability, and toxicity. While most of 

heavy metal solubility is limited by high pH, molybdenum acts conversely. Solubility of this 

element increases along with pH increase (Kaiser et al. 2005; Brown and Chaney, 2016). The 

Teck Highland Valley Copper subsoil molybdenum content exceeds the CCME guidelines for 

agricultural, residential and parkland use (CCME, 2021). However, the Teck Highland Valley 

Copper subsoil’s pH was closer to neutral what might result in lesser mobility of 

molybdenum. 
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Throughout the experiment pH seemed to drop overall. However, the change was not 

statistically significant either in the case of New Afton New Gold or Teck Highland Valley 

Copper subsoils. It seems that 16 weeks of the experiment duration may be a too short period 

to allow for significant pH change (See Figure 2.12). 

Soil amendment addition might influence the substrate pH. The extent of pH change 

mainly depends on the applied amendment features (Larney and Angers, 2012). That applies 

to organic amendments as well. Lower pH was adopted by these mine subsoil treatments 

which contained biosolids. That is because the innate pH of this material is around 8.0 - 8.5. 

Biosolids contain lots of NH4
+. The acidifying reaction occurring is NH4

+ + H2O ⇌ NH3 + 

H3O+. The pH of biosolids-containing treatments also dropped the strongest over the time of 

the experiment (See Figure 2.13). That is attributed to the oxidation of organic N and S 

compounds (Sullivan et al. 2015). At the same time, the pH of all other subsoil treatments 

which did not contain biosolids remained high or dropped only slightly. 

It is worth adding that the pH of New Afton New Gold undisturbed topsoil was just 

slightly above 7.0. That indicates that local ecosystems naturally tend to neutral pH. In the 

case of Teck Highland Valley Copper undisturbed topsoil, the pH was 5.5. That indicates that 

local flora naturally tends to decrease the pH to acidic levels. 

Electroconductivity (EC) 
 

Soil electroconductivity strongly depends on the soluble salts concentration in the soil 

water solution. In the soil water solution soluble salts are present in a form of inorganic ions 

(McLachlan et al., 2004). Miller at al. (2017) specify that soluble cations and anions Na, K, 

Ca, Mg, SO4-S, Cl are responsible for EC readings. Soils suffering from salinity demonstrate 

high electroconductivity readings.  

While New Afton New Gold and Teck Highland Valley Copper undisturbed topsoils 

seemed not to differ much in terms of electroconductivity, the ECs of those two mines’ 

subsoils differed hugely (See Figure 2.14). New Afton New Gold subsoil treatments EC 

median was within the interval 2.5 – 3.0 mS/m, while Teck Highland Valley Copper one’s 

placed within the interval 0.3 – 0.6 mS/m. That is a very large difference indicating that New 

Afton New Gold subsoil was burdened with a salinity problem. Electroconductivity indicates 

the level of ions concentration. The higher EC reading the more ions in the soil water 

solution. This indicator though does not specify which ions are present in the solution. Some 
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ions are desirable being nutrients for plants and microorganisms, while other ions are toxic or 

act somehow negatively. New Afton New Gold subsoil must contain a significant amount of 

ions which increased strongly the EC, concurrently suppressing the plants' development. 

The highest EC readings of Teck Highland Valley Copper subsoil treatments were 

lower than the lowest readings of New Afton New Gold subsoil treatments (See Figure 2.15). 

That strongly suggests that New Afton New Gold subsoil treatments contained lots of 

adversely-acting ions, while Teck Highland Valley Copper subsoil either did not possess 

those ions at all or they were present but at the inconspicuous levels. Soil organic 

amendments may alleviate the salinity problem. Zeynep (2020) successfully used 

vermicompost to reclaim sodium affected soil. Miller (2017) proposed woodchips as an 

amendment lowering excessive EC together with associated with it high pH.  

It may be noticed as well that throughout the experiment, the electroconductivity 

dropped (See Figure 2.14). However, the drop was not large enough to cause the difference 

between the initial and the final electroconductivity readings to be statistically significant. 

Finally, all that means that the change of reclaimed subsoil in terms of EC is relatively a slow 

process.  

Soil Organic Matter (SOM) 
 

Soil organic matter plays a pivotal role in soil (Brown and Chaney, 2016). Content of 

this soil fraction decides about such soil features as productivity, nutrient preservation and 

cycling, water holding capacity, soil microbial activity and many others (Larney and Angers, 

2012). Because SOM plays such a great role, mine reclamation efforts need to concentrate on 

rebuilding this fraction in the top horizon. Organic amendments once again seem to be best 

tool to achieve this goal. Larney and Angers (2012) state that on degraded substrates an one-

off large applications of organic amendments can boost reclamation and lead to sustaining net 

primary productivity. Gardner et al. (2010) demonstrate that at reclaimed copper mine tailings 

sites in British Columbia an application of biosolids was more efficient in terms of restoring 

soils with its functions and productivity than the use of traditional fertilizers. Reid and Naeth 

(2005) report that an application of organic amendments such as biosolids or composted paper 

mill sludge gave better results than fertilizers when attending to establish vegetation cover on 

tundra kimberlite mine tailings in Northwest Territories, Canada. Winter Sydnor and Redente 

(2002) reported that soil amelioration with organic matter resulted in significant increase of 

above-ground biomass in reclamation of a high elevation gold mine in Colorado. 
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Fierro et al. (1999) applied paper sludge supplemented with mineral nitrogen and 

phosphorus. In their reclamation attempt on an abandoned sandpit they adopted surrounding 

non-degraded land as a reference. They reported that in the second season such measures as 

soil carbon and nitrogen neared the natural system levels. In the case of both New Afton New 

Gold and Teck Highland Valley Copper, the undisturbed topsoil organic matter content 

measured for this study was near to 4%. Unamended New Afton New Gold subsoil SOM was 

3%, constituted though only 3/4 of its topsoil’s, while in the case of the Teck Highland Valley 

Copper unamended subsoil SOM was 1%, constituted therefore not more than 1/4 of its 

topsoil reference. After amendments addition to mine subsoils the amount of SOM increased, 

whereof the “mixture” treatment SOM departed the least from its reference of undisturbed 

topsoil in the case of both mines. 

Organic matter provided by organic amendments may have many various forms. 

Biosolids provide predigested organic matter, well shredded, easy in terms of cation 

exchange, and prone to further decomposition (Senesi and Loffredo, 1999; Sullivan et al., 

2015), while woodchips are built from coarse, not predigested, and difficult for decomposition 

pieces (Senesi and Loffredo, 1999). Biochar, in turn, is formed of organic matter deeply 

transformed by high temperature and pressure. Such processes transform organic matter into a 

material that is reluctant for decomposition (Taylor P, 2010; Canadian AgriChar, 2020). 

75%sub25%bios” and “mixture” treatments were the richest in terms of soil organic 

matter content in the case of both mines’ subsoils (Figures 2.17). Concurrently, the same two 

treatments showed up as the most productive. The treatment “75%sub25%wchip” contained 

fair amount of organic matter as well. However, this treatment did not result with significant 

above-ground biomass productivity. The explanation of this discrepancy is that woodchips are 

mainly built from cellulose and lignin. Both are hard for decomposition, especially lignin 

(Senesi and Loffredo, 1999; Datta et al., 2017). The “mixture” treatment contains both easy 

for decomposition and recalcitrant organic matter. This treatment brought the best results in 

the case of both mines’ subsoils. Many researchers suggest blending organic amendments in 

order to achieve better and longer lasting results (Claassen and Carey, 2007; de Varennes et 

al. 2010; Larney and Angers, 2012). Cheng (2008) concludes that saw dust gives good results, 

but when incorporated with suitable amounts of clay, ammonium nitrate and organic 

amendments. 
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Basic Elements 
 

Aluminum is one of the most prevailing elements in the Earth's lithosphere (Weil and 

Brady, 2017). However, it is not important in either plant or animal nutrition. Moreover, large 

concentrations may cause negative consequences. Its activity increases though only in a low 

pH environment (Haynes and Mokolobate, 2001). In a higher pH environment aluminum is 

harmless. New Afton New Gold subsoil, as well as topsoil, contained significantly more 

aluminum than Teck Highland Valley Copper (See Figure A.4). Nonetheless, regarding the 

high pH, such concentrations of aluminum should not have any influence on biomass 

productivity or plant mortality. 

In the case of both mines’ subsoils, boron content strongly exceeded the CCME 

guidelines for agricultural land use (CCME, 2021). Boron is a micronutrient for plants. That 

means that low concentrations of this element are necessary for proper plant development. 

Biosolids is a good source of boron (Sullivan et al., 2015). However, in larger concentration 

boron may act negatively on plant development. New Afton New Gold subsoil had 

significantly larger boron content (See Figure A.5) which may be one of the causes of lower 

New Afton New Gold subsoil biomass productivity. The boron concentration in NA subsoil 

and its influence requires more studies. 

Calcium is one of the most important nutrients and its roles for plants and animal life 

is countless (Weil and Brady, 2017). Deficiency of this element may cause improper plant 

tissue development, cellular membranes deterioration, necroses. Calcium  is also responsible 

for proper soil structure formation. Additionally, Ca has the pH elevation ability (Troeh and 

Thompson, 2005). The larger concentration of calcium in the New Afton New Gold subsoil 

(See Figure A.5), may constitute one of the explanations of higher pH and EC. However, both 

mines’ subsoil calcium concentrations seemed to be rather in a norm, and not requiring any 

additional supplementation. 

In the case of both mines’ subsoils, copper content exceeded the CCME guidelines for 

all types of land use (CCME, 2021). Additionally, biosolids provides an additional portion of 

Cu (Sullivan et al., 2015). Teck Highland Valley Copper subsoil excess of copper content was 

outstanding. Copper is a heavy metal but also a microelement necessary in plant metabolism. 

Cu is a cofactor in many enzymes, however in high concentrations might be toxic especially 

to microorganisms (Trevors and Cotter, 1990). Although the HVC subsoil copper content was 

significantly larger than the NA subsoil’s content (See Figure A.5), and exceeded remarkably 
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the CCME guidelines, it all seemed to not have any negative influence on plants growth and 

health. Alkalinity of the substrate poses a hindrance for plant Cu uptake (Rodriguez, 2020). 

High NA subsoil pH could lead to Cu deficiency despite the fact that the NA subsoil had 

larger Cu content than needed. The copper concentration in NA as well as in HVC subsoils 

and its influence requires more studies.  

Iron plays many important roles in plant physiology (Imsande, 2002). It is worth 

emphasizing that iron is an intrinsic part of the nitrogenase enzyme. The concentration of iron 

seemed to be sufficient in the case of both mines’ subsoils and having no significant influence 

on biomass productivity. However, alkalinity of the substrate poses a hindrance for plant Fe 

uptake (Rodriguez, 2020). High NA subsoil pH could lead to Fe deficiency despite the fact 

that the NA subsoil had large Fe content. The iron uptake on the NA subsoil requires more 

studies. 

Potassium is one of the most important plant macronutrients (Weil and Brady, 2017). 

Canadian AgriChar (2020) declares that their biochar is a good source of K. The 

concentration of potassium in the case of the New Afton New Gold unamended subsoil was 

low in comparison to New Afton New Gold undisturbed topsoil. Also, there was a strongly 

significant difference between the NA subsoil and HVC subsoil in terms of potassium content 

(See Figure A.6). NA subsoil seemed to be lacking with potassium more than the HVC 

subsoil, which in turn could be one of the reasons why the NA subsoil is less productive. 

Annacis biosolids were also a good provider with K. This amendment contains around 1,100 

mg/kg of an available K in the dried weight. 

Magnesium is another important plant nutrient (Shaul, 2002). It plays a crucial role in 

many processes, for example, photosynthesis by co-building chlorophyll (Madigan et al., 

2012). Magnesium concentration was significantly larger in the case of the New Afton New 

Gold subsoil (See Figure A.6). However, a lower concentration of magnesium in the case of 

Teck Highland Valley Copper subsoil seemed to not act adversely on plant development.  

Manganese is one of the micronutrients. It plays a pivotal role in the reactive centers 

of many enzymes and chlorophyll (Rodriguez, 2020). Plants may suffer either from 

deficiency or excess on Mn (Campbell and Nable, 1988). New Afton New Gold subsoil 

contained significantly larger amounts of manganese (See Figure A.7). However, alkalinity of 

the substrate poses a hindrance for plant Mn uptake (Rodriguez, 2020). High NA subsoil pH 



60 
 

could lead to Mn deficiency despite the fact that the NA subsoil had sufficient Mn content. 

The influence of Mn in NA subsoil requires more research. 

Molybdenum is a heavy metal. Its excess may cause negative consequences on plant 

development as well as on their consumers. At the same time, molybdenum is also a 

micronutrient playing a role in many enzymes including nitrogenase (Kaiser et al. 2005). 

Sullivan et al. (2015) states that biosolids is a good source of this element. Teck Highland 

Valley Copper subsoil contained significantly more molybdenum than New Afton New Gold 

subsoil (See Figure A.7). Moreover, the HVC subsoil molybdenum concentration exceeded 

CCME guidelines for agricultural and parkland land use, but did not exceed for industrial and 

commercial uses (CCME, 2021). The above indicates that HVC subsoil molybdenum 

concentration was high but bearable for vegetation. 

Sodium is sometimes accounted as a micronutrient. It plays a role in osmotic 

regulation in tissues because sodium dissociates in water to cations which have a positive 

charge. Accordingly, when placed on one side of a cellular membrane, this creates a charge 

potential (Subbarao et al. 2003). Besides its certain roles in living organisms and its non-

toxicity, sodium may act adversely on plants and soil-inhabiting organisms. When the 

concentration of sodium is elevated it leads to the sodic soil problem (Hanay et al., 2004, 

Clancy, n.d; FAO et al., 2020). First of all, sodium is an antagonistic cation to calcium cation. 

Calcium plays an important role in the formation of proper soil structure. While sodium 

overcomes calcium, the soil becomes compacted, difficult for water, and oxygen penetration 

which eventually acts negatively on plants’ root systems (Hanay et al., 2004; Clancy, n.d; 

FAO et al., 2020). New Afton New Gold subsoil contained several times more sodium than 

Teck Highland Valley Copper subsoil (See Figures 2.18, 2.19), and indeed during the 

experiment it was observed that New Afton New Gold subsoil combinations in pots did 

compacted and did not drain water properly. This element’s cations are also highly soluble in 

water and it is expected that those cations were standing behind the high electroconductivity 

readings of all NA subsoil combinations. Sodium cations tend to increase pH and this may be 

also one of the explanations for the NA subsoil elevated pH. When comparing two mines’ 

subsoil departures from its references in terms of sodium content it may be noticed that NA 

undisturbed topsoil had a pretty low content of sodium in comparison to NA subsoil, while 

HVC topsoil sodium content was similar to the subsoil’s one. Sodium content is one of the 

largest differences between NA and HVC subsoils. 
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Phosphorus is one of six biogenic elements. On the molecular level, it consists part of 

many crucial molecules including DNA or ATP (Madigan et al., 2012). Often soils require 

supplementation with this element. Sullivan et al. (2015) states that biosolids is a good source 

of this plant and microorganism essential nutrient. Annacis biosolids contain around 1,900 

mg/kg of an available P in the dried weight. New Afton New Gold unamended subsoil 

contained around three times more phosphorus than the unamended Teck Highland Valley 

Copper subsoil (See Figure A.7). Limited availability of phosphorus, alike in the nitrogen 

case, may suppress the vegetation development. However, an addition of biosolids applied 

with rates adjusted to the nitrogen levels usually cover the phosphorus needs as well (Sullivan 

et al., 2015). Similar to nitrogen, treatments amended by 25% of biosolids could obtain even 

too large portion of this element at once which might act rather adversely than positively. 

Sulfur is acknowledged as the last biogenic element. This element constitutes part of 

many vitamins or proteins, therefore, it co-builds enzymes as well (Madigan et al., 2012). 

Together with iron and molybdenum, sulfur co-builds molecular structures thanks to which 

nitrogenase can actively fix atmospheric nitrogen (Tanifuji K, Ohki Y. 2020). Even though 

there may be plenty of sulfur in the soil profile, its elemental form is hydrophobic and 

unavailable for plants. Soil microorganisms must transform this form before being taken up 

by plants (Fuentes-Lara et al., 2019). One of the sulfur significations is the fact that this 

element takes part in the regulation of nitrogen uptake (Salvagiotti et al., 2009). New Afton 

New Gold unamended subsoil contained a significantly larger amount of sulfur than Teck 

Highland Valley Copper unamended subsoil (See Figure A.8). Again, an addition of biosolids 

applied with rates adjusted to the nitrogen levels usually cover the sulfur needs as well 

(Sullivan et al., 2015). It seems though that plant demand for sulfur is covered by both mine 

subsoils sufficiently. However, sulfur provided by subsoil may be unavailable or even toxic 

for plant roots. In terms of sulfur provision, it is important to restore proper soil microflora. 

By that time elevated sulfur content may act rather adversely than positively. 

The last of the analyzed elements - zinc is one of the very important micronutrients. 

Hundreds of enzymes contain Zn (Weil and Brady, 2017). The deficiency of Zn in plants 

causes chlorosis and leaf stunting. Nonetheless, zinc is heavy metal as well, therefore, an 

excess of this element may cause poisoning (Broadley, 2007). When comparing both mines’ 

undisturbed topsoils it is noticeable that both contained similar amounts of zinc. Unamended 

subsoils contained more zinc than their relevant topsoil, however, the content did not exceed 

CCME guidelines (CCME, 2021). An elevated amount of zinc, not exceeding the CCME 
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guidelines, came with an addition of biosolids which is a good source of this element 

(Sullivan et al. 2015). Nonetheless, unamended subsoils contained amounts of zinc similar to 

the undisturbed topsoil, therefore, it seemed that subsoil alone constitutes sufficient provision 

of this element without additional supplementation.  However, alkalinity of the substrate poses 

a hindrance for plant Zn uptake (Rodriguez, 2020). High NA subsoil pH could lead to Zn 

deficiency despite the fact that the NA subsoil had sufficient Zn content. The influence of Zn 

in NA subsoil requires more research. 

Total Carbon 
 

Restoration of carbon cycling is essential in mine reclamation from the perspective of 

successful revegetation (Larney and Angers, 2012). Soil organic matter contains most of soil 

carbon. Many researchers proposes organic amendments as the effective tools to rebuild soil 

organic carbon pool. Shrestha et al. (2009) when conducting experiment on coal mine sites 

found that the treatment with cow manure was the best in terms of bettering many of substrate 

properties including the pool of organic carbon. Tian et al. (2009) demonstrated that a long-

term application of biosolids to calcareous strip-mined land brough by far better results in 

terms of soil organic carbon buildup than traditional fertilization. 

If comparing two mines ’unamended subsoils in terms of total carbon content it may 

be noticed that the New Afton New Gold subsoil contained slightly more than 1%, while Teck 

Highland Valley Copper subsoil contained less than 0.5% (See Figures A.2, A.3). Both 

readings were low. The pool of organic carbon increased after soil amendments addition. 

Even the proper provision of carbon but only carbon is still not sufficient to ensure 

sustainable vegetation. Such soil amendments as woodchips and biochar provided carbon in 

decent amounts whereas the above-ground biomass production on such treatments remained 

still poor. Additionally, the form of provided carbon (easy or reluctant to biological 

processing) plays a pivotal role. The “mixture” treatment provided both readily degradable 

and recalcitrant carbon. The complex provision of carbon by the “mixture” treatment might be 

one of the reasons why this treatment achieved the best results in terms of the above-ground 

biomass production. Recalcitrant carbon contained in woody amendments will exert long-

lasting effect on reclaimed substrate (Senesi and Loffredo, 1999), but for better results should 

not be applied solo. 
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Quantitative and Qualitative Nitrogen Content Change 
 

Total Nitrogen 
 

Nitrogen fulfils countless biochemical and physiological functions and is one of the 

most essential resources for plants (Geng and He, 2020). For its proper development plants 

require large amounts of N to be supplied (Leghari et al., 2016). Deficiency of nitrogen cause 

number of malfunctions such as impaired growth, leaves decolouration and chloroses, 

reduction in flowering and others (Silva and Uchida, 2000). Same as deficiency, the excess of 

nitrogen can act adversely on plant growth (Fenn et al., 1998, Elhanafi et al., 2019). That 

refers to reclaimed lands as well (Castillejo and Castello, 2010). 

If comparing two mines ’unamended subsoils in terms of total nitrogen content it may 

be noticed that the New Afton New Gold subsoil contained slightly more than 0.02% (See 

Figure 2.22), while the Teck Highland Valley Copper subsoil content was below the detection 

level (See Figure 2.23). Both readings were extremely low. In the case of both mines' 

referencing topsoils, the total nitrogen content levels were pretty similar to each other and 

placed around 0.15%. Regarding the above, both unamended subsoils contained by far less 

total nitrogen than their references (See Figures 2.24, 2.25). On such substrates the vegetation 

suffers sever nitrogen deficiency. To remediate that problem reclamation researchers propose 

fertilization, but rather by nitrogen-rich organic amendments than by traditional fertilizers 

(Bradshaw, 1997; Chambers et al., 2002; Reid and Naeth, 2005; Gardner et al., 2010). Larney 

et al. (2000) states that the greater the degradation, the better plant response to organic 

amendments. Various organic amendments were proposed as a source of nitrogen. Some 

proposed cattle manure (Larney and Janzen 1997; Shrestha et al., 2009), but more recently, 

researchers attention is turned toward biosolids (Gardner et al., 2010; Sullivan et al., 2015). 

The biosolids application rates depend on substrate nitrogen supplementation need (Sullivan 

et al., 2015). Annacis biosolids contain around 5.5% of total nitrogen in the dried weight. 

Both initially and finally New Afton New Gold subsoil treatments’ total nitrogen 

content was significantly larger than Teck Highland Valley Copper one (See Figure 2.20). 

That was because the NA unamended subsoil contained more N overall, however, even NA 

unamended subsoil total nitrogen content was low. If comparing the initial and the final total 

N content it may be noticed that they did not differ statistically either in the case of NA 

subsoil or in the case of HVC. However, in both cases, the final total nitrogen content was 

lower than the initial one (See Figure 2.21). That suggests that nitrogen gets depleted or lost 
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over time, but the 16 weeks of the experiment duration is too little time to capture that process 

statistically. That is good information meaning the loss of nitrogen occurs relatively slowly. 

That gives time to plants and soil microorganisms to acquire more nitrogen and import it to 

the cycling. Larney et al. (2009) reported the positive effect of nitrogen-rich cattle manure 

being present 16 years after one-off application. 

It is noticeable that the largest provision of total nitrogen was present in subsoils 

treated by 25% of biosolids. Treatments amended by mixtures came as second. Those two 

treatments provide a statistically significant amount of total nitrogen when comparing to 

biosolids-free treatments (See Figures 2.22, 2.23). Other treatments did not provide much 

nitrogen at all. The “mixture” treatments resulted as the most productive. Its total nitrogen 

contents were in the interval 0.1% - 0.2%. The “75%sub25%bios” treatment’s total N median 

reached initially nearly 0.6% in the case of HVC and even exceeded 0.6% in the case of the 

NA. These results indicated that total nitrogen content above 0.2% might start acting 

adversely. The top level of total nitrogen when it is still harmless to vegetation depends on 

other factors such as quantity and quality of soil organic matter (Elhanafi et al., 2019).  

It is notable that only in the case of both mines’ subsoil “mixture” treatments the 

differences from the references (topsoils) in terms of total N content were not statistically 

significant (See Figures 2.24, 2.25). That indicates that only these treatments simulated the 

natural conditions in terms of total nitrogen content. 

Mineralizable Nitrogen 
 

Mineralizable nitrogen indicates how much of nitrogen tied up in complex organic 

residues could be potentially mineralized by soil microbial community to the plant available 

form of ammonium. Mineralizable nitrogen constitutes a pool of this intrinsic element which 

is gradually released throughout decomposition. This process depends on an abundance and 

activity of certain soil microorganisms. Thus, plants and soil microorganisms get provided 

with required inorganic nitrogen for a prolonged time. Mineralizable nitrogen is a significant 

fraction of the total nitrogen (van Es et al., 2017). Nitrogen-rich organic amendments, such as 

biosolids (Sulivan et al., 2015) are good source of mineralizable N. Chambers et al. (2002) 

reported that the use of biosolids and other organic materials when attempting to reclaim a 

landfill site in the United Kingdom resulted in eventual increase of readily mineralizable 

organic nitrogen content. 
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In this study the amount of mineralizable N dropped throughout the experiment in the 

case of both mine subsoils (See Figures 2.26, 2.27). Lost mineralizable nitrogen either got 

mineralized or washed away during watering. In the both mine cases the initial mineralizable 

nitrogen content did not differ statistically from the final mineralizable nitrogen at α= 0.05 

(See Figure 2.26). That means that mineralization/loss occurred relatively slowly. The 

mineralization rate depends among others on the climatic conditions, the microbial 

community composition, type of substrate and type of soil amendment applied. Cordovil et al. 

(2007) after conduction of potting experiment with municipal solid waste compost, secondary 

pulp mill sludge, horn meal, poultry manure, solid phase from pig slurry and composted pig 

manure reported that poultry manure was the fastest mineralized organic amendment. 

However, too fast mineralization is unwanted. Organic nitrogen mineralization supposed to be 

relatively slow and steady (Claassen and Carey, 2007) to help plant and microorganisms 

benefit the most from released available nitrogen and to limit nitrogen loss by leaching 

(Brown and Chaney, 2016).  

Those subsoil treatments that contain more readily degradable organic matter hold at 

the same time more mineralizable nitrogen. Regarding the above, here again, those subsoils 

that were amended by biosolids alone or in a mixture contained noticeably more mineralizable 

nitrogen than subsoil treatments unamended or amended by biosolids-free amendments (See 

Figure 2.27). 

Initially, the treatments containing 25% of biosolids stood out with an amount of 

mineralizable nitrogen. In such cases, readings indicated the concentration of mineralizable 

nitrogen exceeding 1,000 mg/kg. Treatments amended by a mixture of amendments (biochar 

5%, biosolids 10%, woodchips 10%) contained much less of mineralizable nitrogen, which 

was around 450 mg/kg (See Figure 2.27). 

Available Nitrogen Forms: NH4
+ and NO3

- 

 

Inorganic N includes soluble forms (NO2
- and NO3

-), exchangeable NH4
+, and clay-

fixed nonexchangeable NH4
+ (Rutherford et al., 2008). Therefore, readily available inorganic 

nitrogen comprises soluble nitrate, nitrite, and exchangeable ammonium. However, the fixed 

nonexchangeable NH4
+ starts being slowly released when the pool of available ammonium 

becomes depleted (Drury and Beauchamp,1991). Available NO3
-and NH4

+ are among the 

most essential plant nutrients (Geng and He, 2020). Available NH4
+ mainly results from 

organic matter first decomposition and then mineralization (Soon and Liang, 2006).  
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NO3
- though in the soil results from the nitrification process conducted by Nitrobacter, 

Nitrospira, and Comammox bacteria (Madigan et al., 2012). Therefore, in natural soils, the 

available nitrogen is a fraction of mineralizable nitrogen being released to the soil gradually. 

However, in the case of an amending with biosolids, the provision with available nitrogen is 

instant as this amendment contains large amounts of available NH4
+ (Sulivan et al., 2015). 

Annacis biosolids contain around 9,500 mg/kg of NH4
+ and 12.2 mg/kg of NO3

- in the dried 

weight. Results of this study are consistent with above as initially measured pool of available 

nitrogen provided by biosolids was nearly entirely comprised of ammonium (See Figures 

2.28, 2.30).  

In the case of both mines, the unamended subsoils were poor with available nitrogen 

(See Figures 2.29, 2.31). It is not surprising because those substrates did not contain enough 

organic matter for decomposition and mineralization (See Figure 2.17). Among all three 

amendments applied in this study a significant amount of available nitrogen was provided 

only by biosolids, and that was mainly in a form of NH4
+. Initially the quantity of NH4

+ was 

several hundred times larger than NO3
- (See Figure 2.33). Geng and He (2020) collected 240 

field soil samples and measured NH4
+ + NO3

- and NH4
+ : NO3

-. Maximum sum they found 

was 80 mg/kg, while the ratio was ranging from 100:1 to 1:22.16. For their further 

experimental proceeding they adopted 36 mg/kg as a high amount of available nitrogen. In 

this study the maximum sum was near to 800 mg/kg in the case of NA “75%sub25%bios” 

treatment, while the ratios were ranging from 800:1 to 100:1. In the case of both mine 

subsoils amended by 25% of biosolids v/v the amount of available nitrogen (mainly NH4
+) at 

initial stage of the experiment highly exceeded values which Geng and He (2020) adopted as 

high. Throughout the experiment though the sum NH4
+ + NO3

- dropped (See Figure 2.32), and 

the ratio NH4
+ : NO3

- changed drastically (See Figure 2.33). The ratio converted to nitrate-

prevailing over ammonium. This is a result of nitrification. It might indicate that nitrifying 

bacteria in the reclaimed substrate have become strongly active. On the other side, the drop in 

sum was not statistically significant at α=0.05. That means that the loss of available N forms 

is relatively slow and vegetation together with microorganisms can profit from available NH4
+ 

and NO3
- for prolonged time. 

High levels of available N in the case of both “75%sub25%bios” and “mixture” 

suggest overfertilization when compared with figures quoted by Geng and He (2020). While it 

is likely true in the case of  the “75%sub25%bios” treatment, the “mixture” treatments’ NH4
+ 

+ NO3
- levels were below 300 mg/kg. That is still much more than the level which Geng and 
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He (2020) adopted as high (36 mg/kg), however, they based that value on field soil samples 

(not reclaimed substrate as in this study). And in the nature the soil inorganic N is among the 

most limiting nutrients (Geng and He, 2020). 

Field Locoweed Performance 
 

Although field locoweed individuals seemed to develop well on some subsoil 

treatments, at the end of experiment 1 the nodulation was not observed neither in the case of 

treatments well provided with readily available nitrogen nor on subsoil treatments deprived of 

nitrogen. That might result from several reasons (Epp, 2015; Midwest Laboratories, 2021): 

1) The symbiosis partner was absent in the substrate; 

2) The symbiosis partner was inactive due to conditions such as salinity or lack of 

necessary nutrient; 

3) The experiment timing was not proper for the symbiosis formation; 

4) The experiment was too short and plants did not manage to form nodules yet. 

CONCLUSION 
 

The results identified series of findings and answers to the study objectives. First and 

foremost, two analyzed mines’ subsoils differed strongly in terms of their innate 

physicochemical properties. That, in turn, affected vegetation mortality and productivity. 

What they had in common is that in unamended form both subsoils were highly unfertile, and 

due to that unproductive. Although they possessed satisfactory, or in some cases even 

excessive, quantity of some micronutrients, they lacked in NPK, which are essential, biogenic 

elements. Additionally, New Afton New Gold was encumbered with saline and sodic 

problems additionally hindering vegetation and microorganismal development (Miller et al., 

2017). These two mines’ unamended subsoils would rather not be a self-sufficient substrate 

for mine land reclamation when applied alone. The situation could be changed by an addition 

of organic amendments, however, not all of them. Results showed that an addition of biochar 

and woodchips alone did not change much. That stemmed from the same reason - both 

amendments lacked macronutrients, especially nitrogen, and readily degradable organic 

matter. This study results showed that the simple addition of organic matter (for example by 

addition of woodchips or biochar alone) is not enough. Organic matter must meet certain 

conditions such as appropriate degradability and satisfactory nutrient content. Woodchips and 

biochar can be added mixed with other amendments, but rather not on their own. 
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From applied organic amendments only biosolids significantly increased above-

ground biomass productivity. That resulted from biosolids’ large nutrient content such as N, 

P, and Zn, and predigested organic matter, which is more labile and easier for decomposition 

and carbon release.  

Additionally, as an answer to the first study objective, tests appointed many more 

differences between the New Afton New Gold and Teck Highland Valley Copper subsoils in 

terms of physicochemical properties. New Afton New Gold subsoil contained significantly 

more Ca, but first of all Na cations. Those two elements increased the pH of New Afton New 

Gold subsoil to highly alkaline which caused organisms to deal with this important hurdle. 

Moreover, sodium can acts adversely on soil structure and soil solution osmotic features. 

However, sodium also tends to be washed out. Na levels declined throughout the experiment, 

which confirmed the washout. It can be expected that over time of reclamation, rainwater will 

wash away the excess of sodium, and then one of the factors limiting the vegetation growth 

and development would debilitate. New Afton New Gold subsoil was deprived of K. 

Potassium is one of the essential elements for vegetation development. Lack of K may be one 

of reasons for significantly lower New Afton New Gold subsoil productivity. Both subsoils 

contained an excess of boron, however, New Afton New Gold subsoil went beyond CCME 

guidance much more than the Teck Highland Valley Copper subsoil. Perhaps, the provision of 

sulfur was too large too, especially in the case of New Afton New Gold subsoil treatments.  

S in the soil can form toxic compounds. It requires additional research whether this is the case 

in New Afton New Gold reclaimed subsoil. Teck Highland Valley Copper subsoil contained 

increased amounts of Cu and Mo. While this did not affect plant health, it might step up to 

higher levels in the food chain and accumulate there. This requires additional research. 

The best results in terms of plant above-ground biomass production were achieved 

when mines’ subsoils were amended by a mixture of all three soil amendments. This result 

partially answered the second study objective. An addition of biosolids alone boosted the 

vegetation strongly, however, an addition of 25% biosolids volumetrically largely increased 

mortality and brought other signs of overfertilization. In the “mixture” treatment biosolids 

content was only 10%. This much seemed to cover plant demand for nutrient concurrently not 

increasing the mortality significantly. It also seems that an application of less stable organic 

amendments, especially biosolids, is less preferable than the amendments pre-composted 

(Fierro et al., 1999). Paschke et al. (2005) demonstrated that an addition of a uncured 

biosolids, by a rapid release of nitrogen, can increase a risk from the unwanted, annual weeds. 
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The third study objective focuses on an aspect of nitrogen cycling in reclaimed mine 

subsoil. Results showed clearly that whenever there was nitrogen present in the soil substrate, 

the biomass productivity was significantly larger than in the treatments in which N was 

scarce. Significantly larger productivity was also associated with larger provision of carbon. 

Whenever both N and C were provided in proper quantities, the biomass production was 

significantly greater. That statement was supported by observations done on treatments 

amended by biochar and woodchips. Both provided mostly recalcitrant carbon concurrently 

being poor in nitrogen content and both did not result in satisfactory biomass production. 

Even within a short time of study 1 experiment lots of nitrogen transformations were 

observed. Total N, mineralizable N, NH4
+ content, and NH4

+ + NO3
- visibly dropped 

throughout the experiment. However, the rate of depletion was slow enough for plants to 

benefit from the nitrogen provision. On the other hand at the end of the experiment, there was 

significantly more NO3
- than at the beginning. That means that in the early stage of 

reclamation with the application of biosolids the nitrification process prevails. 

Legumes are not good competitors to grasses especially on phosphorus-rich soils 

(Smith, 1992). In this study as well the legume field locoweed Oxytropis campestris did not 

do well in terms of competing to other grassy species on subsoils amended with biosolids, 

nonetheless, its performance on unamended subsoil was better than all other species. The 

above plus the ability to fix nitrogen makes this species potentially a good candidate to be 

used in mine reclamation. 

Figure 2.34 The greenhouse trial with graminoids and legume arranged in 7 blocks.  

Photo credit Piotr Dzumek  
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CHAPTER 3: CHANGED SOIL AMENDMENTS PROPORTIONS AND ITS INFLUENCE 
ON SUBSOIL PHYSICOCHEMICAL PROPERTIES, SHRUBBY PLANTS PERFORMANCE, 
AND NITROGEN CYCLING IN OPEN-AIR CONDITIONS. 
 

INTRODUCTION 
 

In greenhouse conditions plants usually perform better (Vernon, 2019). That is 

because all aspects of controlled conditions in the greenhouse trials are set for constant 

optima, while in nature optimal conditions for plant development do not happen often. That 

explains why the greenhouse experiments possess limited value when extrapolating to field 

and operational conditions. However, if the results of experiment 2, conducted open-air way 

in semi-natural conditions, turn out similar to experiment 1, that would strengthen overall 

research results and the conclusions credibility. 

The fertilization has to be done in proper doses adjusted to the nature of fertilizer, 

vegetation requirements, climatic conditions, substrate properties, etc. The same rule applies 

when soil amendments are applied. The second study used the same subsoils, the same soil 

amendments, but in different proportions. This intends to find an optimal dose according to 

Shelford’s law of tolerance (Shelford, 1931).  

Reclamation efforts are usually laborious and costly (Bradshaw, 2000; Prach and 

Hobbs, 2008). That is why mine reclamation practitioners when making decisions on 

choosing certain reclamation technics need to be supported by solid research results. When 

laboratory results are backed by experiments conducted in conditions similar to natural, such 

research gives a stronger basis for practical decisions. The first study has shown that the 

addition of biosolids in the dose of 25% volumetrically might be too much. It seemed that 

such a quantity of biosolids increased plant mortality and decreases productivity. A mixture of 

soil amendments in the study 1 experiment gave much better results than all other treatments. 

This way a new question emerged: whether that was caused by a lower, but still significant 

amount of biosolids that provided necessary nutrients in more preferred amounts, or because 

of the beneficial influence of other soil amendments that were applied in a mixture. To answer 

this question, in the second study less biosolids was applied - 5% in the case of both the 

mixture treatment and the treatment with biosolids applied alone. This aimed also at testing 

whether the lower provision of nitrogen would affect its cycling.  

In local environments, shrubby plants play an extremely important ecological role, 

especially in the lower and middle Bunchgrass zone (Province of British Columbia, 1999). 
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Three shrub species were selected to the second study: common rabbitbrush Ericameria 

nauseosa, soopolallie Shepherdia canadensis, and big sagebrush Artemisia tridentata. 

Common rabbitbrush and big sagebrush are typical and commonly present in lower grasslands 

(Antos et al., 1996, Province of British Columbia, 1999), where New Afton New Gold mine is 

located. Soopolallie, in turn, is present in higher elevations (Walkup, 1991; Douglas et al., 

1998), being common in Teck Highland Valley Copper mine vicinity. All three species are 

well adapted to interior BC biogeoclimatic conditions, hence, they may have the potential to 

be an efficient mine reclamation tool. Soopolallie is a nitrogen fixer forming actinorrhizae 

with bacteria from various strains of genus Frankia (Huguet et al., 2004). This shrub is not a 

part of typical Bunchgrass zone vegetation, but is commonly present in Interior Douglas-fir 

and Montane Spruce zones. Soopolallie is often present near water reservoirs, but it also 

tolerates dry areas with nutritionally poor, mineral soils (Walkup, 1991). It is a species that 

copes well with various forest disturbances such as fire or stand clear cut because it has the 

perfect ability to reproduce through root clippings or suckers (Walkup, 1991). Soopolallie 

produces fruits often consumed by birds and rodents. Besides, this shrub also provides a food 

base for various ungulates. Seeds of soopolallie experience deep dormancy what is an 

ecological adaptation to harsh climatic conditions (Baskin and Baskin, 1998). Soopolallie’s 

applicability in mine reclamation might increase due to its nitrogen fixation ability. However, 

the potential of soopolallie remains still largely unknown, as it is a non-leguminous plant 

(Diagne et al., 2013). So far, the attention of most reclamation researchers was oriented 

toward legumes often omitting non-leguminous nitrogen fixers. 

The second study objectives were: 

I. To confirm similarities and differences between New Afton New Gold and 

Teck Highland Valley Copper subsoils with or without amendments by observing the 

physicochemical properties of subsoils subjected to treatments in semi-natural 

conditions, as well as by observing differences in three shrubby species mortality rates 

and productivity as responses to the treatments, 

II. To test the relative effects of altered proportions of the three soil amendments 

(biosolids, woodchips, biochar) on two subsoils’ physicochemical properties; 

III. To compare qualitative and quantitative changes of nitrogen compounds 

observed in the open-air study with the greenhouse study results. 
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METHODS 
 

Study Site  
 

The second study was located in a garden within the Aberdeen residential area in 

Kamloops, BC. Elevation was 866 meters above see level which locates it between New 

Afton New Gold and Teck Highland Valley Copper elevations. It began on May 23, 2019, 

and ended on November 7, 2019. It lasted 24 weeks counting from the moment of all pots 

placing in the experimental site. Subsoil substrate remained the same.  

Experiment Design 
 

Pots 
 

2.4 L, round-shaped, perforated at the bottom pots were filled with 10 combinations of 

subsoils and soil amendments (See Table 3.2). Pots were marked and numbered. Because of 

10 replicates of every combination, pots got assigned evenly to 10 blocks. The pot’s bottom 

was lined with weed-blocking fine-perforated textile which was to hold the subsoil material in 

the pot concurrently allowing water to drain. 

Plants and Seeds Sourcing 
 

Table 3.1 Table presents plant material provenience and the age when transplanted. 

 

PLANT SPECIES 

BIG SAGEBRUSH 
COMMON 

RABBITBRASH 
SOOPOLALLIE 

PROVENIENCE OF 

THE PLANT 

MATERIAL 

Splitrock Native Plants 

Nursery in Lillooet, 

BC 

TRU Research 

Greenhouse in 

Kamloops, BC 

Splitrock Native Plants 

Nursery in Lillooet, 

BC 

AGE OF THE 

PLANT MATERIAL 
6 months 5 months 24 months 

 

Common rabbitbrush seeds were sourced from Splitrock Native Plants Nursery. Those 

seeds were sown 5 months before the experiment commencement to the substrate containing 

peat and sand in ratio 1:1. Seeds were sown to the substrate similar to the one being used in 

Splitrock Native Plants Nursery to maintain consistency. The entire process of independent 

common rabbitbrush growing in the TRU greenhouse emulated the process adopted in 

professional nursery from Lillooet. That included the same type and size of the styrofoam 

blocks used (one plaque 140 mL), similar fertilization and the greenhouse settings. 

Prior to sowing, seeds were undergone cold-wet stratification (Baskin and Baskin, 1998).  
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Transplantation of Seedlings 
 

Transplantation of seedlings to the pots containing the subsoil combinations took place 

on May 9, 2019. To minimize the shock caused to young plants, after transplantation plants 

were still kept in the greenhouse in controlled conditions for 14 days before transportation to 

the experiment location. After the transplants’ stabilization and ensuring that all plants are in 

equally good vigor, pots with transplants were moved to the open-air study site. All plants 

were transplanted within one day.  

To increase the transplantation survivorship, seedlings were planted with minimal root 

system disturbance. That was achieved by transplantation with the entire root system together 

with the already existing soil substrate in which roots were installed. However, the amount of 

existing soil substrate was minimal (less than 140 mL) to force quick relying on the treated 

subsoil. 

Pest Control 
 

During the common rabbitbrush germination, to keep greenhouse pests controlled the 

same measures were taken as in the first study experiment (See Chapter 2; Methods; 

Experiment Design; Pest Control). 

To emulate natural conditions, during the open-air phase of the second study 

experiment invertebrate pests were not controlled at all. Birds and rodents were not controlled 

either, however, the study site was fenced to prevent ungulates to encroach. 

Settings and Watering 
 

During the common rabbitbrush germination, the greenhouse settings were the same as 

in the first study experiment (See Chapter 2; Methods; Experiment Design; Greenhouse 

Settings). 

Shrubby plants were watered as required, therefore, in that aspect, the experiment did 

not emulate the natural conditions. Plants were not left to rely on natural precipitation because 

once grown in a greenhouse and then radically shifted to the open-air conditions might not be 

prepared to survive the extended drought periods. Also, plants did not germinate on the mine 

subsoil which would let them adjust to this substrate. The third reason was that plants were 

planted in pots that contained a relatively low amount of soil substrate and that in turn could 

cause increased desiccation. 
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Applied Subsoil Substrate Combinations 
 

Subsoils collected from both mine stockpiles received the same amounts of soil 

amendments. Soil amendments were applied in the following proportions as shown in Table 

3.2. 

Table 3.2 Second study experiment soil medium composition percentage breakdown. 

 SUBSOIL BIOSOLIDS WOODCHIPS BIOCHAR 

CONTROL 100% 0% 0% 0% 

BIOSOLIDS 95% 5% 0% 0% 

WOOD CHIPS 75% 0% 25% 0% 

BIOCHAR 95% 0% 0% 5% 

MIXTURE OF ALL 

AMENDMENTS 
75% 5% 15% 5% 

Regarding study 1 experiment results (Chapter 2) in second study it was decided to go 

with much lower biosolids application to avoid overfertilization. This time the biosolids 

volumetric application rate was equalized to biochar which did not change and remained on 

5%. The application of biosolids was 5 times lower in comparison to first study experiment 

(Chapter 2) in order to observe whether lowered amount of biosolids would maintain 

beneficial influence on plant productivity with parallel reduction of plant mortality. While the 

total amount of organic soil amendments in a mixture remained the same, the amount of 

biosolids was lowered to 5% and the amount of woodchips was increased to 15%. This was to 

better use the woodchips feature of limiting an excess of NH4+ brought in by biosolids and to 

slow down its release. 

Experiment 2 Overall Treatments Combination 
 

The experiment was a 2 x 5 x 3 factorial design, with 30 treatment combinations: 

 2 subsoil types: 1. New Afton New Gold subsoil, 2. Teck Highland Valley Copper subsoil; 

 5 soil amendment treatments: 1. control [no soil amendments], 2. biosolids alone, 3. 

woodchips alone, 4. biochar alone, 5. mixture of all three soil amendments (see Table 3.2); 

 3 plant treatments: 1. big sagebrush, 2. common rabbitbrush, 3. soopolallie. 
 

Replicated 10 times for a total of 300 individual pots. A randomized block design was 

arranged in the open-air experimental site. 
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Soil Sampling 
 

Soil samples collection was identical to the one adopted in the study 1 experiment (See 

Chapter 2; Methods; Soil Sampling). At the experiment termination, the soil substrate from 10 

pot-replicates was mixed thoroughly together, and then one sample was collected in a 1L 

labeled plastic bag and immediately placed in the refrigerator. The same procedure was 

repeated for each of the 30 subsoil treatments. This way all together a pool of 42 1-L samples 

was obtained: 30 samples of the final subsoil treatments stage, 10 samples of the initial stage, 

and two undisturbed topsoil samples for reference. 

Tests and Instrumentation Used 
 

In the case of study 2 experiment, the same tests and instrumentation were used as in 

the study 1 experiment (See Chapter 2; Methods; Tests and Instrumentation Used). The only 

difference was in the productivity measuring. 

Plant Productivity 
 

Because young shrubs were not equal at the beginning of the experiment, the 

productivity was assessed indirectly by measurement of growth. The lengths of each plant’s 

stem and all twigs were measured and summarized altogether at the beginning of the 

experiment. The procedure was repeated at the end of the experiment. The total length 

increment was obtained by subtraction of the initial result from the final one. Lengths of stem 

and all twigs were measured by a ruler and noted.  

Statistical Analyses 
 

In the second study statistical analyses did not differ from those used in the first study. 

The only difference is in the case of mortality rate presentation as, unlike to experiment 1, in 

the second study this aspect data has a binary nature. The mortality presenting chart has a 

“violin” form to depict the 0/1 did-not-survived/survived frequencies. 

Once again, statistical analyses got divided into 3 sections (See Chapter 2; Methods; 

Statistical Analyses). 
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RESULTS 
 

Mortality, Productivity, Overall Subsoils’ Difference 
 

Section 1: Mortality 

Kruskal-Wallis test showed that mortality of plants growing on New Afton New Gold 

subsoil combinations was significantly larger than mortality of plants growing on Teck 

Highland Valley Copper subsoil combinations (Figure 3.1). 

 

Kruskal-Wallis tests showed that neither the mortalities on New Afton New Gold 

subsoil treatments nor on Teck Highland Valley Copper subsoil treatments differed 

significantly. 

 

Plant Species Mortality Analysis 
 

Kruskal-Wallis tests showed that individuals of common rabbitbrush and soopolallie 

growing on New Afton New Gold subsoil combinations experienced larger mortality than 

individuals of these species growing on Teck Highland Valley Copper subsoil combinations. 

Mortalities of big sagebrush on two mines’ subsoils did not differ significantly. On Teck 

Highland Valley Copper subsoil combinations soopolallie’s survivorship was 100% (Figure 

3.2). 

Figure 3.1 Second study mortality comparison between two mines’ subsoils: HVC – Teck Highland 
Valley Copper, NA – New Afton New Gold. Violin plots describe the frequency of: 0 – plants which 
did not survive to the end of experiment; 1 - plants which survived to the end of experiment. 
Kruskal-Wallis test was used to compare the plant mortalities. n = 150 
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Kruskal-Wallis tests showed that on Teck Highland Valley Copper subsoil treatments 

mortalities of plant species were not equal. Wilcoxon pairwise comparison tests showed that 

soopolallie individuals performed significantly better than big sagebrush (Figure 3.3 left).  

Kruskal-Wallis tests showed that on New Afton New Gold subsoil treatments 

mortalities of all plant species were statistically equal (Figure 3.3 right).  

  

Figure 3.2 Second study plant species mortality comparison between two mines’ subsoils: HVC – 
Teck Highland Valley Copper, NA – New Afton New Gold. Violin plots describe the frequency of:  
0 – plants which did not survive to the end of experiment; 1 - plants which survived to the end of 
experiment. Kruskal-Wallis test was used to compare the plant mortalities. n = 50 

Figure 3.3 Second study plant species mortality comparison on two mines’ subsoils: HVC – Teck 
Highland Valley Copper, NA – New Afton New Gold. Violin plots describe the frequency of:  
0 – plants which did not survive to the end of experiment; 1 - plants which survived to the end of 
experiment. Kruskal-Wallis test was used to compare the plant mortalities. n = 50 
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Section 1: Productivity 

Kruskal-Wallis test showed that total stem and twigs elongation of plants growing on 

New Afton New Gold subsoil combinations was significantly lower than total stem and twigs 

elongation of plants growing on Teck Highland Valley Copper subsoil combinations (Figure 

3.4). 

Average stem and twigs elongation of plants growing on New Afton New Gold 

subsoil combinations was more than two times lower than average stem and twigs elongation 

of plants growing on Teck Highland Valley Copper (Figure 3.5). 

Figure 3.4  Stem and twigs elongation comparison between two mines’ subsoils: HVC – Teck 
Highland Valley Copper, NA – New Afton New Gold. Boxplots describe stem and twigs elongation of 
all individual plants per mine subsoil at the end of the experiment. Horizontal line indicates the 
median of stem and twigs elongation of all individual plants. Kruskal-Wallis test was used to compare 
the medians. n = 150 
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Figure 3.5  Mean stem and twigs elongation comparison between two mines’ subsoils: HVC – Teck 
Highland Valley Copper, NA – New Afton New Gold. Error bars are standard error of the mean.  
n = 150 
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New Afton New Gold Subsoil Treatments Productivity Analysis 
 

Kruskal-Wallis test showed that the stem and twigs elongations of plants growing on 

New Afton New Gold subsoil treatments were not equal (Figure 3.6). 

Wilcoxon pairwise comparison test showed that: the treatment with a mixture of soil 

amendments resulted in a significantly larger stem and twigs elongation than treatment with 

25% of woodchips only. The treatment with 5% of biosolids resulted in a significantly larger 

stem and twigs elongation than the treatment with 25% of woodchips and the treatment with 

5% of biochar. The treatment with unamended subsoil resulted in a significantly larger stem 

and twigs elongation than the treatment with 25% of woodchips only (Figure 3.6). 

 

 

 

 

 

 

  

Figure 3.6 Stem and twigs elongation comparison between the New Afton New Gold (New Afton) 
subsoil treatments: 100%sub – unamended subsoil, 95%sub5%bios – subsoil amended by 5% of 
biosolids alone, 75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – 
subsoil amended by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. 
Boxplots describe stem and twigs elongation of all individual plants per subsoil treatment at the end of 
the experiment. Horizontal line indicates the median of plants’ stem and twigs elongation. Kruskal-
Wallis test was used to compare the medians of plant stem and twigs elongation on particular subsoil 
treatments. Wilcoxon test was used for the pairwise comparison. * - p < 0.05,, *** - p < 0.001,  
ns – difference not significant. n = 30 
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Teck Highland Valley Copper Subsoil Treatments Productivity Analysis 
 

Kruskal-Wallis test showed that the stem and twigs elongations of plants growing on 

Teck Highland Valley Copper subsoil treatments were not equal (Figure 3.7). 

Wilcoxon pairwise comparison test showed that: the treatment with a mixture of soil 

amendments resulted in a significantly larger stem and twigs elongation than unamended 

subsoil, than treatment with 25% of woodchips, and than the treatment with 5% of biochar. 

The treatment with 5% of biosolids resulted in a significantly larger stem and twigs 

elongation than unamended subsoil, than treatment with 25% of woodchips, and than the 

treatment with 5% of biochar. The treatment with unamended subsoil resulted in a 

significantly larger stem and twigs elongation only than the treatment with 25% of 

woodchips. The treatment with 5% of biochar resulted in a significantly larger stem and twigs 

elongation only than the treatment with 25% of woodchips (Figure 3.7). 

Figure 3.7 Stem and twigs elongation comparison between the Teck Highland Valley Copper (HVC) 
subsoil treatments: 100%sub – unamended subsoil, 95%sub5%bios – subsoil amended by 5% of 
biosolids alone, 75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – 
subsoil amended by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. 
Boxplots describe stem and twigs elongation of all individual plants per subsoil treatment at the end of 
the experiment. Horizontal line indicates the median of plants’ stem and twigs elongation. Kruskal-
Wallis test was used to compare the medians of plant stem and twigs elongation on particular subsoil 
treatments. Wilcoxon test was used for the pairwise comparison. ** - p < 0.01, *** - p < 0.001,  
**** - p < 0.0001, ns – difference not significant. n = 30 
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Section 1: Both Mines’ Subsoil Overall Difference; Principal Component Analysis 

Once again the Principal Component Analysis with 21 predictors presented strong 

evidence that the two mines’ subsoils were overall significantly different Pseudo F= 106.323, 

p < 0.001 (Figure 3.8). Datapoints representing pots containing subsoil with biosolids alone or 

mixture were distinct from all other (cluster separately). Other treatments cluster together 

revealing that there were no large differences between them (Figure 3.9) 

 

 

 

 

Figure 3.8 Second study Principal Component Analysis of two mines’ subsoils in terms of 21 
predictors: pH, EC, SOM, total N and C contents, mineralizable N content, NH4

+ and NO3
- contents, 

as well as the contents of 13 basic elements. hvc – Teck Highland Valley Copper, new afton – New 
Afton New Gold. 

Figure 3.9 Second study Principal Component Analysis of two mines’ subsoil treatments: 100%sub – 
unamended subsoil, 95%sub5%bios – subsoil amended by 25% of biosolids alone, 75%sub25%wchip 
- subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended by 5% of biochar 
alone, mixture - subsoil amended by a mixture of amendments. hvc – Teck Highland Valley Copper, 
new afton – New Afton New Gold. 
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Physicochemical Properties of Mines’ Subsoils When Unamended and Amended 
 

Section 2: pH 

New Afton New Gold subsoil pH was significantly higher than Teck Highland Valley 

Copper both in the initial and the final stages (Figure 3.10 left). Within each mine separately 

there was no significant difference between the initial and final pH either in the case of New 

Afton New Gold or in the case of Teck Highland Valle y Copper (Figure 3.10 right). 

In the case of both mines the final pHs were statistically not equal (Figures 3.11). In 

both cases, the biosolids-containing treatments had the lowest pH. In both cases as well, pHs 

seemed to drop throughout the experiment (Figures 3.11).  

Figure 3.10 Second study two mines’ subsoil pH comparison in the initial and final stages of the 
experiment (left) Comparison of the subsoil pH in the initial and final stages of the experiment within 
each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New Gold. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. 
 initial n= 5, final n= 15 

Figure 3.11 Second study New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil 
treatments pH comparison in the initial and final stages of the experiment. Subsoil treatments: 
100%sub – unamended subsoil, 95%sub5%bios – subsoil amended by 5% of biosolids alone, 
75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended 
by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 1, final n= 3 
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Section 2: Electroconductivity (EC) 

  New Afton New Gold subsoil electroconductivity was significantly higher than Teck 

Highland Valley Copper both in the initial and final stages (Figure 3.12 left). Within each 

mine separately there was a significant difference between the initial and final 

electroconductivities both in the case of NA and in  the case of HVC (Figure 3.12 right). 

In the case of NA subsoil treatments, there was no evidence that the final 

electroconductivities were statistically not equal (Figure 3.13 left). In the case of HVC subsoil 

treatments the final electroconductivities were statistically not equal (Figure 3.13 right). 

Throughout the experiment, the EC dropped. 

Figure 3.12 Second study two mines’ subsoil electroconductivities comparison in the initial and final 
stages of the experiment (left) Comparison of the subsoil electroconductivities in the initial and final 
stages of the experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – New 
Afton New Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the 
medians. initial n= 5, final n= 15 

Figure 3.13 Second study New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil 
treatments electroconductivities comparison in the initial and final stages of the experiment. Subsoil 
treatments: 100%sub – unamended subsoil, 95%sub5%bios – subsoil amended by 5% of biosolids alone, 
75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended 
by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 1, final n= 3 
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Section 2: Soil Organic Matter (SOM) Content 

New Afton New Gold subsoil SOM content was significantly higher than Teck 

Highland Valley Copper SOM content in both the initial and final stages (Figure 3.14 left). 

Within each mine separately there was a significant difference between the initial and final 

SOM contents in the case of New Afton New Gold subsoil only (Figure 3.14 right). 

 In the case of both mines the final soil organic matter contents were statistically not 

equal (Figures 3.15). In both cases, the subsoil treatment containing woodchips as an only 

amendment had finally the second-largest SOM content and the subsoil amended by a mixture 

had the first largest SOM content (Figures 3.15). 

Figure 3.14 Second study two mines’ subsoil organic matter contents comparison in the initial and 
final stages of the experiment (left) Comparison of the subsoil organic matter contents in the initial 
and final stages of the experiment within each mine (right). HVC – Teck Highland Valley Copper, NA 
– New Afton New Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to 
compare the medians. initial n= 5, final n= 15 

Figure 3.15 Second study New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil 
treatments soil organic matter contents comparison in the initial and final stages of the experiment. 
Subsoil treatments: 100%sub – unamended subsoil, 95%sub5%bios – subsoil amended by 5% of biosolids 
alone, 75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil 
amended by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 1, final n= 3 
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Section 2: Sodium (Na) Content 

New Afton New Gold subsoil Na content was significantly larger than Teck Highland 

Valley Copper Na content both in the initial and final stages (Figure 3.16 left). Within each 

mine separately there was a significant difference between the initial and final Na content 

only in the case of the New Afton New Gold subsoil  (Figure 3.16 right) 

Only in the case of NA subsoil treatments, the final Na contents were statistically not 

equal (Figure 3.17 left). In the case of New Afton New Gold, every subsoil treatment 

contained more sodium in the initial than in the final stage of the experiment (Figure 3.17 

left). 

Figure 3.16 Second study two mines’ subsoil sodium content comparison in the initial and final 
stages of the experiment (left), comparison of the sodium content in the initial and final stages of the 
experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New 
Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. 
initial n= 5, final n= 15 

Figure 3.17 Second study New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil 
treatments sodium contents comparison in the initial and final stages of the experiment. Subsoil 
treatments: 100%sub – unamended subsoil, 95%sub5%bios – subsoil amended by 5% of biosolids alone, 
75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended 
by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 1, final n= 3 
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Quantitative and Qualitative Nitrogen Content Analyses 
 

Section 3: Total Nitrogen (N) Content 

New Afton New Gold subsoil total N content was significantly larger than Teck 

Highland Valley Copper total N content both in the initial and final stages (Figure 3.18). 

Within each mine separately there was no significant difference between the initial and final 

total N contents either in the case of New Afton New Gold or in the case of Teck Highland 

Valley Copper (Figure 3.19). 

Figure 3.18 Second study two mines’ subsoil total nitrogen content comparison in the initial and 
final stages of the experiment. HVC – Teck Highland Valley Copper, NA – New Afton New Gold. 
Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. initial 
n= 25, final n= 75 

Figure 3.19 Second study comparison of the total nitrogen content in the initial and final stages of 
the experiment within each mine. HVC – Teck Highland Valley Copper, NA – New Afton New Gold. 
Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. initial 
n= 25, final n= 75 
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In the case of New Afton New Gold and the case of Teck Highland Valley Copper 

subsoil treatments, the initial and final total N contents were statistically not equal (Figures 

3.20, 3.21). Both, in the case of New Afton New Gold and the case of Teck Highland Valley 

Copper subsoil treatments initially there was no statistical difference between the 

“95%sub5%bios” and the “mixture” treatments, while those two treatments differed 

significantly from all other treatments. The situation changed slightly at the end of the 

experiment. The lack of statistical difference between the “95%sub5%bios” and the “mixture” 

treatments remained in the case of New Afton New Gold only (Figure 3.20). In the case of 

Teck Highland Valley Copper, the difference between the “95%sub5%bios” and the 

“mixture” treatments became significant (Figure 3.21). 

 

 

Figure 3.20 Second study New Afton New Gold subsoil treatments total nitrogen contents comparison 
in the initial and final stages of the experiment. Subsoil treatments: 100%sub – unamended subsoil, 
95%sub5%bios – subsoil amended by 5% of biosolids alone, 75%sub25%wchip - subsoil amended by 
25% of woodchips alone, 95%sub5%bchar – subsoil amended by 5% of biochar alone, mixture - 
subsoil amended by a mixture of amendments. Horizontal line indicates the median. Kruskal-Wallis 
test was used to compare the medians. Wilcoxon test was used for pairwise comparison ** - p < 0.01, 
**** - p < 0.0001, ns, NS. – difference not significant. initial n= 5, final n= 15 
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Both, in the cases of New Afton New Gold and Teck Highland Valley Copper subsoil 

treatments only the “mixture” and the “95%sub5%bios” at the end of the experiment were not 

significantly different from the reference of undisturbed topsoil in terms of total N content. 

All other treatments differed significantly from the reference (Figures 3.22, 3.23). In these 

cases, the total N contents were significantly lower than the reference’s one. In the case of 

both the “mixture” and the “95%sub5%bios” treatments, the initial total N contents were 

significantly larger than the reference, but finally the total N content dropped and the 

differences became not significant (Figures 3.22, 3.23). 

Figure 3.21 Second study Teck Highland Valley Copper subsoil treatments total nitrogen contents 
comparison in the initial and final stages of the experiment. Subsoil treatments: 100%sub – 
unamended subsoil, 95%sub5%bios – subsoil amended by 5% of biosolids alone, 75%sub25%wchip - 
subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended by 5% of biochar 
alone, mixture - subsoil amended by a mixture of amendments. Horizontal line indicates the median. 
Kruskal-Wallis test was used to compare the medians. Wilcoxon test was used for pairwise 
comparison ** - p < 0.01, *** - p < 0.001, **** - p < 0.0001, ns, NS. – difference not significant.  
initial n= 5, final n= 15 
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Figure 3.22 Second study New Afton New Gold subsoil treatments total nitrogen contents comparison 
in the initial and final stages of the experiment to the reference of undisturbed topsoil. Subsoil 
treatments: 100%sub – unamended subsoil, 95%sub5%bios – subsoil amended by 5% of biosolids 
alone, 75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil 
amended by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal 
line indicates the median. Kruskal-Wallis test was used to compare the medians. Wilcoxon test was 
used for pairwise comparison ** - p < 0.01, *** - p < 0.001, ns – difference not significant.  
initial n= 5, final n= 15, undisturbed n=5 

Figure 3.23 Second study Teck Highland Valley Copper subsoil treatments total nitrogen contents 
comparison in the initial and final stages of the experiment to the reference of undisturbed topsoil. 
Subsoil treatments: 100%sub – unamended subsoil, 95%sub5%bios – subsoil amended by 5% of 
biosolids alone, 75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – 
subsoil amended by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. 
Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. Wilcoxon 
test was used for pairwise comparison ** - p < 0.01, *** - p < 0.001, **** - p < 0.0001,  
ns, NS. – difference not significant. initial n= 5, final n= 15, undisturbed n=5 
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Section 3: Mineralizable Nitrogen Content 

There was no significant difference in terms of mineralizable N content between NA 

and HVC subsoils either in the initial or final stage (Figure 3.24 left). Within each mine 

separately there was no significant difference between the initial and final mineralizable N 

contents either in the case of NA or in the case of HVC (Figure 3.24 right). 

In the case of NA and the case of HVC subsoil treatments the final mineralizable N 

contents were statistically not equal (Figures 3.25). In both cases, biosolids-containing 

treatments had the largest mineralizable N contents. Mineralizable N contents seemed to drop 

strongly throughout the experiment (Figures 3.25). 

Figure 3.24 Second study two mines’ subsoil mineralizable nitrogen contents comparison in the initial 
and final stages of the experiment (left), comparison of the mineralizable nitrogen contents in the initial 
and final stages of the experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – 
New Afton New Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the 
medians. initial n= 5, final n= 15 

Figure 3.25 Second study New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil 
treatments mineralizable nitrogen contents comparison in the initial and final stages of the experiment. 
Subsoil treatments: 100%sub – unamended subsoil, 95%sub5%bios – subsoil amended by 5% of 
biosolids alone, 75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – 
subsoil amended by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. 
Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians.  
initial n= 1, final n= 3 
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Section 3: Available Nitrogen Content – Ammonium Cation (NH4
+) 

There was no significant difference in terms of NH4
+ content between NA and HVC 

subsoils either in the initial or final stage (Figure 3.26 left). Within each mine separately there 

was no significant difference between the initial and final NH4
+ contents either in the case of 

NA or HVC (Figure 3.26 right). 

In the case of NA and the case of HVC subsoil treatments the final NH4
+ contents 

were statistically not equal (Figure 3.27). In both cases, biosolids-containing treatments had 

the largest NH4
+ contents. NH4

+ contents seemed to drop strongly throughout the experiment 

(Figure 3.27). 

Figure 3.26 Second study two mines’ subsoil NH4
+contents comparison in the initial and final stages of 

the experiment (left), comparison of the NH4
+ contents in the initial and final stages of the experiment 

within each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New Gold. Horizontal 
line indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 5, final n= 15 

Figure 3.27 Second study New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil 
treatments NH4

+contents comparison in the initial and final stages of the experiment. Subsoil treatments: 
100%sub – unamended subsoil, 95%sub5%bios – subsoil amended by 5% of biosolids alone, 
75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended 
by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 1, final n= 3 
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Section 3: Available Nitrogen Content – Nitrate Anion (NO3
-) 

New Afton New Gold subsoil NO3
- content was significantly larger than Teck 

Highland Valley Copper subsoil NO3
- content only in the final stage of the experiment (Figure 

3.28 left). Within each mine separately there was a significant difference between the initial 

and the final NO3
- content in the case of HVC subsoil only (Figure 3.28 right). 

Only in the case of NA subsoil treatments the final NO3
- contents were statistically not 

equal (Figures 3.29). In the New Afton New Gold case, the subsoil treatment containing 

biosolids as an only amendment had the largest final NO3
- content, and the subsoil amended 

by a mixture had the second-largest NO3
- content (Figure 3.29 left). 

Figure 3.28 Second study two mines’ subsoil NO3
-contents comparison in the initial and final stages of 

the experiment (left), comparison of the NO3
- contents in the initial and final stages of the experiment 

within each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New Gold. Horizontal 
line indicates the median. Kruskal-Wallis test was used to compare the medians.  
initial n= 5, final n= 15 

Figure 3.29 Second study New Afton New Gold (left) and Teck Highland Valley Copper (right) subsoil 
treatments NO3

-contents comparison in the initial and final stages of the experiment. Subsoil treatments: 
100%sub – unamended subsoil, 95%sub5%bios – subsoil amended by 5% of biosolids alone, 
75%sub25%wchip - subsoil amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended 
by 5% of biochar alone, mixture - subsoil amended by a mixture of amendments. Horizontal line 
indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 1, final n= 3 
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Section 3: Available Nitrogen Content – NH4
+, NO3

-; Sum and Ratio 

There was a significant difference between the sums of NH4
+ and NO3

- in the initial 

and the final stages of the experiment at α=0.05 (Figure 3.30). 

There was a significant difference between the ratios of NH4
+ to NO3

- in the initial and 

final stages of the experiment at α=0.05 (Figure 3.31). 

 

  

Figure 3.30 Second study comparison of the sum of NH4
+ and NO3

- in the initial and final stages of 
the experiment. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the 
medians. initial n= 4, final n= 12 

Figure 3.31 Second study comparison of the ratio of NH4
+ to NO3

- in the initial and final stages of the 
experiment. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the 
medians. initial n= 4, final n= 12 
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DISCUSSION 
 

Second study experiment confirmed most of the observations on mine subsoils which 

were revealed in the first study experiment (Chapter 2). Lowering the quantity of biosolids 

also resulted positively. Open-air conditions did not drive changes in subsoil to other 

directions than greenhouse conditions of the experiment 1, despite the fact that applied 

vegetation species were very different in the study 2 experiment. Applied shrubs 

demonstrated that they were good indicators of reclamation effectiveness as well as they 

themselves might be a promising tool for mine reclamation. 

Mortality, Productivity, Overall Subsoils’ Difference 
 

Mortality 

In natural conditions, in ecosystems where the woody-stem plants play a dominating 

role, at the early stage of regeneration young seedlings germinate in abundance but then 

experience high mortality (Swaine and Hall, 1983). Seedlings are often eliminated by such 

factors as competition with neighboring vegetation, browsing, extreme climatic events, insect 

or disease infestation (Collet and Le Moguedec, 2007). On reclaimed mine sites Rizza et al. 

(2007) demonstrated that overwintering stress kills a large percentage of seedlings. In this 

study experiment, although insects infestations were observed they did not seem to increase 

mortality. Adverse soil substrate conditions were rather these which played a major role in 

causing shrubby seedlings mortality. A large part of deaths resulted from the formation of a 

film of crystals on New Afton New Gold subsoil (See Figure 3.31). Crystals were debilitating 

young plants. When windy weather, all plants have been jerked frequently in all directions. 

After hundreds of wind jerks some plants, debilitated by salt crystals, got torn apart and 

killed. Salts formation on NA subsoil, with its multifaceted adverse influence on young 

seedlings, is most probably the explanation of significantly larger mortality among plants 

growing on NA subsoil versus plants growing on HVC subsoil (See Figure 3.1).  

Figure 3.32 Common rabbitbrush individual covered by a film of white salt crystals debilitating plant’s 
resistance to wind. Plant is torn apart and killed.    Photo credit Piotr Dzumek.  
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However, on both mines’ subsoil treatments, the mortality rates were visibly lower 

than in experiment 1 (Chapter 2). Most probably in can be explained by the lowering of 

biosolids content to 5% vol. Statistical tests did not detect any significantly larger mortality 

among seedlings growing on biosolids-containing subsoil combinations. 

Productivity 
 

In study 1experiment (Chapter 2) an addition of biosolids increased significantly the 

grasses and leguminous forb biomass productivity. However, it remained an open question 

whether the same effect biosolids would have on woody-stem plants. This is an important 

question as in several reclamation sites in British Columbia shrubs and trees are intended to 

be re-established. Teck implemented revegetation programs in Highland Valley Copper and in 

Pinchi Lake Mine in which shrubs were intended for installation on reclaimed sites amended 

by biosolids (Teck 2012 Sustainability Report; Teck, 2013). Hunt (2017) reports that on 

reclaimed rock disposal sites in Mount Polley Mine coniferous seedlings grew better on sites 

where soil substrate was amended with biosolids in comparison to unamended control sites. 

Additionally, on unamended sites the young trees showed chloroses which indicated nutrient 

deficiency.  

Study 2 experiment results demonstrated that an application of 5% biosolids increased 

the stem and twigs elongation. However, the differences between the unamended subsoil and 

the “75%sub25%bios”, as well as between the unamended subsoil and the “mixture” 

treatment were significant only in the case of Teck Highland Valley Copper mine subsoil (See 

Figures 3.6, 3.7). Again, similarly to study 1 (Chapter 2), the productivity on Teck Highland 

Valley Copper subsoil combinations was much larger than on New Afton New Gold subsoil 

combinations (See Figure 3.4). This result confirmed that when amended with nutrient-rich 

amendment Teck highland Valley Copper subsoil becomes well productive. It is striking that 

here again the most productive on both mines’ subsoils were treatments amended by the 

mixture of soil amendments. However, in both cases, New Afton New Gold and Teck 

Highland Valley Copper, the differences between “mixture” treatments and treatments 

amended by 5% biosolids alone were not statistically significant. That means that an addition 

of woodchips and biochar in a mixture did not help increase productivity. In turn, similarly to 

study 1 experiment (Chapter 2), the lowest productivities in the case of both mines were 

achieved by plants growing on subsoils amended by 25% of woodchips (See Figures 3.6, 3.7).  
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Overall Difference of Both Mines’ Subsoil Physicochemical Properties 
 

Study 2 Principal Component Analysis confirmed the first study (Chapter 2) finding 

that physicochemical properties of two analyzed mines subsoils differ strongly (See Figure 

3.8).  

In terms of particular subsoil treatments, the situation in study 2 experiment was 

similar to the one of the first study (Chapter 2), but not identical. While in experiment 2, both 

the “95%sub5%bios” and the “mixture” treatments contained the same amounts of biosolids, 

they did not tend to differ from each other that much as in experiment 1 (See Figure 3.9). That 

indicates that neither an addition of biochar nor woodchips to the mixture changed much in 

terms of physicochemical properties.  

Physicochemical Properties of Mines’ Subsoils When Unamended and Amended 
 

pH 
 

Most plants prefer pH which is around neutral or slightly acidic (Boeckmann, 2019). 

Also soil bacteria conducting such processes as organic matter decomposition or nitrogen 

fixation prefer around-neutral soil pH (Griep, 2020). 

In the second study experiment the New Afton New Gold subsoil pH is significantly 

higher than Teck Highland Valley Copper subsoil pH (See Figure 3.10). Both mines’ 

unamended subsoils were alkaline. The further pH departs either way from the value of 7, the 

larger is the hindrance for plant and microorganisms to develop. New Afton New Gold 

subsoil pH departed toward alkaline values more than Teck Highland Valley Copper subsoil. 

Similar to experiment 1 (Chapter 2), pH values of New Afton New Gold subsoil treatments 

seemed to approach to the top limits of the vegetation tolerance on the strongly alkaline side 

(Shelford, 1931), while Teck Highland Valley Copper subsoil treatments seemed to adopt pH 

values closer to preferred by most plant species. Once again, the lowest pH was adopted by 

biosolids-containing treatments (See Figure 3.11). NH4
+

, provided by biosolids, reacts with 

molecules of water and forms  H3O+ which acidify the substrate. This reaction was strongly 

present especially in study 1 experiment (Chapter 2), while in study 2 experiment this reaction 

had minor importance as the amounts of biosolids used were several times lower. While in 

study 2 the acidifying process presented above was limited due to lower amounts of biosolids, 

the alkalinization remained strong.  
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Electroconductivity (EC) 
 

In terms of electroconductivity, study 2 experiment confirmed observations from study 

1 experiment (Chapter 2) as results from both trials are very similar. From this it might be 

concluded that even though experiment 2 has been conducted in different conditions, 

processes deciding about the EC change have carried on similarly. The only difference was 

that in experiment 2 the change of electroconductivity throughout the experiment was deeper 

(See Figure 3.12), causing the difference between the initial EC and the final EC to become 

statistically significant. It could be expected that if the experiment had been conducted for a 

longer time, the tendency of EC decrease would have been maintained until it approaches the 

EC level of undisturbed topsoils (references). Electroconductivity indicates the level of ions 

concentration (Miller at al., 2017). The drop in EC throughout the experiment indicated the 

decrease in the amount of ions. The deeper drop of ions concentration observed in study 2 

experiment may indicate that the loss of certain ions depends on climatic conditions (profuse 

precipitation happening occasionally, larger temperature amplitudes) as well as on the 

experiment duration (experiment 2 was 8 weeks longer). That all suggests that not only the 

use of an organic amendments can help alleviate the substrate salinity problem, but also water 

wash out can be helpful. Brown and Chaney (2016) suggest that in some cases an irrigation 

may be required to remove excessive salinity. 

Soil Organic Matter (SOM) 
 

Most of soil organic matter concentrates in topsoil. During surface mining entire 

topsoil is removed. Topsoil removal immediately decreases the soil organic matter budget 

(Larney and Angers, 2012). Recovery of soil organic matter and nutrient cycling is critical to 

the success of rehabilitation of deeply disturbed post-mining sites (Banning et al., 2008). In 

study 2 experiment results, the readings of soil organic matter content in unamended subsoils 

did not differ much from the readings obtained from study 1 experiment (Chapter 2). It 

confirms, therefore, the correctness of the test. Again, both New Afton New Gold and Teck 

Highland Valley Copper unamended subsoils contained less SOM than the reference of 

undisturbed topsoils, respectively 2 and 4 times. Especially the subsoil from Teck Highland 

Valley Copper mine contained low amounts of SOM. New Afton New Gold subsoil SOM 

content was significantly larger than Teck Highland Valley Copper one (Figure 3.14). Poor 

Teck Highland Valley Copper subsoil SOM content might be one of the explanations why this 

mine unamended subsoil was not productive. Bauer and Black (1994) reported that in their 4-
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year experiment the highest total aerial dry matter and grain yields were associated to these of 

their study plots which possessed the highest SOM contents. Moreover, the loss of 

productivity was associated with a depletion of SOM. Bauer and Black (1994) explained that 

the deplation of SOM was associated with a loss of soil fertility which at the end resulted in 

decreased productivity. In this study the largest amount of SOM in the case of both mines was 

noted on subsoils amended by a mixture of soil amendments (See Figure 3.15). It is not 

surprising as this subsoil treatment contained volumetrically 25% of combined organic soil 

amendments. Plants growing on the “mixture” treatment produced extensive root system. That 

increased the final SOM results as well.  

Basic Elements 
 

In terms of basic elements, many analyses’ results from study 2 experiment were 

identical or very similar to study 1 experiment results (Chapter 2). Comparison in terms of 

basic elements contents serves to find more similarities and dissimilarities existing between 

New Afton New Gold and Teck Highland Valley Copper subsoils. Eventually, the differences 

found may explain large overall discrepancy in terms of two mines subsoils’ vegetation 

mortality and productivity. Results from both studies identified that New Afton New Gold 

subsoil contained significantly more: B, Ca, Fe, Mg, Mn, Na, S, Zn. On the other hand, Teck 

Highland Valley Copper subsoil contained significantly more: Cu, K, Mo (See Chapter 2 and 

Chapter 3 Results for Na, Appendices A and B for the rest of elements). Some of elements 

analyzed in both studies were listed by Marschner (1983) as essential mineral plant nutrients, 

meaning that in plant nutrition these elements cannot be replaced by any other element. These 

were Fe, Mn, B, Zn, Cu, Mo. From these list none seemed to scarce in analyzed unamended 

subsoils. Moreover, B in the case of New Afton New Gold subsoil, and Cu, as well as Mo in 

the case of Teck Highland Valley Copper were exceeding the CCME (2021) guidelines. 

However, the availability and uptake of nutritional elements is chiefly governed by soil 

substrate properties (Pandey, 2015), including soil microbial communities presence, activity, 

and facilitation (Jacoby et al., 2017). Therefore, a simple abundance of certain element in the 

soil substrate does not guaranty yet a proper elemental nutrition. 

On the other hand, such elements as C, N, P, and Zn differentiated subsoil treatments 

in both experiments. The concentrations of these elements were always higher in subsoil 

combinations amended by biosolids alone or a mixture (containing biosolids too) (See 

Chapter 2 and Chapter 3 Results for C and N; Appendices A and B for P and Zn). Since those 
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two subsoil treatments were the most productive as well it may be speculated that the 

concentration of one or more of these elements influenced positively the productivity.  

Analyzing all elements separately, and knowing their potential influence on 

vegetation, it seemed that a higher concentration of Na dragged the New Afton New Gold 

subsoil’s productivity down, while a higher concentration of K pulled the Teck Highland 

Valley Copper subsoil’s productivity up.  

Total Carbon 

Soil organic matter is a sink for carbon (Akala and Lal, 2000) and its role in CO2 

sequestration cannot be overestimated. Carbon is stored mainly in a form of organic matter in 

both living soil organisms and dead organic residues (Insam and Domsch, 1988) Ganjegunte 

et al. (2009) demonstrate that over years following the mine land reclamation the total carbon 

content in the soil substrate was shaped by the type of vegetation, substrate texture, as well as 

by lignine content. Antonelli et al. (2018) revealed that a single biosolids application to 

reclaimed mine tailings has facilitated plant biomass production and has enhenced the carbon 

accumulation for more than a decade. 

The results of study 2 experiment showed a large difference between both mines’ 

unamended subsoils in terms of total carbon content. While New Afton New Gold unamended 

subsoil’s total carbon content seemed to be low placing around 1.5%, the Teck Highland 

Valley Copper unamended subsoil’s total carbon was even around 6 times lower. The lack of 

total carbon certainly translates to low microbial carbon as well as low dead organic matter. 

That might be a reason for little Teck Highland Valley Copper's unamended subsoil 

productivity. Extreme lack of soil carbon may pose a large hindrance in terms of spontaneous 

recolonization by soil living organisms. Regarding this, a use of organic soil amendments, 

which would increase the substrate’s pool of carbon, appears as necessary for a successful 

ecosystem restoration on Teck Highland Valley Copper's subsoil. 

Quantitative and Qualitative Nitrogen Content Change 
 

Total Nitrogen 
 

In the second study the amounts of added biosolids were lowered strongly. Biosolids 

though was the only soil amendment among applied which provided noticeable amounts of 

total nitrogen. It was revealed in study 1 experiment (Chapter 2) that applied there plants grew 

the best on substrate possessing 0.10% to 0.20% of total nitrogen. In study 2 experiment all 
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the most productive treatments at the end of the experiment possessed the concentration of 

total nitrogen which fell into that interval (See Figures 3.20, 3.21). Wang et al. (2017) 

conducted a large scale mapping of total nitrogen content in Liaoning, a Chinese province. 

Their results showed that the largest concentration of total nitrogen noted in the 0-5 cm soil 

layer was 0.16%. Marx et al. (1999) provided an information that a typical agricultural soil in 

the Willamette Valley, which they analyzed, contained 0.10 to 0.15 % of total N. Therefore, 

an addition of 5% of biosolids may be close to ideal in terms of total nitrogen provision. What 

is worth noticing that with an addition of 5% biosolids volumetrically to the subsoil the well-

growing plants did not show any negative signs of overfertilization. 

New Afton New Gold subsoil total nitrogen content was significantly larger than Teck 

Highland Valley Copper total nitrogen content (See Figure 3.18). Such results were aligning 

to study 1 experiment (See Chapter 2 Results). Again the HVC unamended subsoil’s 

concentration of total nitrogen was extremely poor. Insufficiency of this intrinsic element, 

besides the lack of carbon, may pose an additional and potent hindrance in terms of 

spontaneous recolonization of reclaimed subsoil by soil living organisms as well as by plants. 

An availability of N strongly influences soil microorganisms abundance and activity. N deficit 

causes reduced efficiency of microbial biosynthesis (Blagodatsky and Richter, 1998). 

Additionally, microorganisms have to compete for nitrogen with plants (Kaye and Hart,1997). 

It is noticeable that in the experiment these plants that were provided with a decent amount of 

total C (in a form of biochar and woodchips), but deprived of N remained reluctant to grow.  

It confirms that nitrogen is crucial for ensuring plant growth. Alike to study 1 (Chapter 2), in 

study 2 in terms of total nitrogen, the closest treatment to the reference of undisturbed topsoil 

(“mixture” and “95%sub5%bios”) turned out as the most productive (See Figures 3.22, 3.23). 

What differed study 2 results from the study 1 (Chapter 2) was that the treatments amended 

by biosolids alone joined to the group of treatments which did not differ significantly from the 

undisturbed topsoil. That took place thanks to lowering the biosolids concentration to 5% 

only. 

For a second time, in the cases of both mines the final total N contents were lower than 

the initial ones (See Figure 3.19). However, the initial and final total N contents did not differ 

statistically either in the case of NA subsoil or HVC. That confirms that nitrogen gets 

depleted or lost but the process is relatively slow, which is a good news as vegetation and soil 

microorganisms may profit from the total N pool for a prolonged time. 
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Mineralizable Nitrogen 
 

Curtin and Campbell (2008) state that the rate of nitrogen mineralization depends on 

the quantity of mineralizable organic N in the soil and on environmental conditions. They also 

inform that large amounts of mineralizable N can accumulate under grassland. Only 1 to 4% 

of total N becomes plant-available during a growing season through mineralization (Marx et 

al.,1999). Thus, the mineralizable nitrogen plays a pivotal role in maintaining the entire N 

cycle by the release of mineralized nitrogen on the one hand, and by reception of dead organic 

matter for mineralization on the other one. 

The mineralizable nitrogen concentration in the case of study 2 experiment was 

remarkably lower in comparison to study 1 experiment (Chapter 2) which corresponds with 

the lower amount of biosolids applied. Initially, the biosolids-containing treatments stood out 

with an amount of mineralizable nitrogen among all other treatments, but similarly to total N, 

the final amount of mineralizable N was lower than the initial one. However, here again in the 

case of both mines, the differences between the initial and final mineralizable nitrogen 

contents were not statistically significant (See Figure 3.24). 

Initially, the treatments amended with 5% of biosolids alone contained around 140-

160 mg of mineralizable N/kg, while the treatments amended by a mixture of soil 

amendments placed a bit higher, around 160-170 mg/kg (See Figure 3.25). In comparison to 

the undisturbed topsoil, subsoils amended by biosolids alone or the mixture contained still 

much more mineralizable N, but only in the initial phase. At the end of the experiment though 

the amount of mineralizable nitrogen decreased strongly and approached to the reference of 

undisturbed topsoil. It indicates that the amounts on mineralizable N tend to stabilize over 

time. 

Available Nitrogen Forms: NH4
+ and NO3

- 

 

Alike to study 1 (Chapter 2), also in study 2 experiment the levels of available 

nitrogen strongly exceeded the level which Geng and He (2020) in their study adopted as 

high. Marx et al. (1999) stated that normal levels of NH4
+ are ranging from 2 to 10 mg/kg and 

levels of NO3
- over 30 mg/kg would be excessive. However, above values refer to natural or 

agricultural soils, but not necessarily to reclaimed soils. In natural soils the levels of available 

nitrogen forms stabilize on rather low levels as this forms are quickly taken up and utilized by 

soil organisms or plants. It is worth to notice that the amounts of available nitrogen forms in 
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undisturbed topsoils collected from vicinities of both mines were also low. Additionally, in 

these reference soils the  NO3
- prevailed. It testifies that in natural conditions nitrogen cycles 

fast and living organisms do not let mineralized forms of nitrogen stay unutilized in the soil 

for long. However, degraded soils are different. Mine reclaimed soils due to its deep 

degradation supposed receive large organic amendments dozing (Larney and Angers, 2012) 

providing more of available nutrient. 

After a closer look upon the mineralized forms of nitrogen provided by biosolids, it 

might be noticed that NH4
+ strongly prevailed over NO3

- (See Figure 3.31). Other two applied 

amendments did not provide much of either NH4
+ or  NO3

- (See Figures 3.27, 3.29). Initially, 

the treatments amended by 5% of biosolids alone contained around 110-120 mg/kg of 

mineralized nitrogen forms, whereof NO3
- was only around 5%. Treatments amended by a 

mixture of soil amendments contained a bit more of mineralized nitrogen, which was around 

120-160 mg/kg, but again, initially NO3
- constituted a lesser fraction. At the end of study 2 

experiment though, unlike to the first study, the level of available mineral nitrogen forms 

dropped significantly (See Figure 3.30). Additionally, the proportion NH4
+: NO3

- changed, but 

not as drastically as in the study 1 experiment (See Figures 2.33, 3.31). However, NO3
- started 

to play a more important role. This again confirms that in the open-air conditions, same as in 

the greenhouse, nitrification process prevails at the initial stage of reclamation after biosolids 

application to the reclaimed subsoil. 

Soopolallie Performance 
 

On both subsoils amended by woodchips alone, soopolallie experienced the largest 

average growth rate among all species. The same situation took place on Teck Highland 

Valley Copper subsoil amended by biochar. That may suggest that soopolallie can cope with 

harsh conditions of reclaimed mine unamended soils. Surprisingly, soopolallie didn’t take on 

on New Afton New Gold subsoil combinations that contained biosolids but did better on 

biosolids-free New Afton New Gold subsoils combinations. Many of soopolallie individuals 

produced nodulation which indicates that the process of nitrogen fixation was at least 

initiated. All above testifies that Shepherdia canadensis can be considered as a good 

candidate to become an efficient tool in deeply degraded mine soils. The ability for nitrogen 

fixation adds value to this species. Hendrickson and Burgess (1989) provided that in a 

regenerating lodgepole pine Pinus contorta stand in southern British Columbia Shepherdia 

canadensis fixed 0.78 kg/ha/year. It might seem not too much, however, once installed, 
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soopolallie can have a long lasting positive effect on reclaimed land by its constant nitrogen 

provision to the ecosystem. Rhoades et al. (2008) presented results showing that about half 

the 600 g total N/m2 accumulated across the newly formed river terrace chronosequence 

occurred during the 120 years when Shepherdia canadensis was dominant. Moreover, they 

informed that over years Shepherdia canadensis has enriched soil nitrogen pool several times 

more than willow Salix sp. 

CONCLUSION 
 

The second study experiment confirmed most of the observations from the first 

experiment which strengthen the credibility of both studies findings. The first study objective 

focused on differences and similarities between New Afton New Gold and Teck Highland 

Valley Copper subsoils. When experiment 2 confirmed that these two subsoils 

physicochemical properties differ strongly, one aspect is worth emphasizing – 

electroconductivity value of New Afton New Gold subsoil at the end of the experiment 2 

dropped much more than in the study 1 (Chapter 2) case. This means that in natural conditions 

the elution of sodium excess happened quickly. Observing the sodium leaching rate, it could 

be speculated that thanks to the wash out it rather would not take longer than two vegetation 

seasons that the Na concentration approaches to the undisturbed topsoil level. 

The second study objective focuses on soil amendments’ influence on mines’ subsoils. 

In experiment 2, unlike to experiment 1 (Chapter 2), the same amounts of biosolids (5% vol.) 

were used in two subsoil treatments ( 1. - “95%sub5%bios”, 2. - “mixture”). This aimed at: 

- verification whether smaller amounts of biosolids support plant growth to a similar extent 

as larger amounts applied in experiment 1 (Chapter 2), 

- verification whether the greater productivity of the “mixture” treatment over the 

“95%sub5%bios” treatment in experiment 1 (Chapter 2) was because other soil 

amendments (biochar, woodchips) were applied in the mixture and they supported the 

growth, or because an application of 25% of biosolids alone in “75%sub25%bios” 

treatment was simply a too large dose eventually reducing the productivity and increasing 

the plant mortality. 

Results from study 2 experiment have answered to both these questions. Firstly, the addition 

of only 5% of biosolids in both “95%sub5%bios” and “mixture” treatments resulted in much 

larger plant growth in comparison to all biosolids-free subsoil treatments, and secondly, the 

fact that there was no statistical difference in productivity and mortality between 
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“95%sub5%bios” and “mixture” treatments showed that the other two soil amendments in a 

mixture did not contribute to elevated productivity at least at the early stage of the 

reclamation. 

The third study objective focused on nitrogen cycling aspect. In study 2 experiment on 

one hand the dynamics of nitrogen compounds changes over time of the experiment were 

intensified by the open-air weather conditions such as high summer temperatures or occurring 

heavy downpours, and limited on the other hand by the simple fact of much lower biosolids 

application. The most important finding from both studies is that nitrogen cycling phases 

contributing to nitrogen loss pace relatively slowly allowing vegetation to profit from elevated 

nitrogen compounds concentration for longer time.  

In the second study three shrubby plant species were used, including a non-legume 

nitrogen fixer. Additionally, all three species are native plants of great ecological function 

fulfilled by blooming in late summer and early fall, being grazed by wildlife, providing shede 

for seedlings etc. It was observed that all three species did well on mine subsoils. That is why 

all three species seem to be good candidates to become valuable tools for the usage in mine 

reclamation. 

 

Figure 3.33 The second study open-air trial with three shrubby species: big sagebrush (Artemisia 
tridentata), common rabbitbrush (Ericameria nauseosa), and soopolallie (Shepherdia canadensis). 
Plants are randomized in 10 blocks.    

Photo credit Piotr Dzumek 
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CHAPTER 4: RESEARCH CONCLUSIONS 
 

RESEARCH SYNTHESIS  
 

 Fraser et al. (2015) state that mine reclamation should rebuild the entire ecosystem 

with its biodiversity rather than just restoring vegetation cover. Only restoration of a complete 

and fully functional ecosystem may bring sustainable and meaningful results. Simple 

revegetation by seeding agronomics, often non-native, might achieve temporary results only 

but lead to eventual collapse of the reclamation endeavor. It is clear that to restore a functional 

ecosystem all its components including ecological interactions and elements cycling need to 

be rebuilt. Usually, degraded mine substrates are not able to facilitate the sustainable and 

resistant ecosystem (Gardner et al., 2010). What makes the situation worse are the improper 

physicochemical properties of post-mining soils (Sheoran et al., 2010) that often contain high 

concentrations of heavy metals (Brown and Chaney, 2016). Both study experiments from 

chapters 2 and 3 demonstrated that the subsoils from New Afton New Gold mine and Teck 

Highland Valley Copper mine differed strongly. However, what they had in common was a 

deep lack of organic matter as well as plant and microorganisms nutrients. As both are 

essential for vegetation and microbiota, bare mine subsoils from two analyzed mines are 

rather not suitable to fulfill the role of topsoil restoration substrate in mine reclamation 

projects. This answers the first research objective. Nonetheless, both experiments 

demonstrated as well that the unfavorable features of analyzed mines’ subsoils could be 

bettered by soil organic amendments application.  

 Three organic soil amendments were applied in both research studies. From biochar, 

woodchips, and biosolids only the latter have brought positive, statistically significant results 

in both short-term experiments. Biochar and woodchips applied alone, as low in nutritional 

value and containing mostly the recalcitrant carbon, did not show any positive effect on either 

plant survivorship or productivity. Only biosolids demonstrated a positive effect on plant 

productivity, but when applied in excess demonstrated a negative influence on plant 

survivorship especially on New Afton New Gold subsoil. This may be attributed to the fact 

that biosolids is an organic material containing large concentrations of essential plant and 

microorganisms nutrients such as nitrogen, phosphorus, zinc, and sulfur. Additionally, these 

elements are present in chemical forms easy for biological uptake (Sullivan et al., 2015). 

However, when the dose is too large, an excess of the above elements can act adversely on 

plant tissues (Elhanafi et al., 2019). When woodchips and biochar applied alone did not act 

beneficially in short term due to their low elemental nutrients content and recalcitrant form of 
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carbon, they seemed to play important roles as overfertilization prevention and favorable 

substrate structure supporters when applied together with biosolids in the soil amendments 

mixtures. Results of this research confirm that neither biochar (Canadian AgriChar, 2020) nor 

woodchips (Cheng, 2008) should be applied on their own only but they act supportively to 

other organic or inorganic fertilizers. The above findings brought answers to the second 

objective of this research. 

 The third research objective focused on the qualitative and quantitative change of 

nitrogen in the mine subsoil subdued to reclamation treatments. Nitrogen is essential for all 

living organisms (Campbell et al., 2008). Therefore, the constant provision of this element 

and restoration of its cycling is necessary for mine reclamation to be successful. The main 

observation from both studies was that unamended subsoils from both mines were strongly 

deprived of nitrogen. None of the applied organic amendments but biosolids only was a good 

source of this intrinsic element. Plants take up nitrogen mainly in the mineral forms of NH4
+ 

and NO3
- (Geng and He, 2020). However, biosolids provide large amounts of ammonium only 

but hardly any nitrate. Some plats exhibit a preference for either mineral nitrogen forms 

(Tylova-Munzarova et al., 2005; Tang et al., 2020). This suggests that nitrate-oriented plant 

species would not perform well on either of mine subsoils even when amended by biosolids. 

Chalk and Smith (2020) demonstrate though that plants can be flexible in respect to the use of 

mineral nitrogen forms. Both studies' results of this research showed that throughout the 

length of experiments the total nitrogen content, along with mineralizable nitrogen, and NH4
+ 

content dropped, while NO3
- content increased. That in turn showed that nitrate-preferring 

plants can be applied in mine reclamation projects using subsoils amended by biosolids. Such 

plats would obtain their more suitable mineral nitrogen which would eventually result from 

the process of nitrogen transformation. 

MANAGEMENT IMPLICATIONS & FUTURE RESEARCH 
 

 As topsoil is scarce, there is an interest in whether the subsoil could be an effective 

substitute for topsoil in mine reclamation. However, as demonstrated in this research mine 

subsoils can differ strongly. Subsoils from one location may possess strongly negative 

physicochemical features that would eliminate such material from usage in mine reclamation. 

In other instances, a simple amelioration could alter subsoil features to the extent that such 

material might become a very valuable mine reclamation material. Concluding from this, 

subsoils vary strongly from place to place and because of this need to be well analyzed prior 
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to application in mine reclamation. Results from one mine might be not representative for 

another mine. 

 Organic amendments often turn out to be better than commercial fertilizers. Moreover, 

they can be combined bringing various beneficial features into the system. A combination of 

biochar, woodchips, and biosolids resulted in the largest plant productivity. Moreover, organic 

soil amendments result often as waste from local industry e.g. woodchips or communities 

habitation, and day-to-day functioning e.g. gardens’ waste compost or biosolids. That makes 

these potential soil amendments cheap and available locally which in turn minimizes the 

transportation needs lowering the cost (Larney and Angers, 2012; Piorkowski et al., 2015) and 

CO2 emission. However, organic soil amendments have also their downsides. For example, 

biosolids come as a by-product from municipal wastewater treatment (Sullivan et al., 2015). 

As such, this product might contain various unwanted substances like antibiotics, traces of 

household chemicals, and metabolites of medicines just to mention a few. There is no study 

which has demonstrated negative effects of biosolids to human health, nonetheless, above-

mentioned substances may possess ecotoxic features. Waterhouse et al. (2014) demonstrate in 

their study that despite plant productivity's strong increase an application of biosolids caused 

elevated mortality among native earthworms. Earthworm mortality in biosolids-amended soils 

was 100%, compared with 42% and 25% in stockpiled and unmodified soils respectively. 

This demonstrates a need for more research on soil amendments' ecotoxicity, 

bioaccumulation, the influence of composting times on organic amendments’ adverse 

features, proper proportions and dosing, as well as on potential substances leaching problem.  

Until recently, in British Columbia, agronomics were domint plants used in 

revegetation. This resulted from several facts: such plants had adaptability to a wide range of 

conditions, grew fast, prevented soil erosion quickly after being sown, and often presented 

high forage value, their propagules were easily available and significantly cheaper than native 

plants. Non-native graminoids or forbs such as legumes (e.g. alfalfa or clover) have been 

widely used for example as cover crops (Elias and Chadwick, 1979; Jefferies et al., 1981; 

Tribouillois et al., 2014). On the other hand, the importance and potential use of native plants 

in the field of revegetation was not well recognized and, therefore, few economic entities have 

dealt with the propagation of these plants. However, non-native plants have their 

disadvantages too. Often, these plants did not give way to native plants during the succession 

process (Davis et al., 2005). Besides, some of the introduced species could change their 

character to invaders. Another consequence of the presence of non-native plants is the 
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possible resistance to locally present population limiting factors such as diseases, or 

herbivory, which builds their competitive advantage over native plants. Yet, the non-native 

organisms are accused of bringing new, previously unknown diseases or other harmful 

organisms, such as non-native herbivorous insects, to these areas. With scientific investigation 

and shifting cultural values, more attention is being paid to increase our understanding and 

appreciation of native plants. Regarding the above further research on native plant species 

applicability in mine reclamation, especially species involved in nitrogen fixation such as 

field locoweed or soopolallie, would be a continuation of a good trend of transition from 

introduced agronomics to species native in British Columbia. 
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Appendix A – First Study Remaining Elements Results 
 

Carbon  

Figure A.1 Two mines’ subsoil total carbon content comparison in the initial and final stages of the 
experiment (left), comparison of the total carbon content in the initial and final stages of the 
experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New 
Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. 
initial n= 25, final n= 75 

Figure A.2 New Afton New Gold subsoil treatments total carbon contents comparison in the initial 
and final stages of the experiment. Subsoil treatments: 100%sub – unamended subsoil, 
75%sub25%bios – subsoil amended by 25% of biosolids alone, 75%sub25%wchip - subsoil amended 
by 25% of woodchips alone, 95%sub5%bchar – subsoil amended by 5% of biochar alone, mixture - 
subsoil amended by a mixture of amendments. Horizontal line indicates the median. Kruskal-Wallis 
test was used to compare the medians. Wilcoxon test was used for pairwise comparison * - p < 0.05, 
** - p < 0.01, **** - p < 0.0001, ns – difference not significant. initial n= 5, final n= 15 
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Figure A.3 Teck Highland Valley Copper subsoil treatments total carbon contents comparison in the 
initial and final stages of the experiment. Subsoil treatments: 100%sub – unamended subsoil, 
75%sub25%bios – subsoil amended by 25% of biosolids alone, 75%sub25%wchip - subsoil amended 
by 25% of woodchips alone, 95%sub5%bchar – subsoil amended by 5% of biochar alone, mixture - 
subsoil amended by a mixture of amendments. Horizontal line indicates the median. Kruskal-Wallis 
test was used to compare the medians. Wilcoxon test was used for pairwise comparison ** - p < 0.01, 
*** - p < 0.001, **** - p < 0.0001, ns, NS. – difference not significant. initial n= 5, final n= 15 

Figure A.4 Two mines’ subsoil aluminum content comparison in the initial and final stages of the 
experiment (left), comparison of the aluminum content in the initial and final stages of the experiment 
within each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New Gold. Horizontal 
line indicates the median. Kruskal-Wallis test was used to compare the medians. initial n= 5, final n= 25 
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Figure A.5 Two mines’ subsoil boron, calcium, copper contents comparison in the initial and final 
stages of the experiment (left), comparison of the boron, calcium, copper contents in the initial and 
final stages of the experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – 
New Afton New Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to compare 
the medians. initial n= 5, final n= 25 
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Figure A.6 Two mines’ subsoil iron, potassium, magnesium contents comparison in the initial and 
final stages of the experiment (left), comparison of the iron, potassium, magnesium contents in the 
initial and final stages of the experiment within each mine (right). HVC – Teck Highland Valley 
Copper, NA – New Afton New Gold. Horizontal line indicates the median. Kruskal-Wallis test was 
used to compare the medians. initial n= 5, final n= 25 
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Figure A.7 Two mines’ subsoil manganese, molybdenum, phosphorus contents comparison in the 
initial and final stages of the experiment (left), comparison of the manganese, molybdenum, 
phosphorus contents in the initial and final stages of the experiment within each mine (right). HVC –
Teck Highland Valley Copper, NA – New Afton New Gold. Horizontal line indicates the median. 
Kruskal-Wallis test was used to compare the medians. initial n= 5, final n= 25 
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Figure A.8 Two mines’ subsoil sulfur, zinc contents comparison in the initial and final stages of the 
experiment (left), comparison of the sulfur, zinc contents in the initial and final stages of the 
experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New 
Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. 
initial n= 5, final n= 25  
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Appendix B – Second Study Remaining Elements Results 
 

Carbon 

 

Figure B.1 Second study two mines’ subsoil total carbon content comparison in the initial and final 
stages of the experiment (left), comparison of the total carbon content in the initial and final stages of 
the experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New 
Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. 
initial n= 25, final n= 75 

Figure B.2 Second study New Afton New Gold subsoil treatments total carbon contents comparison 
in the initial and final stages of the experiment. Subsoil treatments: 100%sub – unamended subsoil, 
95%sub5%bios – subsoil amended by 5% of biosolids alone, 75%sub25%wchip - subsoil amended 
by 25% of woodchips alone, 95%sub5%bchar – subsoil amended by 5% of biochar alone, mixture - 
subsoil amended by a mixture of amendments. Horizontal line indicates the median. Kruskal-Wallis 
test was used to compare the medians. Wilcoxon test was used for pairwise comparison * - p < 0.05, 
** - p < 0.01, *** - p < 0.001, **** - p < 0.0001, ns – difference not significant.  
initial n= 5, final n= 15 
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Figure B.3 Second study Teck Highland Valley Copper subsoil treatments total carbon contents 
comparison in the initial and final stages of the experiment. Subsoil treatments: 100%sub – unamended 
subsoil, 95%sub5%bios – subsoil amended by 5% of biosolids alone, 75%sub25%wchip - subsoil 
amended by 25% of woodchips alone, 95%sub5%bchar – subsoil amended by 5% of biochar alone, 
mixture - subsoil amended by a mixture of amendments. Horizontal line indicates the median. Kruskal-
Wallis test was used to compare the medians. Wilcoxon test was used for pairwise comparison  
* - p < 0.05, ** - p < 0.01, *** - p < 0.001, **** - p < 0.0001, ns, NS.  – difference not significant.  
initial n= 5, final n= 15 

Figure B.4 Second study two mines’ subsoil aluminum content comparison in the initial and final 
stages of the experiment (left), comparison of the aluminum content in the initial and final stages of 
the experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New 
Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. 
initial n= 5, final n= 15 
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Figure B.5 Second study two mines’ subsoil boron, calcium, copper contents comparison in the initial 
and final stages of the experiment (left), comparison of the boron, calcium, copper contents in the initial 
and final stages of the experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – 
New Afton New Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the 
medians. initial n= 5, final n= 15 
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Figure B.6 Second study two mines’ subsoil iron, potassium, magnesium contents comparison in the 
initial and final stages of the experiment (left), comparison of the iron, potassium, magnesium 
contents in the initial and final stages of the experiment within each mine (right). HVC – Teck 
Highland Valley Copper, NA – New Afton New Gold. Horizontal line indicates the median. Kruskal-
Wallis test was used to compare the medians. initial n= 5, final n= 15 
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Figure B.7 Second study two mines’ subsoil manganese, molybdenum, phosphorus contents 
comparison in the initial and final stages of the experiment (left), comparison of the manganese, 
molybdenum, phosphorus contents in the initial and final stages of the experiment within each mine 
(right). HVC – Teck Highland Valley Copper, NA – New Afton New Gold. Horizontal line indicates the 
median. Kruskal-Wallis test was used to compare the medians. initial n= 5, final n= 15 
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Figure B.8 Second study two mines’ subsoil sulfur, zinc contents comparison in the initial and final 
stages of the experiment (left), comparison of the sulfur, zinc contents in the initial and final stages of 
the experiment within each mine (right). HVC – Teck Highland Valley Copper, NA – New Afton New 
Gold. Horizontal line indicates the median. Kruskal-Wallis test was used to compare the medians. 
initial n= 5, final n= 15 
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