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Abstract 

Spotted knapweed (Centaurea stoebe) is the most aggressive invasive forb in North 

American grasslands. Since its arrival, it has spread from the west coast of North America 

and reached far east. It has been able to accomplish this via the production of many small 

seeds per plant, and by altering soil conditions making it difficult for native plants to grow in. 

Control efforts have been extensive. Broadcast chemical controls have been applied, as well 

as biological and physical controls; however, despite these interventions, spotted knapweed 

continues to have negative effects on ecosystems and their functions. Spotted knapweed may 

have a negative legacy effect in the soils they inhabit, which perpetuates even after removal 

of this plant. To test for potential soil legacy effects, a greenhouse experiment was devised in 

which C. stoebe and rough fescue (Festuca campestris) were grown in different soil types. 

Activated carbon and pulp mill fly ash were used as soil amendments in each soil type in an 

attempt to return soils to a pristine state, and we found that F. campestris grew best in 

unamended invaded soils during a 90-day growing period. Pre-growing conditions of this soil 

displayed lower levels of both carbon and nitrogen compared to other soil types, indicating 

that F. campestris grew best in less hospitable conditions. As this was an unexpected result, a 

field experiment was designed in which different concentrations of ash were applied to 

transplanted rough fescue plugs; however, plug viability tapered off quickly after 

transplanting. Conclusions drawn from this study indicate ash as a potential soil amendment 

for knapweed-affected soils with directions for use in future research. Further investigation 

into the use of ash as a broadscale solution to negative soil legacy effects is warranted. Ash, 

an industrial waste product, could be potentially useful in areas heavily invaded by spotted 

knapweed in order to deter the spread of these noxious weeds. 
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Chapter 1: Introduction 

Invasive species are defined by three elements: 1) the species is introduced to a new 

area with human assistance, 2) the species can establish and spread without human 

assistance, and 3) the species is found far beyond its point of arrival (Simberloff, 2013). 

Introduced species, in comparison are defined only by the first element in the invasive 

species definition. Throughout the kingdom of life, there are many examples of both invasive 

and introduced plants, animals, fungi, and microorganisms (Lowe et al., 2000). Introductions 

of species may be intentional. For example, in re-introduction efforts to bolster wild 

populations of wolves in Yellowstone National Park (Phillips & Smith, 1997), or for 

aesthetic purposes to make a garden appear more vibrant or exotic. Introductions may also be 

unintentional, for example during an exchange of ballast water on ships dinoflagellates may 

be taken in at one international port and transported to another port where they would be 

released during the next ballast exchange (Hallegraeff, 1998). No matter the intent, humans 

are left to manage the consequences of these introductions, including a full-scale invasion by 

an introduced species. Once introduced, invasive species increase in abundance, often at the 

expense of native species (Simberloff et al., 2013). Without proper management and in more 

extreme cases, invasive species may devastate the biodiversity of an area by removing the 

local species to establish dominance (Simberloff et al., 2013; Vilà et al., 2011). 

Plants may have traits that allow for successful establishment into new areas. This is 

especially true for invasive plants. For example, small seeded invasive plants may go 

unnoticed and become attached to animals, our clothing or vehicles, allowing them to be 

transported long distances (Hodkinson et al., 1998). Other invasive plants can alter their 

surroundings by negatively altering soil conditions, thereby impacting available forage for 

grazing animals (Vilà et al., 2011; Watson & Renney, 1974). In British Columbia (BC), 

Canada, there are approximately 229 plant species that exhibit invasive traits (Ministry of 

Forests and Range - Range Branch, 2020). As a result, researching and developing strategies 

for managing these ecological threats should be prioritized. This is especially important in 

ecosystems under severe threat of collapse due to pressure from invasive species 

(Klinkenberg, 2012). In BC, grasslands account for less than 1% of the total land base but 

provide habitat for approximately 30% of the provinces’ species at risk, making grasslands 
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one of the most critical ecosystems to protect from the threat of invasion (Wikeem & 

Wikeem, 2004). Current management solutions in place for many invasive species are 

reactive (i.e., invasive plants are managed after they become problematic), though proactive 

approaches could allow us to prevent invasions altogether. In this way, land managers can 

prevent the spread of invasives before they negatively impact ecosystems. To achieve this, 

we first need a complete understanding of the invasive species in question. 

Lac Du Bois Grasslands Protected Area, a provincial park located north of Kamloops, 

BC, is a complex mosaic of both pristine grassland and disturbed, invaded landscape. The 

undisturbed areas of the upper Lac Du Bois park are described as rough fescue (Festuca 

campestris) grassland woven with layers of shrubs, forbs, grasses, and biological crusts 

throughout (Delesalle et al., 2009). Many invasive plants have made their way into this 

region, some forming large patches that lie adjacent to native plant communities (Invasive 

Alien Plant Program, 2017). Spotted knapweed (Centaurea stoebe L.) is an invasive plant 

readily found in this park despite the control efforts that have been applied since 1970 (Fraser 

& Carlyle, 2011; Gayton & Miller, 2012). The impact spotted knapweed may have on 

ecosystem function, its mechanisms of invasion, and its susceptibility to control methods 

deserve further attention.  

 

SPOTTED KNAPWEED 

In B.C., spotted knapweed (Centaurea stoebe L.) is considered an invasive, noxious 

forb (Klinkenberg, 2012). It is hypothesized to have arrived in North America in the late 

1800s, likely as a contaminant in alfalfa seed shipments from Europe (Moore, 1972; Moore 

et al., 1974). Spotted knapweed inhabits upper grassland regions near forest interfaces where 

it roots in rich soils. Since its arrival in North America, spotted knapweed has genetically 

diverged from its European ancestry, thereby becoming an invasive plant in two key ways: 1) 

it is diploid at the chromosome level when found in Europe but in North America it is 

tetraploid, and 2) it is a biennial plant in Europe, whereas it is a more aggressive and short-

lived perennial in North America (Jacobs, 2012). As such, these changes warrant that spotted 

knapweed be placed into two subspecies based on location. The native, European, diploid 
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biennial is classified into subspecies Centaurea stoebe spp. stoebe, and the invasive, North 

American, tetraploid perennial is subspecies Centaurea stoebe spp. micranthos (Integrated 

Taxonomic Information System, 2017; Jacobs, 2012; Keil & Ochsmann, 1993). However, 

there is still a lack of uniformity of the scientific name applied to North American spotted 

knapweed. For example, the Encyclopedia of Life (EOL), The Plant List, and the Pan-

European Species directories Infrastructure (PESI) list North American spotted knapweed as 

Centaurea stoebe ssp. australis (Pančić ex A. Kern.) Greuter, but the Integrated Taxonomic 

Information System (ITIS), United States Department of Agriculture (USDA) PLANTS 

Database, and E-Flora BC refer to spotted knapweed as Centaurea stoebe ssp. micranthos L. 

(Gugler) Hayek (Carpinelli, 2013; Greuter, 2007; Integrated Taxonomic Information System, 

2017; Klinkenberg, 2017; The Plant List, 2013; USDA NRCS, 2017). Generic and scholarly 

search tools return more results for the term “Centaurea stoebe ssp. micranthos” compared to 

the term “Centaurea stoebe ssp. australis". For this reason and for simplicity, C. stoebe will 

refer to Centaurea stoebe spp. micranthos throughout this thesis, unless otherwise specified.  

Centaurea stoebe reproduces only by seed production and may produce tens of 

thousands of seeds per square meter in a single growing season (Jacobs, 2012; Schirman, 

1981). This method of reproduction allows C. stoebe to continually expand within existing 

stands as many of the seeds will drop in the immediate vicinity. When mature, seeds disperse 

via attachment to animals or vehicles, wind, or water (Sheley et al., 1998). Seeds have a high 

chance of germinating once they are established in an area, and can remain viable in soils for 

eight or more years (Davis et al., 1993). Combined, these traits allow for rapid dispersal. In 

North America, spotted knapweed is now found in 46 states within the United States and 

eight provinces and territories of Canada (Desmet & Brouilet, 2013; EDDMapS, 2017). 

Seedlings emerge during the first year of growth and share physical similarities with some 

other forb species (Figure 1.1). The next growth stage is the rosette, characterized by 

pinnatifid leaves with many narrow teeth. The rosette may develop directly from the seedling 

within the same growing season depending on when the seedling first emerged. Finally, 

flowering plants are upright with highly branched stems and pink to purple flowering heads 

on the branch ends. When C. stoebe is flowering, it can be distinguished from other forbs and 

knapweeds by the black-tipped involucre bracts beneath the flowering head, giving it a 
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spotted appearance and lending to its name. There may be up to 30 flowers in each composite 

flowering head, all producing one seed each. With large, branching individuals, it is thus 

reasonable to observe a single plant producing over 10,000 seeds. 

 

 

Figure 1.1: Aboveground development of Centaurea stoebe from seed (left) to an adult 

flowering plant (right). In Keil & Ochsmann (1993), courtesy of the Flora of North America 

Administration, illustrated by John Myers. 

 

Belowground, C. stoebe has a deep taproot which presents another challenge for 

restoration and management of this weed (MacDonald et al., 2013). The lateral root system is 

moderately sized in relation to the taproot and forms larger mats in older individuals, making 

it more difficult to remove. On top of that, the root system as a whole has the ability to 

negatively influence surface runoff, soil erosion, plant communities, and ecosystem 

processes compared to pristine areas (Lacey et al., 1989). C. stoebe, when established, will 

drain soils of available nutrients and water faster than native plants. This induces a cascade 

where C. stoebe outcompetes native plants, reduces biodiversity, and increases the amount of 

runoff and soil erosion that a given area receives. Furthermore, this plant is suspected to 

release catechin into the soil, a phytotoxic chemical that inhibits the growth of nearby plants 

(Bais et al., 2003; Reinhart & Rinella, 2011; Ridenour & Callaway, 2001). To sum up, C. 
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stoebe produces numerous seeds which remain viable for years and can outcompete other 

plants for resources and space. 

Currently, there are a few methods in use to eradicate C. stoebe in North America. 

One method is physical removal by hand pulling (Jacobs, 2012; Sheley et al., 1998). This 

method works well in certain scenarios if a few conditions are met: 1) when the soil is wet as 

this allows for the entire plant with taproot to be removed, 2) individuals are immediately 

placed in sealed plastic bags to prevent the spread of seeds or pollen during transportation, 

and 3) the site is revisited in later years as multiple hand removal events are required. This 

method is often avoided due to the reliance on suitable weather and the need for repeated 

visits. Thus, biocontrol agents and herbicide treatments have been attempted for controlling 

this weed. In BC, there are at least 12 biocontrol insects that have been used to target C. 

stoebe (Gayton & Miller, 2012; Invasive Species Council of British Columbia, 2014; 

Province of British Columbia, 2002). Some of these insects will feed on the root system of 

the knapweed, which can disrupt the belowground functioning, and structural integrity of the 

plant itself (e.g., Cyphocleonus achates, a wood boring weevil). Other biocontrol insects 

forage the seeds and seed heads of the knapweed plant which ultimately decreases the level 

of spread and invasion (ex: Larinus minutus, a seed-feeding beetle). It is also possible to 

reduce C. stoebe biomass through grazing with sheep and goats, as well as cattle though it is 

less palatable to them (DiTomaso, 2000; Olson et al., 1997). Targeted grazing on invasive 

plants has had some positive effects in the ranching industry (Voth, 2010). Although grazing 

by livestock is a form of biological control, it may not be feasible to graze all invaded areas 

due to accessibility and terrain (Olson et al., 1997).  

In addition to mechanical or grazing controls, chemical controls have shown to 

reduce the spread of C. stoebe. Herbicide use is the most common form of control of C. 

stoebe, though some precautions should be considered: 1) picloram is the most effective 

active ingredient in herbicide treatments against both C. stoebe and C. diffusa, but should 

avoid being used on coarse soils since it can negatively impact neighboring broadleaf herbs, 

and 2) it is best to apply herbicide treatments to the rosette stage of a plants development 

(Mackay, 2008). The broad use of herbicides may bring forth challenges into the future with 

regards to chemical resistance. This has been first documented in 2016 in an invaded range in 
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East Kootenay, BC. This range had been historically treated with various herbicides to deal 

with the spread of C. stoebe, and when individuals from this range were grown in a 

greenhouse alongside plants from a historically untreated range, applications of picloram and 

clopyralid did not have as pronounced of a response in plants from treated areas as opposed 

to plants from untreated areas (Mangin & Hall, 2016). The implication of resistance 

demonstrates that further action is required to mitigate the invasive action of C. stoebe and 

perhaps long-term management methods should be developed to limit the impact of C. stoebe 

on the ecosystems it invades. 

Restoration efforts associated with the spread of C. stoebe are mostly tailored towards 

revegetation of an affected area after treatment, usually with a native seed mix (Jacobs, 

2017). Obviously, there is support for this method because it re-establishes past communities, 

increases biodiversity, and improves soil conditions and ecosystem health. However, this 

ignores the existing seed bank as well as the physical and chemical makeup of the affected 

soils. While combinations of mechanical, biocontrol, and chemical treatments can address the 

seed bank issue, these treatments do not address changes of soil structure and composition. 

Specifically, the accumulation of phytotoxins in invaded soils can leave a long term or legacy 

effect that persists into the future, inhibiting reseeding efforts (Del Fabbro & Prati, 2015; 

Grove, 2014; Grove et al., 2012). Such legacy effects have yet to be studied in detail, and it is 

unknown with C. stoebe how important these effects are or how to effectively treat them. A 

better understanding of these legacy effects is thus necessary for land managers to strategize 

restoration plans. 

 

ROUGH FESCUE 

Grasslands in BC can be divided based on elevation, plant communities, and climate 

patterns. From valley bottoms to about 600 m above sea level, lower grassland communities 

are generally dominated by drought resistant shrubs of big sagebrush (Artemisia tridentata) 

and groups of bluebunch wheatgrass (Pseudoroegneria spicata) (Lee et al., 2014; van 

Ryswyk et al., 1966). These regions of the grasslands are typically hotter and drier than other 

grassland regions. As a result, moisture is limiting and can lead to large gaps of bare ground 
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between individual plants. A transition zone between lower and upper grassland communities 

occurs between 600-900 m above sea level. These middle grasslands receive more moisture 

than in the lower grasslands causing a reduction of A. tridentata, but other dryland plants 

common to the lower grasslands, including P. spicata, remain present in this zone. Upper 

grasslands tend to occur near Interior Douglas Fir forests between 900-1200 m above sea 

level. There are smaller gaps between individual plants at this level and thus a higher total 

cover of vegetation. Mild temperatures and increased precipitation ultimately allows for 

greater plant diversity compared to lower elevation grasslands as well (Wikeem & Wikeem, 

2004). The upper grassland communities are commonly dominated by rough fescue (Festuca 

campestris Rydb.), a cool season, native, perennial bunchgrass (Fleenor, 2011). Biological 

crusts and a heavy litter layer assist in moisture retention in these grasslands which assist in 

the development of rich soils; however, these favorable growing conditions also allow for 

invasive plant encroachment and subsequent ecosystem damage (Delesalle et al., 2009; 

Fraser & Carlyle, 2011).  

Festuca campestris forms large bunches from the older leaves which aid in moisture 

retention. It forms a fibrous root system but does not penetrate deep soils. Leaves are 

generally 10-60 cm long, 1-2 mm wide, and rough on the lower surface (Fleenor, 2011). 

Stems stand 30-90 cm tall without nodes and, when mature, the inflorescence is paniculate 

measuring 5-18 cm in length with 2 branches per node (Figure 1.2). Spikelets are 8-12 mm 

long housing between 3-7 florets and are purplish (Douglas et al., 2001). The glumes of the 

spikelet are shorter than the floret, and the lemmas, which are either sharply pointed or 

awned, measure between 7-8.5 mm long. F. campestris reproduces primarily via vegetative 

regeneration or seed production, though the amount of seed produced can vary by year (Hook 

et al., 1994; Johnston & MacDonald, 1967). This presents further opportunity for invasive 

plants to establish in years that fewer seeds are produced simply by germinant number. 

Fortunately, germination rates are relatively high for this species (86-97%), thus in habitable 

areas not affected by invasive plants F. campestris can successfully establish and become 

forage for herbivores (Fleenor, 2011; Johnston & MacDonald, 1967).  
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Figure 1.2: Flowering structures of Festuca campestris with approximate measurements. In 

Darbyshire & Pavlickf (1993), courtesy of the Flora of North America Administration, 

copyright Utah State University, illustrated by Cindy Roché. 

 

Festuca campestris is often preferred by grazing livestock (Fleenor, 2011). 

Incidentally, it has high protein content which is retained even when hayed for winter 

grazing, thus it has a high forage value (Alberta Prairie Conservation Forum, 2017). In turn, 

livestock improve grassland conditions by providing a fertilizer (nitrogen) through their 

waste which can continue to be useful even after the year it was applied (Forge et al., 2005; 

Schröder et al., 2007). Despite this reciprocal relationship, research in Alberta has shown that 

over-stocking a rangeland can have negative consequences including decreases in F. 

campestris cover, increases in less valuable forage, and deterioration of the grasslands 

(Willms et al., 1985). Overgrazing may also be a precursor to plant invasion as well, 

therefore it is imperative that ranchers manage their livestock effectively to avoid these 

impacts and ensure more productive grasslands in future growing seasons for their livestock 

(Mack et al., 2000). With such high importance in ecosystem function and within the 
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ranching industry, rough fescue is an ideal and important plant to study alongside the 

invasive, noxious spotted knapweed. 

 

ACTIVATED CARBON 

Activated carbon (AC) is a fine, porous material known for its binding properties and 

adsorption abilities (Bansal & Goyal, 2005; Chiang et al., 2001; Hameed et al., 2007). More 

technically, AC contains spaces enclosed by carbon atoms in between graphene layers, and 

during an activation process AC will develop adsorption sites which will vary in size and 

shape (Marsh & Rodríguez-Reinoso, 2006c). Activation of carbon molecules can happen 

through thermal, physical, or chemical means, thus AC is always a synthetic product (Marsh 

& Rodríguez-Reinoso, 2006a). The final product has an incredibly large surface area per unit 

volume due to the atomic porosity of the material. AC has a wide variety of uses. 

Industrially, it has uses in water purification, air pollution reduction, removal of dyes from 

wastewater, and methane storage, all accomplished by adsorption processes (Marsh & 

Rodríguez-Reinoso, 2006b; Pereira et al., 2003; Rodríguez-Reinoso, 2002). AC also has its 

use as a consumer product where it is commonly used as an aquarium water purifier. These 

adsorptive properties have spawned research on the potential removal of allelopathic 

compounds from invasive plants using AC as a soil amendment (Nilsson, 1994; Prati & 

Bossdorf, 2004; Ridenour & Callaway, 2001). Catechin, the suspected allelopathic 

compound of C. stoebe, is also readily adsorbed by AC when added to soils (Callaway & 

Aschehoug, 2000). The use of AC thus is important in studies of allelopathy; however, its use 

in studies of soil legacy effects are unclear. For instance, Grove et al. (2012) studied the 

effects that the invasive Cytisus scoparius (allelopathic shrub) had on Douglas-fir in the 

western US. They found that Cytisus invaded soils negatively affected the growth of 

Douglas-fir in comparison to soils from the nearby non-invaded forest. The invaded soils 

continued to have a negative effect on Douglas-fir growth in the presence of either AC or 

Cytisus litter alone, but the combination of AC and Cytisus litter had a positive effect on 

Douglas-fir growth possibly caused by a fertilizing effect of the litter. These results 

suggested that hand pulling an invasive plant was not enough to encourage native plant 
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growth in the area; rather, a soil amendment was required to overcome the soil legacy effects 

of Cytisus scoparius. A separate study has shown that soil legacy effects can influence native 

plant growth in an opposite manner as well. Del Fabbro and Prati (2015) examined the role 

of soil legacy in comparison to immediate allelopathy on native plants in pairwise 

monocultures and mixtures with invasive plants. They did not find evidence that invasive soil 

legacies affect the growth of native plants in monocultures, but in competitive mixtures with 

invasive plants the results varied: the addition of AC positively affected the growth of native 

plants, while no soil amendment (i.e.; the invaded control soil condition) negatively affected 

native plants. These findings are contradictory to those by Grove et al. (2012), but still 

illustrate that AC can play a role in invasion ecology and that its role may vary from one 

invasive species or community to the next. Results like this require further investigation 

using other invasive and native plants from other areas of the world. 

If AC can be an effective tool for restoring native plant communities impacted by 

aggressive invasive plants, then it is important that we find solutions that are economically 

feasible and environmentally beneficial. At the time of writing, laboratory grade AC from 

Fisher Scientific was available at a price of $1493 for a total of 2,100 g of the product (Fisher 

Scientific, 2021). For laboratory experiments, this may suffice but in terms of field studies, it 

is important we find less expensive alternatives. Pulp mill fly ash, a free industrial waste 

generated by the pulping process, contains some amount of carbon in the activated form and 

should thus behave similarly to laboratory grade activated carbon with regards to adsorptive 

properties (Ahmaruzzaman, 2010; Wang & Wu, 2006). There have not been many studies 

conducted using pulp mill fly ash for adsorbing biochemical products; however, bagasse fly 

ash, the waste product from sugarcane mills, has been used extensively in research due to its 

ability to adsorb various chemical and biochemical compounds (Mall et al., 2005; Rafatullah 

et al., 2010; Srivastava et al., 2006). The pulping processes that yield bagasse fly ash and 

pulp fly ash are very similar when Kraft pulping is involved (Biermann, 1996; Rainey & 

Covey, 2016), therefore I proposed the use of pulp fly ash from Domtar Pulp Mill in 

Kamloops, BC, to be used as a soil amendment for treating the biochemical release of 

phytotoxins by C. stoebe. The adsorption effectiveness of fly ash was compared alongside 

laboratory grade AC purchased from Fisher Scientific. 
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FLY ASH 

Fly ash in this experiment was sourced from the pulping process occurring at Domtar 

Pulp Mill in Kamloops, British Columbia. Starting from wood chips, this mill produces 

northern bleached softwood kraft (NBSK) paper products, cellulose fibres, and other 

specialty pulp grades (Domtar Corporation, 2017). One of the by-products of the pulping 

process is fly ash, which is generally stored on site or relocated to a landfill (Ahmaruzzaman, 

2010; Pöykiö et al., 2004). Alternative uses have been found for this waste material including 

being used in asphalt surfacing (Naik et al., 1994), removal of various toxic compounds and 

waste materials from wastewater (Burgess et al., 2009; Rafatullah et al., 2010; Wang & Wu, 

2006), and as a fertilizing soil amendment (Basu et al., 2009; Bi et al., 2009; Pöykiö et al., 

2004). For the current study, it will be used as a soil amendment with the goal of adsorbing 

inhibitory biochemicals left behind by C. stoebe. We may find that it acts as a fertilizing 

agent and positively affects growth, though this would be a secondary effect of the material. 

It is important to note that the application rate of fly ash can have varying effects on 

the soil chemistry and plant growth. Lower application rates have been associated with 

greater seed germination and may also stimulate sugar production in plant tissues, whereas 

higher rates may inhibit plant growth and sugar production (Singh et al., 1994, 1997). The 

addition of fly ash may directly or indirectly affect soil microbial activity which could be the 

reason for the varying growth effects of fly ash application rate (Gupta et al., 2002). Nitrogen 

fixing bacteria can convert nitrogen gas and organic nitrogen to ammonium which is then 

used by nitrifying bacteria (Fowler et al., 2013). In the absence of plants, nitrifying bacteria 

have the opportunity to convert ammonium to nitrate, which is then used by denitrifying 

bacteria to convert it back to nitrogen gas. Nitrate may also be assimilated in plant roots to be 

used by plants during growth; however, there is a point where plants can no longer absorb 

any more nitrate. At this point, denitrifying bacteria would convert the excess nitrate to 

nitrogen gas. When fly ash is applied, a small amount of organic nitrogen is also added to the 

soil which would stimulate the production of nitrate via the nitrification process, resulting in 

the greater germination. Higher application rates of fly ash may cause denitrifying bacteria to 
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rapidly reproduce, thereby causing the negative effects towards plants since they would be 

converting abundant soil nitrate to nitrogen gas. Low application rates of fly ash appear to 

have greater benefits for the resulting plants (Gupta et al., 2002; Singh et al., 1994, 1997). 

This should be a strong consideration for usage in research. 

 

CURRENT STUDY 

The soil legacy effects of Centaurea stoebe on Festuca campestris was characterized 

in a controlled greenhouse environment. Festuca campestris is commonly found throughout 

the upper grasslands in BC and has a clear negative response to invasive weed presence 

(Kuang, 2015). Field collected soils were amended either with fly ash from the local Domtar 

Pulp Mill in Kamloops, BC, or Fisher brand AC, or not amended at all. The growth of C. 

stoebe and F. campestris was compared under these soil treatments and the following 

questions were asked: 

1. Are soil legacy effects from C. stoebe dominated sites impacting the 

establishment and growth of rough fescue seedlings? And 

2. Can activated carbon and pulp mill fly ash be used as mitigating factors on 

potential allelopathic chemicals residual in soils collected from spotted 

knapweed-dominated sites? 

The results of the first question will allow native grassland restoration efforts 

following spotted knapweed removal to become more detailed and focussed. Results from 

the second question will be used to determine the feasibility of adding fly ash to the 

restoration tool kit for spotted knapweed affected areas. Additionally, a field study was 

conducted to determine the applicability of these amendments in a field setting. The 

application of fly ash would provide further use to this waste product and would be relatively 

inexpensive for restoration purposes.  
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Chapter 2: Examining soil legacy effects of Centaurea stoebe in 

the context of the Lac Du Bois Grasslands Protected Area 

INTRODUCTION 

Invasive plants can exploit new areas through its reproductive biology, a lack of 

competitors or predators in the new area, or disturbance in the area they will inhabit (Mack et 

al., 2000). Centaurea stoebe is a good example of an invasive plant, with its ability to rapidly 

produce thousands of viable, small seeds that readily spread to new areas, root, develop into 

new adult plants, reproduce and begin the process anew (Jacobs, 2012; Jacobs & Sheley, 

1998). Furthermore, it is suspected that C. stoebe can release catechin into the soils, a 

phytotoxin thought to be responsible for its invasive success (May & Baldwin, 2011; Perry et 

al., 2007; Pollock et al., 2011). There is debate in the literature as to whether catechin release 

occurs and whether catechin has an effect on native plant communities (Bais et al., 2003; 

Blair et al., 2006; Callaway & Ridenour, 2004; Duke et al., 2009; Stermitz et al., 2009). 

While it is difficult to confirm whether C. stoebe actively releases catechin into the soils, it 

deserves a review of the research that has been done in the past that assesses catechin and, 

more specifically, the mode in which catechin inhibits native plant growth. Finally, a 

discussion on soil legacy effects is necessary to establish the grounds for this study and to 

determine whether this plant does exhibit these traits. 

 

Immediate Soil Effects and Catechin 

Since arriving in North America in the late 1800s, C. stoebe has made its way across 

most of the Canadian provinces and American states making it a destructive invasive weed. 

Efforts to study its soil invasion properties have been met with mixed results. In 2003, Bais et 

al. founded the “novel weapons hypothesis”, which states that an invaders success is due to 

that invader possessing a “novel weapon”, or biochemical, against the native species it is 

infringing upon (Bais et al., 2003; Callaway & Ridenour, 2004). The researchers developed 

this hypothesis in an experiment using C. stoebe as their model invasive species, where they 

provided evidence of C. stoebe releasing catechin through its roots into the soils. When a 
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susceptible species encounters it, it triggers root death via the generation of reactive oxygen 

species at the target species’ root meristem (Bais et al., 2003). It is thought that C. stoebe 

may be successful due to this release of catechin into the soils. Since this discovery, several 

studies have attempted to replicate this design but have shown contradictory results (Blair et 

al., 2005, 2006; Perry et al., 2007). In fact, this was addressed in 2010 when a correction for 

the Bais et al. paper (2003) was published stating that only one other report (see: Perry et al., 

2007) found catechin in invaded soils at similar concentrations (“Corrections and 

Clarifications,” 2010). Other labs that have attempted to replicate their design have not been 

able to detect catechin in such high concentrations, or at all (Blair et al., 2005, 2006; Tharayil 

et al., 2008). 

The debates regarding the nature of catechin with regards to C. stoebe and its soils 

continue, yet there are still vast amounts of evidence that through some means C. stoebe is 

negatively impacting native plant communities (Gayton & Miller, 2012; May & Baldwin, 

2011; Story, 1976; Story et al., 2008). Perhaps, the prevailing ecological conditions are all 

that is driving the competitive nature of C. stoebe. It has been suggested that animal 

herbivory can account for the loss of native species in areas adjacent to shrubs due to 

preferential grazing (Bartholomew, 1970). Indeed, C. stoebe is naturally unpalatable to 

grazing mammals and requires biological control or targeted grazing efforts for herbivory to 

occur (Story, 1976; Watson & Renney, 1974). Another explanation for C. stoebe’s 

competitive advantage argues that the changing soil conditions following exotic plant 

invasion lead to a reduction in native plant biodiversity. A study examining C. stoebe patch 

size found that the larger an invaded area is, the less available N and C are within the soils 

(Fraser & Carlyle, 2011). These elements are crucial to the growth and establishment of most 

plants and when they are less available, the resulting grassland will appear less productive 

and healthy. The lack of vegetation on the landscape can also influence other soil properties 

as well. Fraser and Carlyle (2011) found this when comparing knapweed communities to 

native grassland communities: soil temperature, total phosphate, and total potassium within 

the knapweed invaded soils increased while water content, litter biomass, species richness 

and diversity decreased. It is plausible to assume that the removal of a large knapweed patch 
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would not result in the plant community returning to a pre-invaded state due to the altered 

properties incurred from invasion.  

 

Soil Legacy Effects 

In certain cases where an invasive plant has established a large colony and existed for 

an extended period of time, alterations to the soil may have occurred which make long-term 

restoration plans more difficult to achieve (D’Antonio & Meyerson, 2002). One alteration 

may be the addition of invaded seed to the seed bank over time compared to recently 

invaded, or non-invaded areas. Holmes and Cowling (1997b, 1997a) studied this and found 

that species richness, cover, and frequency of standing vegetation were inversely correlated 

with timing of invasion by Acacia saligna (Labill) Wendl. They found a similar pattern when 

it came to native seedling recruitment after clearing the area of the invasive Acacia (i.e.: less 

seedlings established in areas that were invaded for a longer period of time compared to areas 

that were invaded for shorter time periods and non-invaded areas). Ultimately, they provided 

evidence of persistence of an invasive plant even after its removal from an area. Other work 

has shown evidence of altered soil chemistry persisting after plant invasion. Maron and 

Jefferies (2001) describe the invasive bush lupine (Lupinus arboreus) as a N-fixing shrub 

that enriches the soil with N, and an increase in N has been shown to decrease diversity in 

grasslands (Foster & Gross, 1998). The experimental removal of bush lupine allowed other 

plants to establish, including early successional perennial forbs that were both native and 

exotic. These forbs retain plant-available N in their roots and very slowly uptake N from the 

soils, whereas later successional species will uptake soil N more quickly. With high amounts 

of soil N, the shift back to a fully native plant community is slowed or even halted due to the 

lingering presence of early successional forbs, even after a 5-year study period. In this way, 

bush lupine is still affecting the resulting ecosystem in its absence. Conversely, other 

invasive plants can deteriorate soils by leaving behind a nutrient deficit. Using N again as an 

example, soils in the patches of C. stoebe have exhibited consistently less total N than their 

native soil counterparts, which influences future restoration strategies and plant communities 

(Fraser & Carlyle, 2011; Kuang, 2015). In all these examples, invasive plants are continuing 
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to negatively affect plant communities that they no longer inhabit, leaving behind soil legacy 

effects which make long-term restoration more difficult to achieve.  

Few studies have evaluated the hypothesis that soil legacy effects are, in fact, present 

in recently invaded areas. One novel study uses a comparative approach to estimate 

immediate allelopathy and soil legacy effects of eleven different invasive species on two 

native species (Del Fabbro & Prati, 2015). Specifically, soil was collected from eleven sites 

where an invasive species was found, and at sites adjacent to the edge of invasion (within 2-5 

m). Both soil types were split in half: one half received an AC treatment to neutralize 

allelochemicals, whereas the other half did not receive this treatment. Then, pairwise 

treatments were set up in each soil type. Each native species was grown by themselves, the 

invasive species was grown by itself, and then there were competition trials as well for a total 

of 5 treatments in 4 different soil types for each invasive plant. Their results suggested that 

native plant performance was determined by both immediate allelopathy and soil legacy 

effects of an invasive plant, and that the physical removal of an invasive plant should trigger 

the restoration of a native plant. The study did not use invasive plant members from the 

genus Centaurea; however, this study provides a great model on which to base a similar 

study evaluating the soil legacy effects of C. stoebe in a greenhouse setting. 

Thus, in a similar manner to Del Fabbro and Prati’s work (2015), I performed a 

comparative study growing Festuca campestris and Centaurea stoebe in six different soil 

treatments in a controlled greenhouse environment. The role of C. stoebe’s soil legacy effects 

on F. campestris was studied, and the role of ash as a tool for restoration was explored. The 

following research questions were addressed throughout this study: 

1. Are lingering soil legacies from Centaurea stoebe-invaded soils affecting the 

germination, survival, mortality, and biomass of the native grass, Festuca 

campestris? And, 

2. Can pulp mill ash be used to treat Centaurea stoebe-invaded soils and foster 

better growth of Festuca campestris? 
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Additionally, plant invasion in the Lac Du Bois Grasslands Protected Area is 

compared to B.C. using publicly available datasets and freely open-sourced geographic 

information system (GIS) tools. 

 

METHODS 

Site Selection 

Prior to the greenhouse study, sites needed to be located for soil collection and, to 

ensure that soils came from “invaded” or “pristine” areas. Plant surveys needed to be 

conducted to objectively classify these areas. The area under investigation resides in the 

upper elevation grasslands of Lac Du Bois Grasslands Protected Area (GPA), north of 

Kamloops, B.C. This park has been a focal point for much research in the past due to the 

interesting ecological gradient that appears with subtle changes in elevation. The Lac Du 

Bois GPA spans an elevation gradient from approximately 400-1200 m a.s.l., and 

encompasses an area approximately 15,000 ha (Delesalle et al., 2009). Lower elevations are 

dominated by dryland shrubs and patches of bluebunch wheatgrass amidst the bare ground 

and tend to occur in the bunchgrass biogeoclimatic zone where there are higher temperatures 

and lower amounts of precipitation. These lower grasslands occur up to approximately 600 m 

a.s.l. and due to the climatic restrictions results in lower overall vegetative cover. Middle 

grasslands are generally found between 600-900 m a.s.l. and are also dominated by 

bluebunch wheatgrass, though the occurrence of dryland shrubs decreases significantly. 

There is a greater amount of vegetation cover in these grasslands compared to lower 

grasslands, and there is also a significant presence of spotted knapweed. Upper grasslands 

span an elevation gradient of approximately 900-1200 m a.s.l. and are dominated by fescues 

and needlegrasses. Depending on the location, upper grasslands may be parts of the Interior 

Douglas Fir, or Ponderosa Pine biogeoclimatic zones where there are cooler temperatures 

and higher precipitation compared to lower grasslands in the bunchgrass zone. Additionally, 

the middle and upper grassland areas contain the invasive plant under study, C. stoebe 

(Figure 2.1). It occurs in varying patch sizes, with larger negative effects having been noted 

in larger patch sizes (Fraser & Carlyle, 2011). A pair of sites from the upper grasslands were 
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used in this project: an area heavily invaded by C. stoebe for at least a decade, and a nearby 

area within 20 m of the edge of invasion that is free of spotted knapweed. The actual invaded 

area was delineated by walking along the edge of invasion using a Garmin GPS (model 

GPSMAP 76CSx) and pristine sites were selected outside of the delineated area. Within the 

invaded area, 10 sites were selected for plant surveys and soil collection. Invaded sites were 

required to have > 80% C. stoebe cover for plant survey and soil collection purposes. Ten 

pristine sites were then randomly selected within a 20 m buffer of the edge of invasion 

(Appendix Table B.1). Proximity of invaded and pristine areas was important to ensure that 

soil type and climatic measurements were similar between them. The point data for each 

sampling site and the tracklog for the invaded area was imported into Garmin MapSource (v. 

6.16.3) and exported as a shapefile for use in R for Statistical Computing (R Core Team, 

2020). Permission to use the area for research purposes was granted by the BC Ministry of 

Environment under Park Use Permit No. 102724.  

Soil temperature monitors (Thermochrons, iButtonLink Technology) were inserted 

into soils at two locations within both invaded and pristine areas on June 12, 2017 and 

collected on August 30, 2017. These temperature monitors recorded the soil surface 

temperature every 2 hours while they were in the field, on every even hour (i.e.: 12:00 AM, 

2:00 AM, 4:00 AM, etc.). This was recorded to further distinguish invaded and pristine sites. 

In July 2017, plant surveys were carried out at each of the 20 sites to quantify the total top-

down percent cover and richness of all species in invaded and pristine areas (Appendix Table 

B.3). To do this, 1 m × 1 m quadrat surveys were performed in each of the 20 sites and the 

top-down percent cover of each species was estimated to nearest 1%. The specific location 

for invaded quadrats within the invaded site were randomly chosen based on the cover of C. 

stoebe when a quadrat was placed down: if there was 80% or greater top-down cover of C. 

stoebe, the area within the quadrat was surveyed. Similarly, pristine areas were randomly 

chosen within 20 m of the main knapweed patch in order to keep environmental variables as 

constant as possible. GPS coordinates were recorded at each of the sample locations as well 

as at each of the locations where soil temperature monitors were inserted using a cell phone’s 

map application (Google Maps, Android version 9.57.1) (Appendix Table B.2). 
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Figure 2.1: Provincial context of the Lac Du Bois Grasslands Protected Area and the 

associated C. stoebe extent of invasion throughout the park. Further spatial context is given 

for the location of the study area within the Lac Du Bois Grasslands Protected Area. The map 

was created using QGIS version 3.16.0 (Hannover). 

 

GIS Considerations 

Recently, a new R package was released that allowed for simple downloading of 

spatial data from the BC Data Catalogue called “bcdata” (Teucher et al., 2020). There is a 

separate package, “bcmaps”, that contains some commonly used spatial layers including 

biogeoclimatic ecosystem classification (BEC) information (Teucher et al., 2021). These 

packages were used to download the following spatial layers: 

• BC Parks, Ecological Reserves, and Protected Areas, for the boundary of the 

Lac Du Bois GPA (Erlandson & MacPhail, 2020); 
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• Invasive Alien Plant Site, for information on invasive plant sites throughout 

BC (Miller & Osborne, 2020); and 

• Biogeoclimatic Ecosystem Classification (BEC) Map, for information at the 

subzone level (Salkeld et al., 2020). 

Additionally, the B.C. Ministry of Forests, Lands, Natural Resource Operations and 

Rural Development have made a gridded digital elevation model (DEM) of the entire 

province publicly available at an approximately 25 m2 resolution (2020). This data is made 

available through the Terrain Resource Information Management (TRIM) base map 

collection through individual tiles. The appropriate tiles for the Lac Du Bois GPA were 

downloaded to gather information about the subzones within it. ClimateBC was used to 

generate seasonal temperature raster images of the Lac Du Bois GPA to compare summer 

mean temperatures throughout the area (Wang et al., 2016). A smaller clip of the study area 

was also used to compare the elevation, slope, and aspect between invaded and pristine sites 

using parametric T-tests. Slope and aspect layers were generated using the “terrain” function 

in the “terra” package, utilizing bilinear interpolation of those values at each site (Hijmans, 

2021). 

Using R for Statistical Computing (R Core Team, 2020), the Lac Du Bois GPA was 

extracted from the BC Parks layer. This extraction served as a clipping extent for the 

Invasive Alien Plant Site and BEC Map layers. The Invasive Alien Plant Site layer was then 

filtered to retrieve all records of C. stoebe within the Lac Du Bois GPA. 

Spatial analyses included computations of the area of all invasive species within the 

Lac Du Bois GPA compared to the area covered by C. stoebe only, and C. stoebe extent by 

BEC subzones to determine potential trends of its location. Additional province wide 

analyses were completed to compare the Lac Du Bois GPA to trends across the province. All 

spatial calculations were performed using the “terra” and “sf” packages in R (Hijmans, 2021; 

Pebesma, 2018). 
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Soil, Ash, and AC Collection and Characterization 

Soil collection took place between October 6-9, 2017 at the same locations that plant 

surveys took place earlier in the season. In other words, invaded soils came from areas that 

are approximately 80-100% covered by C. stoebe, and pristine soils came from pristine areas 

free of C. stoebe within 20 m of the edge of invasion. The soils in this study area are 

classified as orthic black chernozems (Canadian Soil Information Service, 2013; Filatow, 

2019). The collected soil was used to grow the plants from seed. In order to eliminate the 

wild seed bank and mitigate the chance of other seeds sprouting the top 5 cm was scraped 

away and discarded in both invaded and pristine soils (Bonis & Lepart, 1994). Sanitized 

trowels were used to collect soil to a depth of approximately 20 cm, the depth at which 

spotted knapweed produces most of its roots, and a total of approximately 200 L of each 

invaded and pristine soils were gathered (i.e.: approximately 20 L from each site) (Story et 

al., 2000). Soils were transported from the field sites directly to the Thompson Rivers 

University Research Greenhouse in 4 L Ziplock freezer bags. Once the soils arrived in the 

greenhouse, the bags were opened and allowed to air dry for a minimum of 30 days. After 

this period, soil was sieved (1 cm mesh size) to remove stones and roots, and sieved soils 

were collected in 189 L Rubbermaid Jumbo Storage tote bins (1 bin for invaded soil, and 1 

bin for pristine soil). The drying and sieving steps here were based on the soil preparation 

methods presented by Del Fabbro and Prati (2015). All collected soils from invaded sites 

were thoroughly mixed inside this bin using a sanitized trenching shovel and motorized auger 

with a sanitized 10 cm × 80 cm bit attached. These same methods were applied separately to 

pristine soils. The mixing step ensures that soils are homogenous for each soil type, thus 

when plants are potted, they will be using the same soils throughout. Approximately 1 L of 

each soil type was collected at this stage to be sent to the BC Government’s Analytical 

Laboratory in Victoria, BC for chemical analysis of major elements. Additionally, 

approximately 1 L of soil was set aside for CNH analysis using a Thermo Scientific 

FlashSmart CHNS/CHNS Elemental Analyzer unit at the TRU campus.  

Ash was obtained from Domtar Pulp Mill in Kamloops, BC on November 27, 2017. 

The bulk ash was transported from the mill in large 5-gallon (~20 L) buckets, and then 

combined into a single 102 L tote bin. The bulk ash was stored until it was required for 
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preparing soils for the greenhouse trials. Again, approximately 1 L was set aside to be sent 

for chemical analysis. CHN data was obtained from a concurrent students thesis (Antonelli, 

2018). 

Activated carbon was purchased from Fisher Scientific in September 2017. 

According to its certificate of analysis, the exact substance was activated coconut charcoal. 

Having arrived in a granulated form, it was ground to a finer size for homogenization later 

using a cyclone mill (UDY Corporation, model no. 3010-030, mesh size 0.4 mm). Finely 

ground AC was collected and stored in the airtight jars they were shipped in until they were 

ready for mixing. Approximately 100 mL of AC was set aside to be sent for chemical 

analysis. CHN data was gathered from multiple literature sources characterizing activated 

coconut charcoal and averaged (Astuti et al., 2021; Hidayu & Muda, 2016; Iqbaldin et al., 

2013; Phan et al., 2006). 

 

Soil Preparation and Greenhouse Trials 

Both bulk pristine and bulk invaded soil types required separation and soil 

amendments added. In order to create the 1% ash and 1% AC treatments, 49.5 L of the bulk 

soils was removed and placed into smaller 102 L tote bins. This was done using 6 L and 500 

mL Erlenmeyer flasks to accurately measure soils and amendments. Once 49.5 L of bulk 

pristine or invaded soil was placed in a sanitized tote bin, 500 mL of either ash or AC was 

added to create the 1% amendments. Each soil type was further mixed with a sanitized 

trenching shovel and motorized auger to ensure that the amendment was spread equally 

throughout the entire soil volume. This resulted in 6 soil treatment combinations: 

1. Invaded soil (control) 

2. Invaded soil + Ash 

3. Invaded soil + AC 

4. Pristine soil (control) 

5. Pristine soil + Ash 

6. Pristine soil + AC 
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Either C. stoebe or F. campestris was grown in each soil treatment separately for a 

total of 12 treatments: thus a 2 × 3 factorial design with 2 soil types (pristine and knapweed-

affected), and 3 soil treatments (control, AC and ash), repeated for 2 plant species. These 

treatments were replicated 10 times and potted into 8 cm × 8 cm × 8 cm (i.e.: 512 mL) square 

growing pots (Greenhouse Megastore, model SVT-400). To prevent soil from spilling 

through the drainage holes, measured and cut weed barrier was inserted into the base of each 

pot. Enough soil was added to each pot so that the surface of the soil was approximately 2 cm 

from the top of the pot. Prior to planting any seeds, the soils were moistened with distilled 

water. The pots were arranged in the research greenhouse using a randomized block design, 

and 5 seeds of a species were planted in each pot (one in each corner, and one in the middle). 

Individual seeds of C. stoebe were hand collected from the invaded field site on September 7, 

2017 and were used in this experiment, whereas individual seeds of F. campestris needed to 

be sourced from Splitrock Environmental out of Lillooet, B.C. Purchased F. campestris seeds 

were found to have a much higher germination rate than field collected seeds (~80% for 

purchased vs. ~15% for field collected), hence their use in this experiment. Pots were then 

watered every 2-3 days using distilled water. Greenhouse conditions were kept constant for 

the duration of the experiment and were controlled using Argus Controls software (Table 

2.1). Individuals were grown for a period of 90 days, after which the number of successful 

individuals were counted, height measurements were taken, and aboveground biomass was 

clipped and placed in paper bags. Belowground biomass (i.e.: roots) was collected through 

washing the soil off of the roots and was also placed in paper bags. All biomass collections 

were dried in a drying oven at 70℃ for 72 hours, then weighed on a Fisher Scientific Accu-

Series 4102 model scale measuring to the nearest hundredth of a gram.  

Based on existing literature, the expectations of the growth response of each species 

is outlined and explained (Table 2.2), and through this experiment we aim to address two 

major concerns (Del Fabbro & Prati, 2015). First, the determination of whether soil legacy 

effects exist in these soils is of major import. This was accomplished by comparing the 

biomass of rough fescue in invaded and pristine soils. Comparing the biomass of spotted 

knapweed in each soil should indicate if soil legacies from knapweed invasion improve, 

inhibit, or have no effect on its growth. Second, we can determine whether ash may be used 
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as an alternative soil amendment to AC in spotted knapweed-invaded sites. The growth of F. 

campestris will be compared in ash and AC treated soils to answer whether ash can be added 

to the knapweed restoration toolkit. Comparing the growth of spotted knapweed in those soils 

should provide valuable information as to the effects of ash on spotted knapweed, and if it is 

indeed an appropriate soil amendment for knapweed infested sites. 

 

Table 2.1: Environmental variables and values pertaining to optimum growth of many plants. 

These conditions were replicated in the research greenhouse for the growth experiment. 

Retrieved from Hendry & Grime (1993). 

 Day Night 

Photoperiod 08:00-22:00 (Growing lights on) 22:00-08:00 (Growing lights off) 

Temperature 22℃ 15℃ 

Humidity 40% R.H. 40% R.H. 

 

 

Table 2.2: Expectations of the impacts to the growth of Centaurea stoebe and Festuca 

campestris in each soil type based on existing literature. 

Soil type Species Expected impacts to growth 

Invaded (control) C. stoebe None: C. stoebe is growing in soils it came from 

Invaded + Ash C. stoebe Increase in growth due to ash acting as a fertilizer 

Invaded + AC C. stoebe None: AC should not inhibit invasive plant growth 

Pristine (control) C. stoebe Slight increase from invaded (control) soils due to 

higher nutrient content 

Pristine + Ash C. stoebe Increase in growth compared to pristine (control) 

due to ash acting as a fertilizer 

Pristine + AC C. stoebe None: AC should not inhibit invasive plant growth 

Invaded (control) F. campestris Decrease in growth compared to pristine (control) 

due to C. stoebe soil legacy 

Invaded + Ash F. campestris None: Soil legacy effects mitigated by ash treatment 

Invaded + AC F. campestris None: Soil legacy effects mitigated by AC treatment 

Pristine (control) F. campestris None: F. campestris is growing in native soils 

Pristine + Ash F. campestris Increase in growth due to ash acting as a fertilizer 

Pristine + AC F. campestris None: AC should not inhibit native plant growth 
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Elemental Analysis 

Soils from the homogenized bulk collections were analyzed for total carbon, nitrogen, 

hydrogen, and sulphur using a Thermo Scientific FlashSmart CHNS/CHNS elemental 

analyzer. Specifically, sieved soils were dried in a Yamato drying oven (model DKN812) at 

80°C for approximately 12 hours to remove any potential moisture. Next, approximately 10-

15 mg of soil were weighed and placed in small tin capsules and loaded sequentially into the 

elemental analyzer sample wheel. This was repeated for each soil type five times for a total 

of 30 soil samples. Values generated from the analysis were in percentage values of the total 

sample. Additionally, homogenized soil samples were sent to the B.C. Ministry of 

Environment analytical laboratory in Victoria, B.C., for further elemental analysis of the 

major elements, including aluminum, boron, calcium, copper, iron, potassium, magnesium, 

manganese, molybdenum, sodium, phosphorus, sulfur, and zinc. These elements were 

detected using inductively coupled plasma optical emission spectrometers (ICP-OES) after 

preparation using microwave acid digestion. Resulting values were returned in either mg/kg, 

or total percentage depending on the element in question. 

 

Data Analysis 

FIELD DATA 

Plant cover data from invaded and pristine sites was compared using Shannon and 

Simpson diversity indices, along with a comparison of overall species richness using 

parametric T-tests. Species richness was further explored by splitting the species into two 

separate types: invasive species, and native species. Native species richness data was made 

normal by a square root transformation for use in a T-test, but invasive species richness 

required the use of a non-parametric Wilcoxon rank sum test. Invasive species were 

identified using the most up to date invasive species list published from the Invasive Alien 

Plant Program (IAPP) (Ministry of Forests and Range - Range Branch, 2020). This program 

acts as a publicly accessible repository housing invasive plant information, including location 
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and control efforts. The IAPP is managed by the B.C. Ministry of Environment, but the tools 

to report weeds are not restricted to government users. 

Litter cover was compared between sites using a parametric T-test. Bare ground cover 

was compared using a Wilcoxon rank sum test as raw and transformed data violated tests of 

normality. Raw surface temperatures were compared between sites using a Wilcoxon rank 

sum test. Elevation, slope, and aspect were all compared using parametric T-tests. Those 

results are tabulated separately to focus on the terrain component from those sites. 

 

GREENHOUSE DATA 

Biomass 

Two-factor analyses of variance (ANOVA) were performed separately for each C. 

stoebe and F. campestris to compare the effect of 2 soil types (invaded soils and pristine 

soils) and 3 soil amendments (control, activated carbon, and fly ash) on total biomass. 

Assumptions of this test include normality of the input data, as well as homogeneity of 

variances. The raw data violated normality assumptions for both species, so a square root 

transformation was applied thereby fitting a normal distribution and passing a homogeneity 

of variance test. By performing the same transformation to both species, the results and 

effects of soil type and treatment were comparable. An analysis of the main effects of soil 

types and soil treatments was then conducted for both species, and pairwise comparisons 

were made between the pairings of the soil types and soil treatments. A Tukey Honest 

Significant Difference (HSD) test was finally used to assess the interactions of soil type and 

soil treatments. 

Borrowing from Del Fabbro and Prati (2015), a continuous index of soil legacy was 

measured using the raw biomass data. Essentially, it is expected that if C. stoebe exhibits 

legacy effects, the biomass of F. campestris should increase more in AC soil with legacy 

effects than without legacy effects. The index was calculated as: 
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Allelopathic legacy in monocultures =                
(biomass in invaded soil without AC − biomass in invaded soil with AC) −  
(biomass in native soil without AC − biomass in native soil with AC)  

 

It should be noted that this is a strict measure of the strength of the soil legacy effects 

exhibited by C. stoebe, and the measurement is conducted ignoring trials using ash. 

Additionally, measures of immediate allelopathy are not able to be calculated since this 

requires a competitive experiment which was omitted from this study. Thus, the values given 

will only be a vague indication of the direction of any legacy effects. That is, any positive 

result indicates a positive legacy effect, whereas negative results indicate a negative legacy 

effect. All statistical analyses and figures were produced using R for Statistical Computing 

(R Core Team, 2020). 

 

Plant Survival 

Various metrics were used to assess the survival of individuals through the duration 

of the greenhouse trials. These included germination rate, death rate, survival rate of the 

germinated seeds, and overall trial survival rate (Table 2.3). A similar application of the two-

factor ANOVA was used to assess differences in these metrics between soil types and 

treatments. Normality was violated in all metrics. Using a square root transformation on the 

germination rate values validated the normality and homogeneity of variance assumptions of 

the two-factor ANOVA. In order to properly use the other metrics in a two-factor ANOVA, 

an aligned rank transformation was applied to the data in order to fit a normal distribution 

(Wobbrock et al., 2011). All statistical analyses and figures were produced using R for 

Statistical Computing (R Core Team, 2020). 
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Table 2.3: Description of plant survival metrics to be applied to each individual pot. In this 

case, the number of seeds planted equates to 5. 

Metric Description Equation 

Germination 

Rate 
Ratio of seeds that germinated after 30 days 

# Seeds Germinated

# Seeds Planted
 

Death Rate 
Ratio of seedlings that died between 30 and 90 

days 

(# Survived Individuals –

# Seeds Germinated
)

# Seeds Germinated
 

Germination 

Survival Rate 

Ratio of seedlings that lived between 30 and 90 

days 

# Survived Individuals

# Seeds Germinated
 

Trial Survival 

Rate 

Ratio of seedlings that lived to the end of the 

experiment compared to the number of planted 

seeds 

# Survived Individuals

# Seeds Planted
 

 

 

Elemental Analysis 

Soil carbon, nitrogen, and hydrogen results from each of the soil treatments were 

compared using a parametric two-way ANOVA for each element, in which assumptions of 

normality and homogeneity of variance were satisfied. Results from the major elemental 

analysis were tabulated. A carbon-to-nitrogen ratio (C:N) was calculated from the C and N 

data, respectively. Normality was violated on the C:N data and was unable to be transformed 

to fit a normal distribution, thus an aligned rank transformation was applied to validate the 

assumptions of a two-way ANOVA (Wobbrock et al., 2011).  

 

RESULTS 

GIS Considerations 

The Lac Du Bois GPA encompasses an approximately 159.37 km2 area and is broken 

down into six subzones and spanning an elevation gradient of approximately 334 – 1410 m 

above sea level (Table 2.4). Each of the subzones are classified either as “dry” or “very dry”, 
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and most of the subzones are located on warmer aspect slopes. The range of summer 

temperatures also appear to show warmer temperatures at lower elevation subzones. 

 

Table 2.4: Biogeoclimatic Subzones of the Lac Du Bois Grasslands Protected Area. Detailed 

for each subzone are descriptions of the subzone codes, the area in km2 that the subzone 

takes up in the Lac Du Bois GPA, and associated elevation descriptions gathered from 

TRIM. 

BGC 

Subzone 
Description 

Area 

(km2) 

Elevation 

Range (m) 

Elevation 

Mean 

(m) 

Summer 

Temperature 

Range (°C) 

Summer 

Temperature 

Mean (°C) 

BGxh2 

Bunchgrass: 

Thompson 

Very Dry 

Hot 

21.76 334.0 – 710.1 481.8 11.6 – 29.8 20.7 

BGxw1 

Bunchgrass: 

Nicola Very 

Dry Warm 

43.83 408.9 – 912.8 731.3 10.2 – 28.9 19.0 

IDFdk1 

Interior 

Douglas Fir: 

Thompson 

Dry Cool 

4.33 
842.2 – 

1312.7 
1117.7 8.9 – 25.8 16.8 

IDFdk2 

Interior 

Douglas Fir: 

Cascade Dry 

Cool 

10.14 
870.3 – 

1410.5 
1218.7 8.2 – 25.4 16.1 

IDFxh2 

Interior 

Douglas Fir: 

Thompson 

Very Dry 

Hot 

50.85 
522.7 – 

1301.4 
924.7 8.9 – 28.3 17.8 

PPxh2 

Ponderosa 

Pine: 

Thompson 

Very Dry 

Hot 

28.46 
365.8 – 

1024.1 
703.3 9.8 – 29.3 19.3 

 

The IAPP found 795 total invasive plant records throughout the entire Lac Du Bois 

GPA spanning 26.30 km2 (~16.5%). These records show that 32 of the 229 invasive species 

listed by the IPCC have been recorded throughout the area. C. stoebe was identified in 356 
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records and covered an approximate area of 21.99 km2 (~13.8%) within the Lac Du Bois 

GPA. As literature suggested, a majority of the sites invaded by C. stoebe were located in 

higher elevation, cooler grasslands and forest interfaces (Table 2.5). This confirms that the 

location for the study area (the IDFxh2) was appropriate. The observed invaded area at this 

study site was 11,659 m2
, and this area was within the bounds of an identified C. stoebe patch 

by the IAPP. While the declared pristine sites appear to fall within an invaded area identified 

by the IAPP, ground observations at the time of sampling showed that C. stoebe was absent 

at those sites.  

 

Table 2.5: Details of plant invasion in the Lac Du Bois Grasslands Protected Area broken 

down by BGC subzone. “Total” values indicate the total number of records, total physical 

area, and invaded ratio of all invasive plants combined throughout the Lac Du Bois GPA in 

order to highlight the same metrics for C. stoebe only. Numbers of records sum to be greater 

than the total number of records throughout the Lac Du Bois GPA due to splitting of 

polygons during spatial intersections. 

BGC 

Subzone 

Total 

IAPP 

records 

Total 

Invaded 

area (km2) 

Total 

Invaded 

ratio1 

C. stoebe 

IAPP 

records 

C. stoebe 

Invaded 

area (km2) 

C. stoebe 

Invaded 

ratio1 

BGxh2 43 1.27 5.83% 18 0.39 1.78% 

BGxw1 514 18.03 41.15% 230 15.53 35.43% 

IDFdk1 6 0.010 0.24% 1 0.006 0.15% 

IDFdk2 0 0 0% 0 0 0% 

IDFxh2 236 5.96 11.71% 120 5.37 10.57% 

PPxh2 52 1.03 3.63% 27 0.69 2.44% 

 

It is important to note that a given polygon representing an invaded area may 

encompass multiple invaded species, thus while C. stoebe occupies 35.43% of the entire 

BGxw1 subzone it should not be interpreted that all other invasive species within the subzone 

occupy the remaining 5.72% of total invaded space. For example, C. diffusa, the next most 

invasive plant in the Lac Du Bois GPA, occupies 29.47% of the same subzone due to its 

close relation to C. stoebe. Indeed, C. stoebe is the most invasive plant throughout the Lac 

                                                                                                                                                 
1 Invaded ratio is calculated as the invaded area divided by total physical area of the subzone. 



40 

 

Du Bois GPA by total area and by subzone, except in the BGxh2 subzone where C. diffusa is 

the most invasive plant.  

Throughout B.C., there were 153,799 total invasive species recordings made through 

the IAPP and 35,593 of those contained records for the presence of C. stoebe. Invasive 

species make up a total of 1,369.76 km2 in B.C. (0.144%), and by itself C. stoebe covers a 

total area of 521.81 km2 (0.055%). Comparatively speaking, this is greater than the city area 

of Winnipeg, Manitoba (~464.33 km2).  

An exploratory analysis of the same BGC subzones as the Lac Du Bois GPA 

indicated that these subzones are among the most invaded of those types throughout the 

province (Table 2.6). For example, the BGxh2 subzone is a comparatively smaller subzone 

throughout the province being only the 171st largest; however, it is 4th most invaded subzone 

when accounting for all invasive species throughout the province and contains the greatest 

amount of C. stoebe cover compared to all other subzones. Comparing the invaded ratio of 

the subzones within the province to within the Lac Du Bois GPA, we start to notice that the 

larger subzones in the park are more heavily invaded compared to the province wide results. 

For instance, the BGxw1 subzone accounts for 43.83 km2 within Lac Du Bois and was found 

to be 35.43% covered by C. stoebe; however, across the province, C. stoebe invades only 

5.76% of that entire subzone (Table 2.7). The same trend holds true for the IDFxh2 subzone, 

but the opposite is true for the BGxh2, IDFdk2, and PPxh2 subzones where smaller 

proportions are invaded in the Lac Du Bois GPA compared to provincially reported 

proportions.  
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Table 2.6: Province wide BGC details, only including the BGC subzones that were also 

within the Lac Du Bois Grasslands Protected Area. Rank values refer to the entire list of 210 

subzones with a rank of 1 being the highest rank. 

BGC 

Subzone 

Total 

Subzone 

area (km2) 

Provincial 

Proportion 

of area 

Subzone 

Area 

Rank 

Overall 

Invasive 

Rank 

C. stoebe 

Invasive 

Rank 

BGxh2 678.98 0.072% 171 4 1 

BGxw1 684.02 0.072% 169 5 2 

IDFdk1 5394.87 0.569% 39 18 11 

IDFdk2 2440.03 0.257% 89 13 7 

IDFxh2 4423.58 0.467% 54 11 4 

PPxh2 1364.74 0.144% 126 6 3 

 

 

Table 2.7: Details of plant invasion throughout B.C. broken down by BGC subzone. “Total” 

values indicate the total number of records, total physical area, and invaded ratio of all 

invasive plants combined throughout B.C. in order to highlight the same metrics for C. 

stoebe only. 

BGC 

Subzone 

Total 

IAPP 

records 

Total 

Invaded 

area (km2) 

Total 

Invaded 

ratio 

C. stoebe 

IAPP 

records 

C. stoebe 

Invaded 

area (km2) 

C. stoebe 

Invaded 

ratio 

BGxh2 1932 53.73 7.91% 1046 40.17 5.91% 

BGxw1 1745 45.68 6.68% 1067 39.41 5.76% 

IDFdk1 4297 78.99 1.46% 2185 53.33 0.989% 

IDFdk2 2127 67.01 2.75% 850 35.35 1.45% 

IDFxh2 7711 167.69 3.79% 4685 140.28 3.17% 

PPxh2 2950 85.39 6.26% 1570 69.04 5.06% 

 

 

Field Collections 

The results of multiple T-test and Wilcoxon rank sum tests are tabulated (Table 2.8). 

An independent samples T-test did not show any statistical difference in overall species 

richness between invaded and pristine sites; however, a trend was noted. When species 

richness was broken down between native and invasive plant types, more clear results 

emerged: a Wilcox rank sum test showed that pristine sites had significantly lower invasive 

species richness than invaded sites. An independent samples T-test comparing the native 
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species richness between sites showed significantly higher native species richness in pristine 

sites than in invaded sites. An independent samples T-test comparing the litter cover between 

sites showed significantly higher cover in pristine sites than in invasive sites. Conversely, a 

Wilcoxon rank sum test showed significantly lower bare ground cover in pristine sites 

compared to invaded sites. T-tests on both Shannon-Wiener and Simpson diversity metrics 

showed that pristine sites were significantly more diverse than invaded sites. Finally, a 

Wilcoxon rank sum test showed significantly lower temperatures in pristine sites compared 

to invaded sites (Figure 2.2).  

 

Table 2.8: Summarized comparisons of field metrics between pristine and invaded sites, and 

the respective T-test or Wilcox rank sum test results. Asterisks on P-values indicate 

significant differences at the 0.05 level for that metric between pristine and invaded sites. 

 Mean ± SE   

Metric Pristine Invaded Statistic p 

Overall Species Richness 7.8 ± 0.83 5.8 ± 0.57 T = -1.99 0.064 

Invasive Richness 0.2 ± 0.13 1.5 ± 0.17 W = 98 <0.001* 

Native Richness 7.6 ± 0.85 4.3 ± 0.52 T = -3.70 0.005* 

Ground Litter Cover (%) 40.9 ± 4.69 16.3 ± 2.75 T = -4.52 <0.001* 

Bare Ground Cover (%) 0.7 ± 0.52 11.3 ± 1.92 W = 99 <0.001* 

Shannon-Weiner Diversity (H) 1.275 ± 0.14 0.569 ± 0.08 T = -4.54 <0.001* 

Simpson Diversity (D) 0.585 ± 0.06 0.244 ± 0.03 T = -5.25 0.008* 

Average Daily Ground 

Temperature (°C) 

17.77 ± 0.20 20.86 ± 0.18 W = 322083 <0.001* 
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Figure 2.2: Ground temperature from invaded (red) and pristine (black) sites in the Lac Du 

Bois GPA from June 12 - August 30, 2017. Extended vertical bars represent actual ground 

temperature readings at 2-hour intervals, and the smoothed lines represent mean daily ground 

temperatures and a standard error at invaded and pristine sites. 

 

Comparisons of elevation, slope, and aspect between invaded and pristine sites are 

tabulated (Table 2.9). Independent samples T-tests revealed no significant differences in 

elevation (T = 0.005, p = 0.996), slope (T = 0.465, p = 0.647), or aspect (T = – 0.893, p = 

0.384) between sites. 

 

Table 2.9: Summarized comparisons of elevation, slope, and aspect between pristine and 

invaded sites, and their associated T-test results. N = 10 for each site. 

 Mean ± SE   

Variable Pristine Invaded T p 

Elevation (m) 918.55 ± 1.01 918.56 ± 0.30 0.005 0.996 

Slope (radians) 0.071 ± 0.009 0.077 ± 0.008 0.465 0.647 

Aspect (radians) 4.23 ± 0.22 4.01 ± 0.11 – 0.893 0.384 
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Greenhouse Trials 

Since F. campestris and C. stoebe were grown separately and not together in any 

competitive scenario, the interaction between their results was not explored; however, 

interactions between soil type and soil treatment were explored within each species. 

 

BIOMASS 

A two-way ANOVA was used to examine the effects of soil type and soil treatment 

on biomass. A square root transformation of the biomass data was applied in order to pass the 

Shapiro-Wilks normality test (p (RF) = 0.36; p (SK) = 0.14) and Levene’s test of homogeneity 

of variances (p (RF) = 0.49; p (SK) = 0.61) for both species. For both C. stoebe and F. 

campestris, a significant effect of the soil treatment was found (RF: F = 24.553, p = < 0.001; 

SK: F = 34.195, p < 0.001; Table 2.10). There was no significant effect of soil type found 

(RF: F = 1.734, p = 0.193; SK: F = 0.879, p = 0.353). A slight but nonsignificant interaction 

of soil type and soil treatment was noted as well (RF: F = 2.761, p = 0.072; SK: F = 2.583, p 

= 0.085). 

An analysis of the main effects of soil treatment was performed using one-way 

ANOVA’s grouped by soil type. It was very apparent that the significant effect of soil 

treatment on biomass occurred in both invaded and pristine soil types for both C. stoebe and 

F. campestris, where the addition of AC caused a reduction in biomass (Figure 2.3). 

Analyses of variance were also carried out to explore the effect of soil type on biomass by 

grouping data by soil treatments. A significant effect of soil type was noted in control soils; 

all other soil treatments showed no effect of soil type on biomass (Table 2.11). Pairwise 

comparisons between soil treatments when grouped by soil type showed biomass in soils 

treated with AC was significantly lower than either a control or ash treated soils for both F. 

campestris and C. stoebe.  
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Figure 2.3: Square root of biomass (mean ± SD) of Festuca campestris (left) and Centaurea 

stoebe (right) when grown in different soil types and soil treatments. Comparisons of 

biomass are made between control, ash, and activated carbon soil treatments for each soil 

type. P-values above brackets denote significant pairwise comparisons between soil 

treatments as determined by pairwise t-tests.  

 

 

Table 2.10: Results of a two-way ANOVA, performed to discover differences in the square 

root of plant biomass with respect to each factor and their interactions. F and p values are 

reported for both Festuca campestris and Centaurea stoebe as subscripts "RF" and "SK", 

respectively. Significant values are bold faced. 

Effect df effect df error F RF F SK p RF p SK 

Soil Type 1 54 1.734 0.879 0.193 0.353 

Soil Treatment 2 54 24.553 34.195 <0.001 <0.001 

Soil Type × Soil Treatment 2 54 2.761 2.583 0.072 0.085 
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Table 2.11: Exploration of the main effects of soil treatment and soil type on the square root 

of biomass for each species. F and p values are reported for both Festuca campestris and 

Centaurea stoebe as subscripts "RF" and "SK", respectively. Significant values are bold 

faced.  

Soil Type Main Effect df effect df error F RF F SK p RF p SK 

Pristine Soil Treatment 2 54 8.411 26.697 <0.001 <0.001 

Invaded Soil Treatment 2 54 18.903 10.082 <0.001 <0.001 

        

Soil Treatment Main Effect df effect df error F RF F SK p RF p SK 

Control Soil Type 1 54 7.157 4.359 0.01 0.042 

Ash Soil Type 1 54 0.009 0.432 0.925 0.514 

AC Soil Type 1 54 0.09 1.256 0.766 0.267 

 

Interestingly, the index of allelopathic legacy was positive when F. campestris was 

grown in invaded soils (0.947). This result occurred due to greater biomasses in invaded soils 

compared to pristine soils. In comparison, the index was negative for C. stoebe when planted 

in invaded soils (‒1.712), indicating that soil legacies from C. stoebe do not allow it to grow 

better in its own soils compared to when grown in pristine soils. This index further shows 

that C. stoebe performed best in pristine (newly invaded) soils, though is only intended to 

show relative trends of allelopathic legacy. Finally, observations of chlorosis were made in 

40% of the C. stoebe pots during the growing period, but no significant trends were noted 

between treatments. 

 

PLANT SURVIVAL 

Germination Rate 

The germination rate for this experiment was defined as the ratio of seeds that 

germinated after 30 days when 5 seeds were planted in a single pot. A two-way ANOVA was 

carried out to determine any effects of soil type and soil treatment on the germination rate. A 

square root transformation was applied to the germination rate data to pass the Shapiro-Wilks 

normality test (p (RF) = 0.144; p (SK) = 0.149) and Levene’s test of homogeneity of variances (p 

(RF) = 0.223; p (SK) = 0.082). Soil type and soil treatment were found to significantly affect the 

germination of F. campestris on their own without any interacting effects (Table 2.12). The 



47 

 

germination rate of C. stoebe did not appear affected by either soil type or soil treatment by 

contrast. 

An analysis of the main effects of soil treatment on germination rate showed that the 

germination rate of F. campestris varies significantly across soil treatments in both pristine 

and invaded soils (Table 2.13). Germination rate of C. stoebe was only significantly different 

across soil treatments in invaded soil types. Exploring the main effects of soil type on the 

germination rate, it is clear to see that the germination rates of both F. campestris and C. 

stoebe are significantly affected by soil type in ash treated soils only. In other soil treatments, 

this significant effect is absent. Pairwise comparisons between soil treatments grouped by 

soil type showed that the square root of F. campestris’ germination rate is significantly lower 

when soils are treated with AC in both invaded and pristine soils (Figure 2.4). An ash 

treatment did not appear to have any significant effects on the germination rates of either 

species in either soil type when compared to a control. 

 

 

Figure 2.4: The square root of germination rates (means ± SD) of Festuca campestris and 

Centaurea stoebe when grown in different soil treatments and soil types. Comparisons of the 

germination rates are made between control, ash, and activated carbon treated soils for each 

soil type. P-values above brackets denote significant pairwise comparisons between soil 

treatments as determined by pairwise t-tests.  
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Table 2.12: Results of a two-way ANOVA exploring the effects of soil type and soil 

treatment on the square root of the germination rate. F and p values are reported for both 

Festuca campestris and Centaurea stoebe as subscripts "RF" and "SK", respectively. 

Significant values are bold faced. 

Effect df effect df error F RF F SK p RF p SK 

Soil Type 1 54 5.271 1.931 0.026 0.17 

Soil Treatment 2 54 12.94 2.299 <0.001 0.11 

Soil Type × Soil Treatment 2 54 1.048 2.464 0.358 0.095 

 

 

Table 2.13: Exploration of the main effects of soil treatment and soil type on the square root 

of the germination rate of each species. F and p values are reported for both Festuca 

campestris and Centaurea stoebe as subscripts "RF" and "SK", respectively. Significant 

values are bold faced. 

Soil Type Main Effect df effect df error F RF F SK p RF p SK 

Pristine Soil Treatment 2 54 5.445 0.612 0.007 0.546 

Invaded Soil Treatment 2 54 8.542 4.152 <0.001 0.021 

        

Soil Treatment Main Effect df effect df error F RF F SK p RF p SK 

Control Soil Type 1 54 0.054 0.708 0.817 0.404 

Ash Soil Type 1 54 5.116 5.225 0.028 0.026 

AC Soil Type 1 54 2.196 0.926 0.144 0.34 

 

 

Death Rate 

The death rate for this experiment was defined as the ratio of seedlings that died 

between the 30- and 90-day mark of the greenhouse trial. A two-way ANOVA was used to 

determine the effects of soil type and soil treatment on the death rates of F. campestris and C. 

stoebe. Prior to analysis, the death rate data was not normal and could not be transformed to 

fit a normal distribution. To overcome this issue, an aligned rank transformation was used to 

force the statistical tests to run a two-way ANOVA on the non-parametric data (Wobbrock et 

al., 2011). Post-hoc analyses were then completed in a similar manner to the parametric two-

way ANOVA post-hoc analyses. Soil type, soil treatment, and the interaction of both factors 
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all played a significant role on the death rate of F. campestris (Table 2.14). A significant 

effect of soil treatment on the death rate was found in C. stoebe individuals.  

An analysis of the main effects of soil treatment on the death rate revealed that the 

death rate of both species is significantly affected in invaded soils but not pristine soils 

(Table 2.14). When analyzing the main effects of soil type among the soil treatments, a 

significant difference in the death rates of F. campestris was found in each soil treatment 

(Table 2.15). For C. stoebe, soil type only affected the death rates in control treated soils. 

Pairwise comparisons between soil treatments grouped by soil type showed that the death 

rate of F. campestris was significantly higher in AC treated soils in invaded soils types when 

compared to a control. The death rate of C. stoebe was also significantly higher in AC treated 

soils in invaded soil types when compared to either a control or ash treatments (Figure 2.5). 

The addition of ash did not appear to influence death rates compared to a control in any soil 

treatment for either species, though the death rates were always lower in ash treated soils 

when compared to AC treated soils. 

 

 

Figure 2.5: The aligned rank transformed death rates (means ± SD) of Festuca campestris 

and Centaurea stoebe when grown in different soil treatments and soil types. Comparisons of 

the death rates are made between control, ash, and activated carbon treated soils in each soil 

type. P-values above brackets denote significant pairwise comparisons between soil 

treatments as determined by pairwise t-tests. 
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Table 2.14: Results of a two-way ANOVA exploring the effects of soil type and soil 

treatment on the aligned rank transformation of the death rate. F and p values are reported for 

both Festuca campestris and Centaurea stoebe as subscripts "RF" and "SK", respectively. 

Significant values are bold faced. 

Effect df effect df error F RF F SK p RF p SK 

Soil Type 1 54 29.148 2.332 <0.001 0.133 

Soil Treatment 2 54 6.117 12.328 0.004 <0.001 

Soil Type × Soil Treatment 2 54 6.067 0.050 0.004 0.952 

 

 

Table 2.15: Exploration of the main effects of soil treatment and soil type on the aligned rank 

transformation of the death rate of each species. F and p values are reported for both Festuca 

campestris and Centaurea stoebe as subscripts "RF" and "SK", respectively. 

Soil Type Main Effect df effect df error F RF F SK p RF p SK 

Pristine Soil Treatment 2 54 1.987 2.3 0.147 0.110 

Invaded Soil Treatment 2 54 5.766 14.928 0.005 <0.001 

        

Soil Treatment Main Effect df effect df error F RF F SK p RF p SK 

Control Soil Type 1 54 17.069 5.508 <0.001 0.023 

Ash Soil Type 1 54 8.552 0.297 0.005 0.588 

AC Soil Type 1 54 5.268 0.061 0.026 0.806 

 

 

Germination Survival Rate 

The germination survival rate was defined as the ratio of seedlings that lived between 

the 30- and 90-day mark during the greenhouse trial. Like the death rate data, the 

germination survival rate was not normal and could not be transformed to fit a normal 

distribution, so an aligned rank transformation was used to be able to calculate statistical 

measures for this data. Soil treatment appeared to have significant effects on the germination 

survival rate for both F. campestris and C. stoebe (RF: F = 9.093, p < 0.001; SK: F = 13.098, 

p < 0.001; Table 2.16). The different soil types and interacting effects of soil type and 
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treatment did not have any significant impact on the germination survival rate for either 

species. 

An analysis of the main effects of soil treatment showed that the germination survival 

rate is significantly affected in both invaded and pristine soil types across all levels of soil 

treatment for both species (Table 2.17). Conversely, there was no significant main effects of 

soil type on the germination survival rate across any of the soil treatments for both species.  

For F. campestris, pairwise comparisons of the germination survival rate between soil 

treatments when grouped by soil type revealed that invaded soils treated with ash had a 

significantly greater germination survival rate when compared to either control or AC treated 

soils (Figure 2.6). In pristine soils, the germination survival rate was significantly greater in 

control soils when compared to either ash or AC treated soils. For C. stoebe, the germination 

survival rate was significantly lower in AC treated soils in invaded soil types. An ash 

treatment in pristine soil types increased the germination survival rate of C. stoebe slightly 

compared to control soils, but was significantly greater than the rate when treated with AC.  

 

 

Figure 2.6: The aligned rank transformed germination survival rates (means ± SD) of Festuca 

campestris (left) and Centaurea stoebe (right) when grown in different soil types and soil 

treatments. Comparisons of the germination survival rates are made between control, ash, 

and activated carbon treated soils in each soil type. P-values above brackets denote 

significant pairwise comparisons between soil treatments as determined by pairwise t-tests. 
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Table 2.16: Results of a two-way ANOVA exploring the effects of soil type and soil 

treatment on the aligned rank transformation of the germination survival rate. F and p values 

are reported for both Festuca campestris and Centaurea stoebe as subscripts "RF" and "SK", 

respectively. Significant values are bold faced. 

Effect df effect df error F RF F SK p RF p SK 

Soil Type 1 54 0.019 0.537 0.890 0.467 

Soil Treatment 2 54 9.093 13.098 <0.001 <0.001 

Soil Type × Soil Treatment 2 54 0.179 0.377 0.836 0.688 

 

 

Table 2.17: Exploration of the main effects of soil treatment and soil type on the aligned rank 

transformation of the germination survival rate of each species. F and p values are reported 

for both Festuca campestris and Centaurea stoebe as subscripts "RF" and "SK", respectively. 

Significant values are bold faced. 

Soil Type Main Effect df effect df error F RF F SK p RF p SK 

Pristine Soil Treatment 2 54 11.672 3.331 <0.001 0.043 

Invaded Soil Treatment 2 54 9.5 12.413 <0.001 <0.001 

        

Soil Treatment Main Effect df effect df error F RF F SK p RF p SK 

Control Soil Type 1 54 0.802 0.179 0.374 0.674 

Ash Soil Type 1 54 1.48 1.323 0.229 0.255 

AC Soil Type 1 54 0.006 0.294 0.936 0.590 

 

 

Trial Survival Rate 

The trial survival rate was defined as the ratio of seedlings that lived to the end of the 

experiment compared to the number of planted seeds in a pot (i.e.: 5). Again, the two-way 

ANOVA required an aligned ranks transformation to bypass the tests of normality and 

homogeneity of variances in order to be properly calculated. Significant differences in trial 

survival rate were found to be due to soil treatments for both F. campestris and C. stoebe 

(RF: F = 23.237, p < 0.001; SK: F = 8.913, p < 0.001; Table 2.18). Soil type and the 

interactions between soil type and soil treatment did not have any significant effects on the 

trial survival rate of either species. 
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An analysis of the main effects of the soil treatments showed significant effects of 

soil treatment on trial survival rate in both invaded and pristine soil types for both F. 

campestris and C. stoebe (Table 2.19). There were no main effects of soil type on the trial 

survival rate of either species under any soil treatment. 

 For F. campestris, pairwise comparisons between soil treatments of the trial survival 

rate revealed significantly lower rates in soils treated with AC compared to control and ash 

treated soils in both pristine and invaded soil types (Figure 2.7). The greatest trial survival 

rates were found in control soils, though this rate is not significantly greater when compared 

to an ash treatment. For C. stoebe, pairwise comparisons showed significantly lower trial 

survival rates in soils treated with AC when compared to the rates in ash treated soils for both 

soil types. Ash treated soils had the highest trial survival rates for C. stoebe, though not 

significantly greater compared to a control. 

 

 

Figure 2.7: The aligned rank transformed trial survival rates (means ± SD) rates of Festuca 

campestris and Centaurea stoebe when grown in different soil treatments and soil types. 

Comparisons of the trial survival rates are made between control, ash, and activated carbon 

treated soils in each soil type. P-values above brackets denote significant pairwise 

comparisons between soil treatments as determined by pairwise t-tests. 
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Table 2.18: Results of a two-way ANOVA exploring the effects of soil type and soil 

treatment on the aligned rank transformation of the trial survival rate. F and p values are 

reported for both Festuca campestris and Centaurea stoebe as subscripts "RF" and "SK", 

respectively. Significant values are bold faced. 

Effect df effect df error F RF F SK p RF p SK 

Soil Type 1 54 1.046 1.112 0.311 0.296 

Soil Treatment 2 54 23.237 8.913 <0.001 <0.001 

Soil Type × Soil Treatment 2 54 1.259 1.990 0.292 0.147 

 

 

Table 2.19: Exploration of the main effects of soil treatment and soil type on the aligned rank 

transformation of the trial survival rate of each species. F and p values are reported for both 

Festuca campestris and Centaurea stoebe as subscripts "RF" and "SK", respectively. 

Significant values are bold faced. 

Soil Type Main Effect df effect df error F RF F SK p RF p SK 

Pristine Soil Treatment 2 54 10.479 4.915 <0.001 0.011 

Invaded Soil Treatment 2 54 12.873 4.02 <0.001 0.024 

        

Soil Treatment Main Effect df effect df error F RF F SK p RF p SK 

Control Soil Type 1 54 0.09 0.031 0.766 0.862 

Ash Soil Type 1 54 0.807 0.214 0.373 0.645 

AC Soil Type 1 54 0.329 1.413 0.528 0.240 

 

 

Elemental Analysis 

The FlashSmart Elemental Analyzer returns concentrations for carbon, nitrogen, and 

hydrogen. Two-way ANOVA’s were performed for each of elemental contents to determine 

the effects of soil type and soil treatment on the respective elemental concentrations as well 

as the ratio of carbon to nitrogen (C:N). Assumptions of a two-way ANOVA were validated 

using a Shapiro-Wilks test of normality (p Carbon = 0.973; p Nitrogen = 0.298; p Hydrogen = 0.786) 

and a Levene’s test of homogeneity of variances (p Carbon = 0.378; p Nitrogen = 0.839; p Hydrogen = 

0.365) for each of the elemental concentrations. C:N data was not normal and was unable to 

be transformed to fit a normal distribution, thus an aligned rank transformation was used to 

force the statistical tests to run a two-way ANOVA on the non-parametric data. Soil type 
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significantly affected carbon and nitrogen concentrations, whereas soil treatment had a more 

pronounced effect on hydrogen concentrations and the C:N ratio (Table 2.20). The 

interaction of soil type and soil treatment also had a significant effect on carbon 

concentrations and the C:N ratio, and a nearly significant effect on nitrogen concentrations as 

well.  

Analyzing the main effects of soil treatments shows that the differences in carbon 

concentrations can be found in both invaded and pristine soil types (Table 2.21). The effects 

of soil treatment are more pronounced in pristine soil types when it comes to the differences 

in nitrogen concentrations and the C:N ratio. No effects of soil treatment on hydrogen 

concentrations were found in either soil type. The effects of soil type on elemental 

concentrations were significant in each soil treatment for each element. 

Pairwise comparisons between soil treatments among the soil types show 

significantly greater carbon concentrations in soils treated with AC in invaded soil types 

(Figure 2.8). In pristine soil types, soils treated with AC had the lowest amount of carbon 

reported and had a significantly lower concentration compared to a control. Trends with 

respect to nitrogen were less apparent, though concentrations were significantly lower in 

pristine soils treated with AC compared to a control. Pairwise comparisons of hydrogen 

concentrations were all insignificant. A significantly greater C:N ratio was found in pristine 

soils treated with AC, and there was a trend towards a greater C:N ratio in invaded soils as 

well. Concentrations of all elements were found to be greater in pristine soils compared to 

invaded soil types. 

 

Table 2.20: Results of a two-way ANOVA exploring the effects of soil type and soil 

treatment on carbon, nitrogen, and hydrogen concentrations, as well as the ratio of carbon to 

nitrogen. Significant values are bold faced. 

Effect 

df 

effect 

df 

error 

Carbon Nitrogen Hydrogen C:N Ratio 

F p F p F p F p 

Soil Type 1 18 191.6 <0.001 107.1 <0.001 1.734 0.205 1.128 0.302 

Soil Treat. 2 18 1.469 0.256 2.356 0.123 62.99 <0.001 8.146 0.003 

Soil Type × 

Soil Treat. 

2 18 16.81 <0.001 3.53 *0.051 0.945 0.407 7.553 0.004 
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Table 2.21: Exploration of the main effects of soil treatment and soil type on carbon, 

nitrogen, and hydrogen concentrations, as well as the ratio of carbon to nitrogen. Significant 

values are bold faced. 

Main effects of Soil Treatment     

Soil Type df 

effect 

df 

error 

Carbon Nitrogen Hydrogen C:N Ratio 

F p F p F p F p 

Pristine 2 18 7.479 0.004 5.705 0.012 2.519 0.108 5.209 0.016 

Invaded 2 18 10.80 <0.001 0.181 0.836 0.160 0.854 3.247 0.062 

           

Main effects of Soil Type     

Soil 

Treatment 
df 

effect 

df 

error 

Carbon Nitrogen Hydrogen C:N Ratio 

F p F p F p F p 

Control 1 18 128.2 <0.001 59.21 <0.001 21.13 <0.001 0.611 0.444 

Ash 1 18 85.31 <0.001 39.20 <0.001 30.77 <0.001 0.764 0.394 

AC 1 18 11.65 0.003 15.76 <0.001 12.98 0.002 0.034 0.856 

 

 



57 

 

 

Figure 2.8: Total carbon, nitrogen, and hydrogen concentrations, as well as the aligned rank 

transformation of the carbon to nitrogen ratio in each soil type (N = 4 for each group). P-

values above brackets denote significant pairwise comparisons between soil treatments as 

determined by pairwise t-tests. 

 

Results from the major elements analysis highlight the effects of adding either ash or 

AC (Table 2.22). Interestingly, the addition of AC had differential effects on pristine and 

invaded soils. For pristine soils, this addition caused decreased concentrations of aluminum, 

boron, copper, potassium, manganese, sodium, phosphorus, sulfur, and zinc. Increased 
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concentrations were observed in invaded soils for those elements, as well as increases in 

calcium, iron, magnesium, and sulfur. The addition of ash appeared to increase 

concentrations for all elements in invaded soils except for magnesium, molybdenum, and 

phosphorus, and slightly increased calcium, potassium, magnesium, and sulfur 

concentrations in pristine soil types. 

 

Table 2.22: Results from the major elements analysis. Concentration values reported are 

separated by reported units for simplicity. C, H, and N values for soil blends are mean values 

gathered from analysis using the FlashSmart CHNS/CHNS Elemental Analyzer whereas pure 

ash and AC values were gathered from literature (see footnotes). 

Element 

(mg/Kg) 

Pristine 

Control 

Pristine 

+ AC 

Pristine 

+ Ash 

Invaded 

Control 

Invaded 

+ AC 

Invaded 

+ Ash 

Pure 

Ash 

Pure 

AC 

Al 28000 27000 28000 26000 28000 27000 20000 22000 

B 6.1 5.9 6.3 <5 6.7 6.1 52 7.1 

Cu  45 43 44 47 50 48 42 100 

Fe  32000 33000 32000 35000 36000 36000 17000 390 

Mn  970 920 970 920 950 960 2600 11 

Mo  <1 <1 <1 <1 <1 <1 2.5 <1 

Na  1200 1000 1200 820 950 920 3200 610 

Zn  82 75 78 75 74 77 150 16 

Element 

(%) 

Pristine 

Control 

Pristine 

+ AC 

Pristine 

+ Ash 

Invaded 

Control 

Invaded 

+ AC 

Invaded 

+ Ash 

Pure 

Ash 

Pure 

AC 

C 5.8 5.0 5.4 3.6 4.4 3.6 22.52 80.43 

Ca 1.3 1.3 1.4 1.3 1.4 1.4 7.8 0.06 

H 1.0 0.97 1.1 0.82 0.80 0.81 NA2 1.63 

K 0.50 0.49 0.52 0.47 0.51 0.50 2 2.4 

Mg 0.87 0.90 0.88 1.0 1.1 1.0 1 0.03 

N 0.56 0.48 0.52 0.37 0.38 0.37 0.052 0.363 

P 0.15 0.14 0.15 0.13 0.13 0.13 0.44 0.02 

S 0.090 0.083 0.091 0.077 0.080 0.080 0.36 0.09 

 

 

                                                                                                                                                 
2 Data from Antonelli (2018). 
3 Data from Astuti et al. (2021), Hidayu & Muda (2016), Iqbaldin et al. (2013), and Phan et 

al. (2006). 
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DISCUSSION 

Preferential Invasion based on Biogeoclimatic Subzone 

The GIS analyses completed show that C. stoebe preferentially invades higher 

elevation grasslands with cooler temperatures and forest interfaces within the Lac Du Bois 

GPA. The most affected subzone in the Lac Du Bois GPA is the BGxw1, where over a third 

of the area is now covered by C. stoebe. This is an important finding as it may allow directed 

management of the invasive plant, as well as provide predictions for future invasion. The 

publicly available IAPP database is an exciting tool for extracting invasive plant information 

for both small study areas and province wide analyses. Its use is likely not harnessed as well 

as it could be, and studies of plant invasions within B.C. should utilize its power in making 

spatial predictions of future spread. Future studies could focus on the modelling required to 

make those predictions and define what factors are important in an individual plants spread. 

The finding that the BGxw1 and IDFxh2 subzones were the most negatively affected 

of the subzones throughout the Lac Du Bois GPA is also important for species at risk. 

Indeed, B.C. only contains only a small portion of grasslands, but they also provide important 

niches for an abundance of endangered animals. The protection of grasslands should 

therefore be a high priority, including invasive species management. Across B.C., C. stoebe 

is the most invasive plant along with C. diffusa. The threat of habitat infringement for species 

at risk by invasive species should be more closely studied and managed in order to more 

directly impact the spread of invasive species. 

Finally, the difference in amount of invasion by C. stoebe in the Lac Du Bois GPA 

compared to similar BGC subzones throughout B.C. shows just how necessary some type of 

intervention and protection is in our local grasslands. The bunchgrass zone throughout B.C. 

is already at risk from climate change, woody encroachment, and anthropogenic impacts, and 

the Lac Du Bois GPA is not immune to those factors either. With a high level of plant 

invasion in this park compared to other areas in B.C., it is very important that this park 

receives a focussed effort regarding the removal of noxious species. Such efforts may include 

further biological and chemical controls that have been used in the past, as well as targeted 

grazing efforts that may have a positive impact on the health of the grasslands overall.  
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Positive Soil Legacies Detected 

This study aimed to answer the following questions: 

• Can we detect soil legacy effects in invaded soils? 

• Can potential legacy effects be lessened or mitigated using pulp mill fly ash as 

a soil amendment? 

By comparing F. campestris biomass from pristine and invaded soils with no 

amendments, we may answer the first question. These greenhouse trials lead us to the 

conclusion that positive soil legacy effects are found in invaded soils which aid in the growth 

of a native plant. This result was unexpected: literature indicates that soil legacies in invasive 

soils harbor negative effects on native plant biomass (Del Fabbro & Prati, 2015; Elgersma et 

al., 2011). In certain cases, this can be visually confirmed in the very grasslands that soils 

were collected from, thus this result from the greenhouse is peculiar. Moreover, results from 

the AC treatments indicate that AC effectively kills most individuals. This is contradictory to 

literature as well, where most studies using similar amounts of this material show that when 

added to an invaded soil type, the soil condition improves for native plants, perhaps due to 

the adsorption of potential allelochemicals (Del Fabbro & Prati, 2015; Nolan et al., 2015; 

Perry et al., 2007). Perhaps the homogenized invaded soils did not contain potential 

allelochemicals, in which case the AC addition was essentially an increase in soil carbon. As 

part of the nitrogen cycle, soil microorganisms take in nitrogen to make use of available 

carbon, thus depleting soils of nitrogen (Vitousek & Howarth, 1991). The apparent lack of 

nitrogen therefore limits the growth of plants in that soil, which helps to explain the lack of 

growth witnessed in pristine soils with AC. This can be confirmed by viewing the carbon to 

nitrogen ratio analysis, where AC addition in pristine soils caused a significant increase in 

the C:N ratio compared to control soils, indicating that there was more carbon left in the soils 

and that nitrogen was depleted upon AC treatment. While significance didn’t transfer over to 

invaded soils, there is a trend showing a greater C:N ratio in AC treated soils compared to 

control and ash treated soils, which further assists in the interpretation of this result. Other 

research suggests that a combination of AC and invasive plant litter is required to create soils 
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that are more hospitable for native plants with litter use being analogous to applying N 

fertilizer (Grove et al., 2012). The present study made use of soil materials only and omitted 

litter as part of the substrate. The results obtained from the AC treatment require further 

exploration, and perhaps an investigation of the soil microbial community is necessary to 

garner more conclusive results. 

In order to answer the second question, we must compare the biomass of F. 

campestris in invaded soils that were ash treated soils to invaded control soils. Indeed, a 

legacy effect was noted in this experiment; however, the question implies that the soil legacy 

effects are negative towards native plants. The addition of ash in each soil type had opposite 

effects: in invaded soils, biomass decreased while biomass increased in pristine soils. While 

these are not significant trends, they are worth noting since this goes against what the 

expectations of this experiment were. Evidence of positive soil legacies from invasive soils 

do exist (Del Fabbro & Prati, 2015; Inderjit et al., 2011), and perhaps the most logical 

explanation would be that the chemicals released by the invasive plant (i.e.: the suspected 

cause of legacy effects) have been degraded by soil microorganisms, and are no longer 

affecting the native plants harbored within (Kaur et al., 2009; Zackrisson & Nilsson, 1992). 

Additionally, Barto and Cipollini (2009) have shown that the secondary metabolites 

produced by Alliaria petiolata have a very short half life even in sterile soil (~45 hours). The 

metabolites produced by A. petiolata are flavonoids, which bears close resemblance to the 

chemical structure of catechin, thus it may be that legacy effects are not witnessed in these 

invaded soils due to the natural degradation of the suspected allelopathic compound 

(Muhamad et al., 2015; vanˈt Slot & Humpf, 2009). This information may also help to 

answer why conflicting results have occurred in past studies leading to the eventual 

retractions of certain articles. If such temporal differences create these discrepancies, perhaps 

firm methodology should be created to assist collecting data relevant to studying allelopathy 

and soil legacy effects from invasive plants. 
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Impacts of Ash on Biomass 

The addition of ash in this experiment did not have any significant effect on the 

biomass of either species in either soil type when compared to a control; however, the 

direction of biomass change is important to note for both species. Specifically, using ash 

seemed to have a more neutralizing effect on the biomass of F. campestris, where it appears 

to have increased biomass in pristine soils and decreased biomass in invaded soils compared 

to a control. Biomass of F. campestris was equal in ash treated pristine soils and ash treated 

invaded soils in the end, hence the “neutralizing” effect. A similar, yet opposite trend was 

witnessed with C. stoebe where biomass was brought closer together in both soil types with 

the addition of ash; however, biomass decreased in pristine soils and increased in invaded 

soils with an ash amendment. In other words, it appears that adding ash in pristine soil types 

incurs a benefit to native plants and not C. stoebe and adding ash in invaded soils is 

beneficial to C. stoebe but not F. campestris. That addition may have altered soil conditions 

such that it was no longer preferable for growing in those soil types. Regardless, this 

differential effect is important to note: in the field, pristine soils are defined by the absence of 

invaders, thus adding ash to a site may act to increase native biomass through a fertilizing 

effect (Basu et al., 2009; Kishor et al., 2010). Indeed, ash acted to marginally increase certain 

element concentrations in pristine and invaded soils, which likely accounted for the increased 

biomass seen in some of the soils (Table 2.22). Interestingly, the addition of the ash 

essentially had no effect on soil carbon or nitrogen values in this case (Figure 2.8). From a 

management perspective, this can be positive since trends in biomass were witnessed upon 

the addition of ash, but underlying soil characteristics were not largely affected. Conversely, 

the results here indicate that we might wish to avoid using ash to remediate invaded soils 

since it tends to aid in the growth of C. stoebe but hinders F. campestris (Figure 2.3). Further 

investigation into methods of application, amounts of ash, and levels of C. stoebe invasion 

should be explored to confirm these results in a field scenario.  

 



63 

 

Effects of Ash and AC on Survival and Mortality 

This study examined four different metrics associated with seedling survival and 

mortality: germination rate, mortality rate, the entire 90-day survival rate, and the survival 

rate of germinated seedlings between 30- and 90-days to fully understand how longevity was 

affected in each soil combination. The first observation that can be made is that activated 

carbon had an overall negative impact on the survival of both F. campestris: germination 

rates and both survival rates were lowest in activated carbon treated soils, and mortality rates 

were highest in these treatments. This suggests that the use of activated carbon here was not 

an appropriate measure against ash treatments since the results were very different. Likely, 

this is an outcome of the activated carbon processing that occurred. The purchase of 

granulated activated carbon was an oversight and closer results would be more likely found if 

a finer form was used. Despite this, the seeds of C. stoebe appeared to have no difficulty 

germinating in the presence of activated carbon. Beyond that, C. stoebe exhibited similar 

outcomes to F. campestris with respect to activated carbon addition: survival rates were 

lower and death rates were higher, further supporting the result that the use of granulated 

activated carbon was inappropriate.  

The addition of ash had interesting effects on the survival metrics of F. campestris 

and C. stoebe. Mostly, there were no significant differences compared to a control; however, 

the long-term survival rate of F. campestris (i.e.: the germination survival rate) was 

significantly greater in invaded, ash treated soils compared to a control and AC treated soils. 

This effect was not seen in pristine soil types. Moreover, C. stoebe had a slightly lower long-

term survival rate in the same soils compared to a control. This implies that F. campestris 

individuals that survive to the 30-day period are more likely to survive the entire duration of 

the trial when grown in invaded soils treated with ash. This leads to further implications with 

management: according to these results, if an invaded area is treated with ash and seeded 

with F. campestris we might see limited success in the first 30 days but after that point it is 

likely that those that are left are what is going to withstand. While interactions between F. 

campestris and C. stoebe were not examined in this experiment, it still may be necessary to 

remove C. stoebe seedlings at that 30-day period to maintain similar results in a field 

application. In invaded soils that did not have any treatment, the greatest mortality of F. 
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campestris happened between the 30- and 90-day periods, suggesting that the ash may be 

alleviating a negative soil effect that would otherwise cause mortality after 30-days. This 

effect is not witnessed in pristine soils where the greatest survival is seen in control soils, 

hence the possible alleviatory effect. 

 

Invasive Boundary Movement 

By comparing the currently invaded boundary that was walked to the old boundary 

mapped by the IAPP, we are witnessing a change over time in the sizes of invaded 

boundaries and their relative locations. The IAPP polygon overlapping the current study area 

was created in 2006, thus it may be that the IAPP polygon is out of date. In fact, there have 

been at least 1,287 recordings of either mechanical, chemical, or biological treatments 

applied within the park, and a release of Cyphocleonus achates, the root boring weevil, was 

applied in 2016 within 200 m of the study area. This could account for the apparently 

shrunken boundary of the study area from what the IAPP had previously declared in 2006. 

Another consideration may be that the IAPP identified both C. stoebe and C. diffusa in this 

polygon, and that C. diffusa may be present outside of the observed polygon; however, C. 

diffusa was not present in or near the study site. A final consideration may be that the IAPP 

over-generalizes an invaded area, and a contiguous polygon was created where it should not 

have been. Methods of the original sampling are not publicly available; thus, it is unknown 

how the original polygon was created. Regardless, it is widely known that plant communities 

can be drastically altered in the face of climate change, thus it is important to view future 

areas of invasive expansion as well as current ones (Settele et al., 2014). 

This apparent shift in the invasive site boundary also points to the need for improved 

sampling of invaded areas in B.C. If the IAPP is to be the sole resource for invasive plant 

information, it stands to reason that invasive areas should be monitored on a frequent basis. 

Remote sensing advances in recent years has shown incredible potential for collecting a 

wealth of data at a fine scale with little effort (Hung & Wu, 2018). In the future, there may be 

ways to identify species from a simple image taken by unmanned aerial vehicles (UAV’s), 

which would be immensely useful for more than just invasive species identification and 
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location. Indeed, efforts are underway to solve this task, though at the moment it seems this 

accomplishment is limited to forest canopies (Baena et al., 2017; Santos & Ustin, 2018). 

With invasive species threatening to alter landscapes, technologies should be developed for 

modelling future expansions and identify areas of concern, allowing for preventative 

management of invasive spread. 

 

Limitations 

GREENHOUSE CONDITIONS 

As with most greenhouse studies, the climate-controlled environment within the 

greenhouse is meant to promote the growth and establishment of the plants under study. As 

such, these are not exactly reflective of what occurs in a field condition. In general, 

greenhouse studies allow for simpler statistics and allows for better experimental 

manipulation on selected variables; however, they might fail to capture the full complement 

of soil and environmental processes (May & Baldwin, 2011). Consistent watering schedules 

allow for plants to stay healthy throughout the duration of the study, but it may change 

belowground processes and even certain aspects of plant growth which are not indicative of 

field scenarios. Ideally, a field study would be conducted alongside greenhouse trials in order 

to verify the applicability of the greenhouse study. 

Additionally, certain aspects of the greenhouse climate are beyond human control. 

The greenhouse does its best to keep within the set climatic parameters but may encounter 

errors if there are external factors such as a power outage or equipment failure. In these 

scenarios, climates are not being monitored or controlled and thus the greenhouse experiment 

could be at risk. Even slight variations like these have been reported to have effects on the 

final outcome of a greenhouse experiment on plants grown from seed (Hammer & Hopper, 

1997).  
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SOIL CONDITIONS 

Soils were collected in the late fall of 2017, just before snowfall. At this point, most 

of the vegetation on the landscape had gone dormant, including spotted knapweed. Perhaps at 

this time of year, it is not legacy effects that are impacting the growth of vegetation in the 

environment, but climatic and temporal factors are playing a role. Soils in this study were 

collected at one point in time, but perhaps if soils had been collected at various points 

throughout the year, spotted knapweeds soil legacies would be more pronounced. In one 

study, multiple samplings found varying concentrations of soil catechin throughout the year 

at one study site (Perry et al., 2007). That result was fairly suspect since there was only a 

single record of catechin occurrence during the entire sampling period at only a single site, 

but it does indicate that some temporal sampling may need to be incorporated into future 

studies of soil legacy effects on neighboring native plant species. Furthermore, litter was 

discarded in this study from both invaded and pristine soils during collection, which Grove et 

al. (2012) suggest is an important constituent in studies using AC. 

Another consideration of the soil collection would include the depth of soil collected 

as well. In this study, the top 5 cm was discarded with the intent to omit any lasting seeds in 

the field seed bank (Bonis & Lepart, 1994). In doing so, however, much of the organic 

material was removed as well. The top most layer of any soil horizon contains the most 

mineral nutrients that a plant will draw from (Watson, 2014); however, the soils in this study 

area are classified as orthic black chernozems which are reported to have an A horizon from 

0 - 25 cm just below the soil surface (Canadian Soil Information Service, 2013; Filatow, 

2019). Regardless, soil microorganisms can change with soil depth, and these 

microorganisms can have a pronounced effect on the aboveground plant communities 

(Bhattarai, 2015; Vitousek & Howarth, 1991). This removal may create a misrepresentation 

of the field soils in the greenhouse study, thus the results should be taken cautiously. The 

organic substances within the top 5 cm of the soils could have been more suitable for a 

greenhouse trial, or oppositely, contained allelopathic catechins that would inhibit native 

plant growth more effectively. The over-arching purpose of taking soils from a deeper source 

was to capture potential legacy effects which would be found in older (deeper) soils; 

however, in the lens of plant growth, this may not have been an optimal goal. 
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POTTING 

The pots used in the greenhouse trial were 512 cm3, which are generally smaller than 

what is normally used in greenhouse trials. Though crowding of individuals was not an issue 

in this present study, the depth of soil (or lack thereof) may have been influential in the 

results here. In nature, C. stoebe produces a large taproot, and with the limited depth of pots 

there may have been a physical constraint on its growth. Having only reached a rosette life 

history stage, however, the individuals did not grow large enough to produce a taproot. 

Additionally, volume of soil in these pots could have influenced results as well. If 1,000 cm3 

pots were used, a total of 1 L of soil could have been used in each pot. Instead, only 512 mL 

could be used in the pots here. This is where restrictions may become more prevalent: the 

limited volume of soil also contains a limited volume of nutrients which may be problematic 

for plant growth. Initial errors in sample design were the cause of this, as well as having a 

limited batch of soils to draw from. 

 

ELEMENTAL ANALYSIS 

Chemical composition of a soil can provide a wealth of information on the soils in 

question, including salinity, nutrient composition, pH, and overall quality. The data that I 

obtained in my study for elemental analysis represents a snapshot in time for pre-treatment 

soil conditions (i.e.: amended bulk soils with no plants yet); however, it would have been 

beneficial to observe changes in these nutrient compositions after the 90-day growing period. 

Doing so may have provided insight into the belowground processes and aided in 

explanations for why treatments using activated carbon performed differently than described 

in literature. 
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Chapter 3: Research Conclusions 

This study showed that the removal of an invasive species promotes the growth of a 

seeded native species, and the addition of pulp mill fly ash did not harbor any significant 

effects to the growth of either Festuca campestris or Centaurea stoebe (though certain trends 

were noted). While removal and reseeding seems like a simple solution to dealing with the 

threat of invasive species spread, there are many factors that need to be considered. Soil 

legacy effects from the invasive spotted knapweed were determined to be positive in this 

greenhouse study; however, field experience demonstrates that left alone, recently invaded 

areas do not typically regrow native vegetation naturally or when seeded (May & Baldwin, 

2011; Rand et al., 2015). Taking this into account, we must explore the research and 

management implications that this study has brought forward. 

Another item to further discuss is the limitations that were brought on by the project 

design. Standard methods for comparing the growth of various plants with respect to soil 

legacy effects have been established in previous works but this project marks the first 

examination of soil legacy effects of the invasive C. stoebe on a native bunchgrass (Del 

Fabbro & Prati, 2015).  

 

RESEARCH IMPLICATIONS 

This study serves as a solid steppingstone for future research with invasive plants and 

the use of ash as a soil amendment to alleviate the potential negative allelopathic or soil 

legacy effects. Further studies should focus on a field component, where ash is broadcast 

applied to an invaded site much like a chemical control. It would be interesting to see this 

method alongside hand-pulling the weed when it isn’t seeding, and then observe the native 

plant community in these trial areas. Other aspects to a study involving these parameters 

could include the concentration of ash applied, comparisons to areas free of invasive plants, 

comparisons to different BEC zones or wider regions (if applicable), and comparisons at 

different times of the year. While the present study was able to control these aspects, a robust 

field component could be helpful to provide a broader context for the results.  
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While the present study brought about some confounding results, we should not 

immediately discount fly ash as a potential tool for invasive species management. It has been 

shown to promote growth of various plants in other forms, much like that of a fertilizer 

(Emilson et al., 2018; He et al., 2017). Presently, we found that adding the ash component 

assisted in increasing nutrient values of B, Ca, K, Mg, and S in pristine soils and increasing 

Al, B, Ca, Cu, Fe, K, Mn, Na, S, and Zn in invaded soils, albeit slightly. Perhaps with the 

addition of more ash, clearer results from the ash addition could have emerged. He et al. 

(2017) studied the growth of alfalfa in loessial soil and added differing concentrations of fly 

ash (5%, 10%, 20%, and 40% by weight), and found that the addition of these nutrients 

promoted the growth of alfalfa. Here, the researchers also noted chlorosis in their plants, 

though this was at application rates of 10% and over. It is important that this study 

highlighted that: with the chlorosis mentioned, we might confirm that too much AC was 

added in our soils, even at a rate of 1% by volume and further tuning on the amount of AC 

addition is required.  

The addition of ash may also be of importance in soils with low pH: industrial fly ash 

is consistently characterized as having high pH (in the range of 8 – 12), thus its application 

into acidic soils would assist in increasing pH to a more suitable level (Domes et al., 2018; 

Magiera et al., 2013). Studies on the remediation of Canadian forest soils using ash have 

recently been of great interest. A federal working group, AshNet, is actively exploring the 

potential of industrial wood ash application into forest soils and the associated publications 

have shown great promise with benefits to forest health, including increased soil pH (Brais et 

al., 2015; Emilson et al., 2018). As more details emerge from this group, it is likely that ash 

application rates will become more refined and better characterized based on local conditions 

of a given site. While invasive species management is beyond the scope of this working 

group, it still points to ash being a useful remediation tool in forested soils. Future work 

within this group with regards to ash’s effects on invasive species would prove useful. In 

B.C., the BGC zone with the greatest amount of plant invasion by square kilometer is the 

Interior Douglas Fir zone which holds a great amount of timber value within the province. 

Preserving this zone from invasive species is therefore important and it would be interesting 
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to see research into the use of ash within this zone for the dual purpose of invasive species 

management and forest soil remediation. 

This study provided a basis for further experimentation in both the field and the 

greenhouse, though the limitations addressed in Chapter 2 should be acknowledged. While 

the ash additions may not have yielded the expected results, further studies on the control of 

invasive plant species should consider its use as a potential control agent. In the present 

study, there was no significant trend in decreasing C. stoebe biomass; however, this was a 

trial using a 1% by volume ash addition. Perhaps further manipulations could be made on this 

value to produce more significant results. This type of work is currently being performed in 

the grasslands near Merritt, B.C. (Hampton, 2020). 

There are also remote sensing and GIS considerations that can be taken into 

consideration for future research as well. This study noted certain provincial BGC subzones 

to have a greater proportion of C. stoebe found within them than others. While beyond the 

scope of this study, it would be possible to generate spatial models that predict the presence 

and potential of C. stoebe, along with other invasive species based on the existing input data 

(Cutler et al., 2007). With the maps of the species’ potential, we may be able to locate areas 

of rampant spread before they occur and implement management strategies that prevent 

further environmental deterioration.  

 

MANAGEMENT IMPLICATIONS 

This study aimed to explore the soil legacy effects of C. stoebe and assess the use of 

pulp mill fly ash as a restoration tool for invaded areas. While we found no significant trends 

to indicate that using fly ash was a promising amendment, it should be noted that the data 

presented are representative of a small-scale greenhouse experiment. Indeed, further efforts 

to propagate the use of ash are in place on a much larger scale and show promising results in 

both agricultural and forestry applications (Emilsson, 2006; Hannam et al., 2016). In many 

cases, its use in agriculture may contribute to (or replace, depending on the reasoning for 

application) the soil macronutrients and thus produce a healthier ecosystem. Forestry 

applications of ash to bolster the soil nutrients appear to be more case specific and have many 
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factors that influence their results, including the chemical composition of the ash, soil type, 

and dominant tree species (Augusto et al., 2008; Emilson et al., 2018; Pitman, 2006). The 

method of application is likely a factor in this as well. In many studies of ash use, the ash is 

broadcast applied whereas it was thoroughly mixed into the soils in this project. Where 

successes have been noted, it is important to acknowledge the method of application in order 

to have similar results in our own work. Drawing on methods from agricultural projects may 

be more suitable to attempt to characterize the soil legacy effects of C. stoebe rather than a 

greenhouse experiment, and further research should have a strong field component to 

accomplish that goal. 

The world of GIS and spatial analysis is advancing quickly, and it is important to 

understand the impact that may have on the future of invasive species research. In terms of 

management, we can monitor and model the advance of invasive species based on publicly 

available data. It is therefore important that the dataset is updated as new data becomes 

available. Additionally, investments into remote sensing hardware and software should 

become more relevant since we can interpret more data from remote sensing equipment than 

we could doing a standard field survey or walkabout. Innovations in remote sensing 

equipment may one day allow us to differentiate invasive from native species at multiple life 

stages based on imagery. If that potential could be harnessed, it would be immensely useful 

for the detection of invasive species in order to mitigate their spread. For now, we must focus 

on the modelling and responding to the invasive impact that is occurring on our landscapes 

and especially in the grasslands.  

The threat of invasive species should be taken seriously since they have an inherent 

ability to cause lasting damage to an ecosystem. In BC, the grasslands account for less than 

1% of the land base but provide important habitat for over 30% of the province’s species at 

risk. Protecting these grasslands should be prioritized, and strategies for invasive species 

mitigation should continue to be studied. The present study attempted to highlight a 

phenomenon witnessed in the field, where an invasive plant may have lasting soil effects 

after its removal. While this was unable to be replicated in the greenhouse trials, it is obvious 

that there is something going on preventing native plant species from repopulating recently 

invaded areas. There are many explanations for these results: perhaps the amount of soil in 
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the pots was not appropriate in this study, or the removal of the first 5 cm of soil prior to 

collection is not standard for studies of this nature. Whatever the case, these sources of error 

allow future studies to build on this and perhaps more rigorous designs will be implicated to 

determine whether spotted knapweed has lasting negative effects in the grasslands of B.C. 
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Appendix A: Characterizing immediate and legacy soil effects in 

the field: A lesson in transplanting 

INTRODUCTION 

Often, greenhouse trials do not correspond directly to field conditions. Field 

conditions contain much variability in climate, moisture availability, soil conditions and 

nutrients, herbivory, slope, and much more, thus results gained from greenhouse trials may 

not always represent field conditions exactly since these types of factors are controlled for. 

An obvious way to address this issue is to perform a similar study in the field, observe 

growth through time, and extrapolate the information gained from the experimental process.  

The native Festuca campestris and the invasive Centaurea stoebe are both found 

commonly in upper elevation grasslands in the interior of British Columbia. To reiterate, C. 

stoebe is an aggressive invasive forb that has caused much damage to pristine grassland areas 

in North America in recent history, and its spread continues to this day despite various 

control efforts. Negative effects of its invasion have been noted, including a decrease of plant 

biodiversity, decrease in available forage for grazing animals, and alteration of soil 

properties. Further intervention is required to diminish the presence of this invasive plant, 

and with the interesting results from the greenhouse experiment, it is prudent that field 

methods be developed which not only mimic the greenhouse experiment, but also have 

practicality in mind on larger scales. Overall, the field trials were implemented with the 

following questions in mind: 

• Are the results of the greenhouse trials representative of what would happen in 

the field? 

• What concentration(s) of ash will work to mitigate the potential legacy effects 

of C. stoebe? 

Once again, F. campestris was chosen as the experimental plant since it is the most 

common native plant found in the upper grasslands. Planting sites were located in a heavily 

invaded patch of the upper grasslands of the Lac Du Bois Protected Area, North of 
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Kamloops, British Columbia where moisture is more readily available, and temperatures are 

cooler relative to lower elevation grasslands. 

The goal of the field trial was to support the conclusions drawn from the greenhouse 

trials, and to discover the effect that ash concentration had on the growth of individual F. 

campestris seedlings.  

 

METHODS 

Seedling Germination 

Purchased F. campestris seeds were planted in small plug trays at the Thompson 

Rivers University Research Greenhouse on March 5, 2018 with each plug measuring 4 cm in 

diameter and 6 cm tall. A single seed was planted in potting soil (Sunshine Mix 4, Canadian 

sphagnum peat moss) housed in each plug. A total of 1,160 seeds were planted. Growing 

conditions in the greenhouse were set to follow the ISP conditions laid out by Hendry and 

Grime (1993). Seedlings were allowed to grow under these constant conditions until May 2, 

2018 when field planting commenced.  

 

Field Design 

This study took place in the upper grasslands of the Lac Du Bois Protected Area, 

North of Kamloops, British Columbia. Specifically, the same 10 heavily invaded locations 

from the greenhouse component of this project (i.e.: Chapter 2) were chosen, and grids were 

formed no farther than 2 m away from the soil sampling locations. C. stoebe was physically 

removed from a 2 m × 2 m square in the heavily invaded areas. Within the 4 m2 grid, 9 

sample points were established in a 3 × 3 fashion, and sample points were located 0.5 m from 

the edge of the 4 m2 grid, and 0.5 m from each other (Figure A.1). The 9 sample points 

served as the different treatment locations for this project and were arranged in a randomized 

block design. The treatments used in the field included a range of ash concentrations, a single 

Activated Carbon (AC) treatment, and a control condition where no ash or AC was applied. 
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Concentrations of ash and AC were based on a 500 mL volume of soil which was the 

anticipated volume that these roots would take up in a 90-day growing period, and the 

individual treatments are as follows: 

1. Control (no AC or Ash addition) 

2. 1% (5 mL) AC addition 

3. 1% (5 mL) Ash addition 

4. 2% (10 mL) Ash addition 

5. 5% (25 mL) Ash addition 

6. 10% (50 mL) Ash addition 

7. 20% (100 mL) Ash addition  

Since there were only a total of 7 treatments, there were 2 “blank” locations where no 

planting occurred to account for the 9 total sample points. Transplanting of the individual F. 

campestris plugs occurred on May 2, 2018 and the study lasted 90 days. At each sample 

point where treatments were present, a spade-type shovel was used to open the ground. The 

soil treatments were then poured into the opening in the ground, and the F. campestris plugs 

were planted in the openings afterwards. This method was chosen for simplicity on a larger 

scale, should it be applicable. At the time of planting, the number of leaves and the height of 

the tallest leaf of each F. campestris individual was recorded. Over the course of the growing 

period, individuals were hand watered every 2-4 days using tap water, depending on the 

weather. At the end of the growing period, number of leaves and height were once again 

recorded, and aboveground biomass samples were taken from each individual. Biomass 

samples were brought back to the Thompson Rivers University Research Greenhouse where 

they were dried in a drying oven (Yamato DKN8132) at 70°C for 72 hours prior to weighing. 

Biomass was recorded to the nearest hundredth of a gram using a Fisher Scientific top 

loading scale (accu-4102).  
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Figure A.1: Design of the field grids. The crosshatches represent the 9 sample points within 

the 2 m × 2 m grid. 

 

Statistical Analyses 

A one-way analysis of variance (ANOVA) was used to determine if soil treatments 

had any effect on biomass. Assumptions of this test include normality of the input data as 

well as homogeneity of variances. The raw data violated the normality assumptions; thus, a 

square root transformation was applied to fit a normal distribution and pass a homogeneity of 

variance test. A Tukey post-hoc analysis was completed to view the differences between each 

pairing. 

Two-way repeated measures ANOVA’s were used to see the differences in the 

number of leaves and leaf height between the soil treatments at each time point. Normality 

testing for this dataset was applied; however, the repeated measures test was carried out 

regardless of the results since this test is robust against departures from normality. An 

analysis of the main effects of soil type and time was conducted, and pairwise comparisons 

were made between the pairings of soil treatments and time. P-values were adjusted using the 

Bonferroni method to account for the unique pairwise comparisons involved in a two-way 

repeated measures ANOVA. All calculations and computations were performed using R for 

Statistical Computing (R Core Team, 2020). 
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RESULTS 

Perhaps due to inherent issues with transplanting, many of the individual plugs did 

not survive the duration of the experiment. Out of the 70 individuals planted, only 22 

(31.4%) survived to the end of the 90-day growing period. The subsequent results will not 

carry any real significance. Nevertheless, statistical measures were applied to examine the 

plants throughout their growing period. 

 

Trends with Survived Plugs 

Both the 1% ash and control treatments had the greatest number of plugs survive to 

the end of the experiment, each having 5 survivors out of 10 planted. The least successful 

trial was the 1% AC treatment, which resulted in 0 survivors (Table A.1). While this 

compliments the results from the greenhouse trials, we cannot rule out the possibility that 

local conditions or issues with transplanting aided in this result. All survived plugs resulted 

in a net loss of leaf height, with the greatest height loss occurring in 20% ash treatments. 

Conversely, all trials resulted in a net gain of number of leaves with 5% ash treatments 

having the greatest increase. Finally, average aboveground biomass of each living plug was 

always below 0.5 g. This is not likely indicative of how F. campestris grows in the field, thus 

these results should be taken lightly. 
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Table A.1: Summarized field data captured from both the planting date (May 2, 2018) and 

the harvest date (July 30, 2018). The values in this table are only representative from plants 

which survived the full 90-day growing period, hence the different values for N. Mean values 

are appended with standard errors to indicate the spread of the data. 

Soil 

Treatment 

Mean 

Planting 

Height 

(cm) 

Mean 

Harvest 

Height 

(cm) 

Mean 

Δ 

Height 

(cm) 

Mean 

Planting 

Leaves 

(n) 

Mean 

Harvest 

Leaves 

(n) 

Mean 

Δ 

Leaves 

(n) 

Mean 

Biomass 

(g) N 

AC-01 NA NA NA NA NA NA NA 0 

Ash-01 
9.26 ±  

0.73 

4.24 ± 

0.89 

-5.02 ± 

0.46 

18 ± 

2.14 

20.6 ± 

5.31 

2.6 ± 

6.96 

0.174 ± 

0.019 
5 

Ash-02 
9.25 ±  

0.85 

3.8 ± 

1.1 

-5.45 ± 

0.25 

15.5 ± 

0.5 

34 ± 

5.0 

18.5 ± 

5.5 

0.175 ± 

0.035 
2 

Ash-05 
8.95 ± 

2.35 

4.75 ± 

2.75 

-4.2 ± 

0.4 

19 ± 

5.0 

51.5 ± 

19.5 

32.5 ± 

14.5 

0.185 ± 

0.065 
2 

Ash-10 
10.05 ± 

1.82 

4.925 ± 

1.01 

-5.13 ± 

1.56 

15.75 ± 

3.90 

28.5 ± 

10.90 

12.75± 

7.54 

0.145 ± 

0.079 
4 

Ash-20 
11.025 ± 

1.02 

3.875 ± 

0.98 

-7.15 ± 

0.97 

12.5 ± 

2.53 

20.75 ± 

4.21 

8.25 ± 

3.57 

0.145 ± 

0.060 
4 

Control 
7.82 ± 

0.63 

3.58 ± 

0.91 

-4.24 ± 

1.47 

17 ± 

3.08 

23.8 ± 

4.26 

6.8 ± 

5.83 

0.214 ± 

0.018 
5 

 

Biomass 

A one-way ANOVA was performed to find any differences in biomass between the 

soil treatments. A square root transformation was applied to the biomass data to pass a 

Shapiro-Wilks normality test (p = 0.075) and Levene’s test of homogeneity (p = 0.234) to 

allow the use of the parametric one-way ANOVA. No significant differences in biomass 

were found between the treatments (F (6, 63) = 0.962, p = 0.458). The mean biomass of F. 

campestris when grown in soils treated with activated carbon was slightly lower compared to 

when grown in other soil treatments (Table A.2). A Tukey post-hoc analysis revealed no 

significant differences between any pairing of groups (Table A.3). 
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Table A.2: Summarized mean and standard deviation of biomass of F. campestris grown in 

each soil treatment. 

Treatment √Biomass ± SD N 

AC_01 0.180 ± 0.104 10 

ASH_01 0.231 ± 0.201 10 

ASH_02 0.248 ± 0.139 10 

ASH_05 0.227 ± 0.151 10 

ASH_10 0.281 ± 0.141 10 

ASH_20 0.245 ± 0.149 10 

CONTROL 0.330 ± 0.154 10 

 

 

Table A.3: Tukey HSD pairwise comparisons of biomass, change in number of leaves, and 

leaf height change between each treatment grouping.  

Group 1 Group 2 p 

AC_01 ASH_01 0.987 

AC_01 ASH_02 0.949 

AC_01 ASH_05 0.992 

AC_01 ASH_10 0.743 

AC_01 ASH_20 0.96 

AC_01 CONTROL 0.3 

ASH_01 ASH_02 1 

ASH_01 ASH_05 1 

ASH_01 ASH_10 0.99 

ASH_01 ASH_20 1 

ASH_01 CONTROL 0.771 

ASH_02 ASH_05 1 

ASH_02 ASH_10 0.999 

ASH_02 ASH_20 1 

ASH_02 CONTROL 0.889 

ASH_05 ASH_10 0.984 

ASH_05 ASH_20 1 

ASH_05 CONTROL 0.729 

ASH_10 ASH_20 0.998 

ASH_10 CONTROL 0.991 

ASH_20 CONTROL 0.869 
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Leaf Height and Number of Leaves 

A two-way repeated measures ANOVA was used to determine the effects of soil 

treatments over time on the maximum leaf height and number of leaves of the planted F. 

campestris individuals. Normality was violated for the raw data (p < 0.001), though the test 

was still used as it is robust against departures from normality. Moreover, these departures 

can be explained by the fact that only 22 individuals survived to the end of the experiment, 

thus biasing calculations of normality to tend towards zero. The decision was made to 

proceed with a two-way repeated measures ANOVA to test for differences in leaf height and 

number of leaves. 

There was a significant effect of timing on the leaf heights of F. campestris between 

the treatment groups (F (1, 9) = 68.49, p < 0.001, Figure A.2). There was no significant effect 

of treatment on leaf height of F. campestris (F (6, 54) = 0.419, p = 0.864); however, the 

interaction of treatment and timing had a slight but non-significant effect (F (6, 54) = 2.11, p = 

0.067). An analysis of the main effects of soil treatment supported the conclusion that there 

were no significant differences between the treatments at either time of planting or harvesting 

(Table A.4). Conversely, a significant main effect of timing was found within each soil 

treatment on leaf height. Pairwise comparisons of soil treatments showed no significant 

difference between any two treatment groups (Table A.5). Oppositely, significant differences 

were found in the pairwise comparisons of timing for each soil treatment group (Table A.6) 

No significant effects on the number of leaves were found between soil treatments (F 

(6, 54) = 1.136, p = 0.354) or timing (F (1, 9) = 2.879, p = 0.124, Figure A.2). Additionally, there 

was no significant interaction of soil treatments or timing of sampling on the number of 

leaves (F (6, 54) = 1.34, p = 0.256). There were no significant main effects of soil treatment on 

the number of leaves when grouped by timing of sampling (Table A.4). A significant main 

effect of timing on the number of leaves was found in soils treated with AC (F (1, 9) = 108.07, 

p < 0.001). Pairwise comparisons between each soil type showed no significant differences 

between any soil treatments (Table A.5), and the only significant comparison between timing 

of sampling occurred in the soils treated with AC (Table A.6). 
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Table A.4: Results from a two-way repeated measures ANOVA on leaf height and number of 

leaves separately. Effect of time and treatments are reported for each group. Significant p 

values are bold faced. P-values on the treatment and timing effects have been adjusted using 

the Bonferroni method accounting for the different number of groupings. 

Two-way repeated measures ANOVA 

   Leaf Height No. Leaves 

Effect df effect df error F p F p 

Treatment 6 54 0.419 0.864 1.136 0.354 

Timing 1 9 68.486 <0.001 2.879 0.124 

Treatment × Timing 6 54 2.111 0.067 1.34 0.256 

       

Effect of soil treatment by time 

   Leaf Height No. Leaves 

Timing df effect df error F p F p 

Planting 6 54 0.583 1 1.23 0.612 

Harvest 6 54 1.966 0.174 1.21 0.63 

       

Effect of timing by soil treatments 

   Leaf Height No. Leaves 

Treatment df effect df error F p F p 

AC_01 1 9 86.822 <0.001 108.07 <0.001 

ASH_01 1 9 38.203 0.001 0.868 1 

ASH_02 1 9 44.361 0.001 1.442 1 

ASH_05 1 9 48.968 <0.001 0.584 1 

ASH_10 1 9 41.834 0.001 0.515 1 

ASH_20 1 9 67.953 <0.001 0.72 1 

CONTROL 1 9 24.121 0.006 0.16 1 
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Table A.5: Results of pairwise T-tests of leaf height and number of leaves between each 

treatment group, separated by planting and harvest timing. T statistics and Bonferroni 

adjusted p values are reported. 

  Leaf Height No. Leaves 

  Planting Harvest Planting Harvest 

Group 1 Group 2 T p T p T p T p 

AC_01 ASH_01 0.696 1 -2.579 0.624 -0.090 1 -2.425 0.804 

AC_01 ASH_02 0.544 1 -1.427 1 1.994 1 -1.480 1 

AC_01 ASH_05 1.331 1 -1.259 1 -0.703 1 -1.381 1 

AC_01 ASH_10 1.641 1 -2.227 1 -0.733 1 -1.861 1 

AC_01 ASH_20 0.176 1 -2.134 1 1.681 1 -2.231 1 

AC_01 CONTROL 1.107 1 -2.435 0.792 0.182 1 -2.677 0.531 

ASH_01 ASH_02 -0.125 1 2.368 0.882 1.432 1 1.496 1 

ASH_01 ASH_05 0.964 1 2.072 1 -0.613 1 0 1 

ASH_01 ASH_10 1.282 1 0.135 1 -0.529 1 -0.192 1 

ASH_01 ASH_20 -0.508 1 0.775 1 1.510 1 0.442 1 

ASH_01 CONTROL 0.328 1 0.677 1 0.218 1 -0.544 1 

ASH_02 ASH_05 0.607 1 -0.253 1 -1.986 1 -0.631 1 

ASH_02 ASH_10 0.979 1 -1.198 1 -2.231 1 -0.881 1 

ASH_02 ASH_20 -0.303 1 -0.902 1 0.285 1 -0.286 1 

ASH_02 CONTROL 0.315 1 -1.661 1 -0.929 1 -1.589 1 

ASH_05 ASH_10 0.210 1 -1.204 1 0.082 1 -0.198 1 

ASH_05 ASH_20 -0.845 1 -1.067 1 1.775 1 0.331 1 

ASH_05 CONTROL -0.311 1 -2.060 1 0.942 1 -0.240 1 

ASH_10 ASH_20 -1.479 1 0.387 1 2.059 1 0.481 1 

ASH_10 CONTROL -0.674 1 0.181 1 0.594 1 -0.073 1 

ASH_20 CONTROL 0.669 1 -0.370 1 -0.857 1 -0.654 1 
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Table A.6: Results of pairwise T-tests of leaf height and number of leaves between planting 

and harvesting, separated by treatment group. T statistics and Bonferroni adjusted p values 

are reported. Significant p values are bold faced. 

   Leaf Height No. Leaves 

Treatment Group 1 Group 2 T p T p 

AC_01 Planting Harvest 9.318 <0.001 10.396 <0.001 

ASH_01 Planting Harvest 6.181 <0.001 0.931 0.376 

ASH_02 Planting Harvest 6.660 <0.001 1.201 0.261 

ASH_05 Planting Harvest 6.998 <0.001 0.764 0.464 

ASH_10 Planting Harvest 6.468 <0.001 0.718 0.491 

ASH_20 Planting Harvest 8.243 <0.001 0.849 0.418 

CONTROL Planting Harvest 4.911 0.001 0.400 0.699 

 

 

 

Figure A.2: Measurements of number of leaves (top) and leaf height (bottom) for each 

treatment taken on the planting date and the harvest date (N = 10 for each treatment). Points 

connected by lines are indicative of individuals change in either leaf height or number of 

leaves. 
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DISCUSSION 

This experiment acted as a showcase for the difficulty involved in maintaining a field 

trial with transplanted grasses. Only 22 of the 70 original transplanted individuals survived to 

the end of the experiment despite efforts to promote establishment in the field. When the 

plugs were grown in the greenhouse, they were subjected to constant and ideal growing 

conditions. Likely, the temperature fluctuation observed in the field played a critical role in 

the survival of the individuals. Official climate records indicate that the lowest temperature 

reached between May 1 and July 30, 2018 was on May 10, 2018 at 4:00 AM where the 

temperature dropped to 5.3°C, and the highest temperature was on July 30, 2018 at 3:00 PM 

where the temperature reached 37.8°C at the Kamloops Airport (LaZerte & Albers, 2018). 

The greenhouse germinated F. campestris plugs may not have exhibited phenotypic plasticity 

due to their controlled greenhouse climate resulting in many of the plugs initially dying. The 

soils that the plugs were grown in initially was a nutrient rich potting soil and there was no 

competition for resources from other plant species. This further extends the argument that the 

plugs were not well suited for the environment that they would be planted in: soil nutrients 

are likely to change and competition is introduced. These variables were not considered in 

the initial design and lead to the poor results of this experiment. 

There were no significant differences found in biomass between the different 

treatment groups. In this field application, this indicates that there were no detrimental effects 

of any of the soil amendments. Due to the very small individuals that managed to survive to 

the end of this experiment, it was impossible to recover any belowground biomass. Perhaps 

the soil amendments used in this trial impacted the root networks of the F. campestris 

individuals. Future studies applying a field use of ash or activated carbon should attempt to 

create a design using established natural plants as opposed to transplanting individuals. In 

this manner, such an experiment could potentially highlight some effectiveness of ash as a 

tool for restoration purposes. Indeed, this is being done currently in the Laurie Guichon 

Memorial Grasslands by another student of the Fraser Lab (Hampton, 2020). In work being 

completed by Whitehouse, attempts to limit the spread of C. stoebe are being made by 

applying varying concentrations of ash and herbicides to a heavily invaded area. Other 



93 

 

studies on the remedial effects of ash are being conducted in many parts in Canada as well 

through a program called AshNet (Emilson et al., 2018). 

No significant differences in leaf height or number of leaves were found between 

treatments at either the time of planting or harvesting. During planting, this was expected as 

it shows that there was no bias towards any treatment for those variables. The harvesting data 

was not significantly different between treatments either, though this is not likely what was 

expected. The data shows that compared to a control, none of the soil amendments help to 

create either a beneficial or harmful environment for F. campestris. This is very 

contradictory to what is generally described in literature, as well as contradictory to the 

results of the greenhouse study. It is very likely that the individuals that were planted became 

stressed and had limited capacity to thrive in a shockingly different environment from 

standard greenhouse conditions, especially at such a young life stage. Given more time and 

resources, the application of ash and AC would have been better completed on a broader 

scale on established plants in the field. 

The significant differences in leaf height were all within treatments between the time 

at planting and the time of harvest, where the leaf height decreased over time. In a more 

rigorous design, we might have expected other results; however, the fact that all treatments 

including the control experienced decreases in leaf height over time indicate that there were 

flaws in the implementation of the field experiment.  

The only significant difference in the number of leaves was found within the AC 

treatments between planting and harvest. This may indicate some effect of AC on the number 

of leaves; however, the data that exists for the 22 individuals that survived across the 7 

treatments show sporadic results in all other treatments. The reason we see a significant 

difference in the number of leaves of the AC treatment is because all individuals that 

received the AC treatment died in the field. Unfortunately, since many other individuals of 

other treatments also died, I cannot rule out the possibility that the reason that all individuals 

of the AC treatment died was random. 

Field implementations of greenhouse projects are difficult to carry out; however, 

when executed properly they can have some powerful results should they share similar 
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results to the greenhouse portion. This experiment was an attempt to follow that process; 

however, the transplanting procedure incurred too much stress to the planted individuals. Due 

to the low number of survived individuals, there is no true significance to the data. Rather, 

this portion serves as a record of my attempt at a field study and the statistical methods that 

could be applied had it been successful. 
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Appendix B: Data Tables 

Table B.1: X, Y coordinates for the sampling locations of each site in the Lac Du Bois GPA. 

The coordinate reference system used is NAD 1983 BC Environment Albers (EPSG 3005). 

Invaded  

Site ID 
X Y 

Pristine 

Site ID 
X Y 

Inv_01 1390732.1578 656644.9089 Pri_01 1390786.1589 656640.2280 

Inv_02 1390740.7013 656647.7801 Pri_02 1390812.8783 656610.1828 

Inv_03 1390748.3212 656654.0467 Pri_03 1390822.1066 656593.3971 

Inv_04 1390775.4742 656631.4404 Pri_04 1390835.5155 656556.3348 

Inv_05 1390776.6700 656620.5521 Pri_05 1390819.5016 656549.8116 

Inv_06 1390793.4424 656611.4967 Pri_06 1390784.4188 656543.2845 

Inv_07 1390791.3640 656600.2051 Pri_07 1390764.6073 656562.8504 

Inv_08 1390786.2598 656595.1902 Pri_08 1390761.4072 656574.9540 

Inv_09 1390778.7992 656591.8181 Pri_09 1390743.3708 656594.0062 

Inv_10 1390761.0764 656609.7199 Pri_10 1390706.4964 656620.5365 

 

 

Table B.2: X, Y coordinates of the soil temperature monitors used to gather ground 

temperature data. The coordinate reference system used in NAD 1983 BC Environment 

Albers (EPSG 3005). 

Site ID Site Association X Y 

Site 17 Pristine 1390886.9596 656607.2115 

Site 18 Pristine 1390877.8708 656516.0344 

Site 19 Invaded 1390792.3790 656569.6235 

Site 20 Invaded 1390750.6190 656633.3511 
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Table B.3: Plant inventory for the sampled pristine and invaded areas, and respective mean 

cover values in top-down percent (N = 10). A value of NULL indicates that the plant was not 

found in any of the plots. Bare ground and litter covers were estimated via ground cover 

measurements rather than top-down. Invasive species are denoted with an asterisk prepended 

to their scientific names. All scientific and common names were retrieved from Antos et al. 

(2018). 

Scientific Name Common Name 

Mean cover 

in pristine 

soils (%) 

Mean cover 

in invaded 

soils (%) 

Achillea millefolium Yarrow 4 1 

Agropyron spicata Bluebunch wheatgrass 0.4 NULL 

Androsace septentrionalis Fairy candelabra NULL 0.3 

Antennaria neglecta Field pussytoes 0.3 0.2 

Arnica fulgens Orange arnica 6.3 0.6 

Astragalus miser Timber milk-vetch 5 2.2 

Calochortus macrocarpus Sagebrush mariposa lily 0.4 0.3 

Campanula rotundifolia Common harebell 2.4 NULL 

Carex praegracilis Field sedge 0.1 NULL 

*Centaurea stoebe Spotted knapweed NULL 86.1 

Elymus glaucus Blue wildrye 8.6 NULL 

Erigeron corymbosus Long-leaved daisy 0.1 NULL 

Eriogonum heracleoides Parsnip-flowered buckwheat 0.4 NULL 

Festuca campestris Rough fescue 21.7 NULL 

Fritillaria lanceolata Chocolate lily NULL 0.1 

Geranium viscosissimum Sticky geranium 1.4 NULL 

Hackelia micrantha Blue stickseed NULL 1.3 

Heuchera cylindrica Round-leaved alumroot 0.1 NULL 

Juncus balticus Baltic rush 1 NULL 

Koeleria macrantha Junegrass 0.4 1.5 

Lathyrus nevadensis Purple peavine 1.2 NULL 

Lithophragma parviflorum Small-flowered woodland star 1.3 0.8 

Lithospermum ruderale Lemonweed 0.2 0.8 

Poa pratensis Kentucky bluegrass 34.8 3.5 

Sisyrinchium idahoense Idaho blue-eyed-grass 0.3 NULL 

Stipa comata Needle-and-thread grass 0.1 NULL 

Stipa occidentalis Stiff needlegrass 0.7 NULL 

Stipa richardsonii Spreading needlegrass 5.9 NULL 

Taraxacum officinale Common dandelion 0.2 NULL 

*Tragopogon dubius Yellow salsify 0.5 1.4 

Zigadenus venenosus Meadow death-camas 0.3 NULL 

 Unknown 0.1 NULL 

 Bare Ground 0.7 11.3 

 Litter 40.9 16.3 

 


