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ABSTRACT 

 In British Columbia, grasslands provide critical habitat for a wide variety of species 

and are a significant forage base for BC’s ranching industry. Grasslands in BC are threatened 

from several human-caused stressors, including urban development, over-grazing, climate 

change and the introduction of non-native invasive species. Spotted knapweed (Centaurea 

stoebe L.), is an invasive plant introduced to North America from Europe. It can establish 

large monocultures in BC’s grasslands which can cause a reduction in wildlife and livestock 

forage production, a lowering of native biodiversity, and an alteration in soil nutrient 

composition. I investigated the carry over effects immediately following removal of large 

and small spotted knapweed patches on soil mineral nutrients (nitrogen (N), phosphorus (P), 

carbon (C) and volumetric water content) and the growth of an important native grass, rough 

fescue (Festuca campestris Rydb.), in grasslands within Lac du Bois Provincial Park, located 

to the northwest of the city of Kamloops, British Columbia. The results of field experiments 

showed that soil total nitrogen, total carbon, volumetric water content and biomass of rough 

fescue were lower in former spotted knapweed patches, but there was no significant 

difference in soil total phosphorus. In addition, there was no measureable difference between 

large and small spotted knapweed patches in soil mineral nutrients and plant growth. In a 

greenhouse experiment I manipulated N:P ratios (1:1, 15:1 and 30:1) and biochar (10g/pot or 

none) to test their effect on competitive performance between spotted knapweed and rough 

fescue. The experimental design included five plant combinations: spotted knapweed alone, 

rough fescue alone, two spotted knapweed, two rough fescue, one spotted knapweed and one 

rough fescue. The results of the greenhouse experiment showed that total biomass of spotted 

knapweed was greater than rough fescue at each N:P ratio when they were grown alone or 

grown under intraspecific condition. Also, results showed that the competitive effect of 

spotted knapweed was -0.136 ± 0.052 SE; while rough fescue has a facilitation effect of 

0.020 ± 0.007 SE. Biochar addition had no effect on plant growth of spotted knapweed or 

rough fescue, or competitive interactions within and between the two plant species. 
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Chapter 1 ˗ General Introduction 

 Non-native invasive species are a serious worldwide problem (Reid et al. 2009). Once 

established, these exotics can dominate an environment and are hard to control and eliminate. 

Invasive plant species can reduce biodiversity, change forage availability for domesticated 

and native herbivores and alter soil nutrient properties (Reid et al. 2009). Forests, rangelands, 

wetlands and valuable cropland in North America are threatened by non-native invasive 

plants, causing substantial economic lose (White & Schwarz 1998).  

 The success and dominance of invasive plants are suggested to be the result of two 

primary factors. First, exotic plant invasives may no longer be in the presence of their natural 

enemies from their native distribution; referred to as the enemy-free hypothesis (Andonian & 

Hierro 2011). Without their natural enemies, introduced species may quickly grow, 

reproduce and expand. The absence of herbivores, pathogens and competitive species in new 

habitats can provide an environment with less competition and disturbance for invaders to 

grow and multiply at a high rate. Second, the interaction between the soil biota and the 

invasive plant species may be mutualistic (Andonian & Hierro 2011). It is possible that 

invasive species encounter less inhibitory effects of soil biota where they are introduced than 

in their home range. Thus, soil microbes can promote invasion in recipient communities 

while inhibiting plants at home.   

 The management of invasive alien plants is challenging because it often requires 

multiple methods at a high cost. Even so, there is evidence of many successful eradication 

programs, or at least the maintenance of populations at low densities of exotics (Simberloff 

2008). The different methods applied to control invasives include mechanical, physical, 

chemical and biological controls.  

Grasslands  
 Grasslands are characterized by the dominance of grasses and forbs rather than large 

shrubs and trees, and cover about 3500 million ha of the Earth’s surface (Carlier et al. 2009). 

Grasslands contribute to reducing soil erosion and improving soil and water quality (Carlier 

et al. 2009). Also, they provide food for livestock and serve as habitat to wildlife thus 

enhancing biodiversity (Miller 2013). From an economic perspective, grasslands provide 

livelihoods and a major source of income.  

 Despite the important role of grasslands, they are being threatened by several 
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stressors, such as human activities, invasive species and climate change. Grasslands are 

converted for agricultural purposes and destroyed due to urban sprawl, thus reducing 

biodiversity through loss of habitat (Klaus 2013). Non-native invasive plants species are 

detrimental to grasslands through the alteration of disturbance processes, diminishment of the 

quality of feed for livestock and wildlife, and the displacement of native plants (Reid et al. 

2009). Furthermore, the change of temperature, precipitation, and soil moisture caused by 

climate change can influence grassland function, including carbon storage, nitrate filtration, 

water quality, and forage for livestock and wildlife (Mannetje 2007).  

Spotted knapweed (Centaurea stoebe L.) 
 Spotted knapweed (Centaurea stoebe L.) is an invasive plant introduced to North 

America from Europe. It is a short-lived perennial forb growing from a taproot to erect 

stems, ridged and laxly branched (Story et al. 1989). The height of spotted knapweed is 0.2-

1.8 m, with solitary flowering heads at the ends of branches (Province of British Columbia 

2002). The spotted appearance is given by stiff and tipped floral bracts with a dark, comb-

like fringe (Province of British Columbia 2002). The flowers are pinkish purple or, rarely, 

cream colored. Its rosette leaves are up to 15 cm long and deeply lobed (Province of British 

Columbia 2002). The principal stem leaves are pinnately divided having smooth margins and 

getting smaller toward the top of the shoot (Province of British Columbia 2002).  

 Spotted knapweed is widespread at low- to mid-elevation grasslands and dry open 

forests in British Columbia, Canada (Province of British Columbia 2002). It also can be 

found on roadsides, fields, and disturbed areas. It is adapted to well-drained, light- to coarse-

textured soils but is intolerant to dense shade. The plant is frequent in southern B.C. east of 

the Coast-Cascade mountains. It is present on the Mainland and Vancouver Island as well. 

Spotted knapweed has become a major concern in the Kootenay, Okanagan, Thompson, 

Cariboo, Omineca, and Peace River agricultural reporting regions (Province of British 

Columbia 2002).  

 Spotted knapweed reduces wildlife and livestock forage production, lowers native 

biodiversity, and increases loss of soil mineral nutrients (Sheley & Jacobs 1997; Fraser & 

Carlyle 2011). Through secreting allelochemicals, shifting microbial mechanism and 

affecting resource depletion mechanism, spotted knapweed influences soil properties and 

native grasses (Suding et al. 2004). Spotted knapweed contributes to reducing soil nitrogen 
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availability (Hook et al. 2004; Story et al. 1989) and increasing soil phosphorus availability 

(Thorpe al. 2006). Hook et al. (2004) reports that spotted knapweed can increase or decrease, 

but mostly decrease, soil carbon pools in native grasslands. Spotted knapweed has been 

shown to have a greater ability to uptake soil water than native grass, such as Pseudoregneria 

spicata and Pascopyron smithii (Hill et al. 2006). In terms of influencing soil properties, 

spotted knapweed affects the growth of native plants since the essential nutrients for plant 

growth are changed. For example, the growth of rough fescue is restrained by the presence of 

spotted knapweed (Fraser and Carlyle 2011). It hinders rough fescue’s growth through 

altering soil nutrients, reducing soil nitrogen, carbon and volumetric water content while 

increasing soil phosphorus and potassium.  

Rough fescue (Festuca campestris Rydb.) 
 Rough fescue (Festuca campestris Rydb.) is a native, perennial, cool-season 

bunchgrass of northwestern North America (USDA-NRCS 2003).  The large-diameter 

bunches of individual rough fescue plants usually average 30.5 – 35.5 cm in diameter, 

sometimes as large as 70.0 cm. The culms are erect, 30.5 to 137.2 cm. tall, glabrous, 

scabrous, naked below the panicle, and purplish at the base.  Leaves are basal 30.5-76.2 cm 

long, 0.08-0.20 cm in diameter, folded, mostly erect, stiff, and pointed. The lower surface of 

the leaves are often scabrous (USDA-NRCS 2003).   

 Rough fescue occurs in grass-dominated and shrub-dominated plant communities. It 

also can occur in ponderosa pine woodlands, open ponderosa pine forests, subalpine forests, 

and in grassy areas within forests. For example, it occurs in southeastern British Columbia. 

Rough fescue grows slowly, which requires 3 to 5 years to become established and produces 

seed only every 2 to 10 years (Desserud & Naeth 2013). It prefers fertile mostly black soils 

(black chernozem) with ample moisture that is more than 33 cm annual precipitation, 

whereas it has been found growing in a 25 cm to 28 cm rainfall area in western Montana 

(Baldridge & Lohmiller 1990). 

 Rough fescue is an ecologically and economically important native plant species 

within grasslands of western Canada (Bogen et al. 2002). Rough fescue grassland is an 

important habitat for a variety of small mammals and provides forage for wildlife. From an 

agricultural and economic perspective, rough fescue grassland provides high quality forage 

for livestock (Desserud & Naeth 2013; Desserud et al. 2013). However, rough fescue 
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grasslands are considered one of the most threatened grassland communities in western 

Canada due to residential development, livestock heavy grazing and non-native species 

invasion (Desserud et al.  2013; McInenly et al. 2010). Non-native plant species are 

particularly problematic when they are competitively superior to native plants. 

Competition and soil nutrients 
Competition occurs when resources are in short supply because they have been 

consumed by neighboring organisms (Keddy 2001). For plants, intra- or interspecific 

competition will arise when they are sharing resources with neighbors. Plants have the same 

basic requirements for light, water, and nutrients, and they inevitably shade their neighbors 

and/or have somewhat overlapping root systems (McGraw & Chapin 1989). Resource 

competition theory shows that a plant population in a monoculture with a single limiting 

resource would grow and reduce the concentration of that resource to an equilibria level 

where growth would be balanced by losses (Dybzinski & Tilman 2007). When species 

compete for a single resource, the species with the lower equilibria level is predicted to win, 

as demonstrated for rapidly growing organisms (Dybzinski & Tilman 2007). Rapid nutrient 

uptake and effective pre-emption of soil nutrients are critical for plant growth under 

competition. Competition among individuals and species of plants may be affected by 

nutrient availability and acquisition. The ratio of nitrogen to phosphorus (N:P) availabilities 

influence the productivity and species composition of plant communities (Ahmad-Ramli et 

al. 2013). Previous studies have shown that different outcomes of species competition under 

nitrogen- or phosphorus-limited conditions probably reflects the fact that some species 

compete most successfully for nitrogen, while others compete more successfully for 

phosphorus (Venterink and Güsewell 2010). A study from Leskovšek et al. (2012) 

demonstrates that higher nitrogen availability increases the competitive advantage of invasive 

grass (Ambrosia artemisiifolia L.) compared with native grass (Lolium multiflorum L.). 

Ahmad-Ramli et al.  (2013) show that the availability of phosphorus is increasingly 

recognized as a key nutrient that limits productivity, either on its own or in combination with 

other mineral nutrients like nitrogen. These previous studies indicate that variations in 

nitrogen and phosphorus supply can influence the intensity of competitive interactions and 

could potentially affect the outcome of plant competition. 
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 Biochar 
Biochar is the use of charcoal as a soil amendment, which has been proposed to 

increase both soil organic carbon levels and soil fertility (Gathorne-Hardy et al. 2009). 

Biochar is able to improve soil productivity, carbon storage, or filtration of percolating soil 

water (Lehmann & Joseph 2009) because of its two key properties: a high affinity to 

nutrients and water, and a long residence time.  The high affinity to nutrients and reduces 

onsite nutrient loss and offsite pollution from nutrient leaching. The long residence time 

leads to biochar’s promotion for carbon sequestration (Gathorne-Hardy et al. 2009). 

Biochar’s effects on soil properties may have direct impacts upon plant growth because of 

the penetration depth and availability of air and water within the root zone is determined 

largely by the physical components of soil (Lehmann & Joseph 2009).  

Thesis Research Objectives 
 The overall objective of this thesis is to study methods to restore spotted knapweed 

infested grasslands in British Columbia. The first objective is to understand spotted 

knapweed invasion. My thesis examined the carry over effects of recently removed spotted 

knapweed on soil properties and vegetation at Lac du Bios Grasslands Provincial Park in 

chapter 2. The second objective is to test the ability of biochar to restore grasslands infested 

by spotted knapweed in British Columbia. As previous studies have shown positive results on 

plant growth with the use of biochar, I conducted a greenhouse experiment to examine 

competitive effects of spotted knapweed on rough fescue at different N:P ratios, and with a 

biochar addition treatment in chapter 3. The information gained through this study will help 

to move the spotted knapweed infested grassland restoration in British Columbia forward. 
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Chapter 2 ˗ Soil Residual Effects of Spotted Knapweed on Soil Properties and 

Vegetation at Lac Du Bios Grasslands Provincial Park 

Introduction 
 Soil plays an important role by supporting the growth of plants, controlling the 

storage and flow of water in the hydrologic system, facilitating decomposition and nutrient 

cycling, providing habitat for living organisms, influencing the composition and physical 

condition of the atmosphere and being an engineering medium in human-built ecosystems 

(Brady &Weil 2008). Taking this significance into consideration, preserving soil properties is 

essential. Available soil nutrients are needed for plant growth; however, non-native invasive 

plants can alter soil nutrient availability (Reid et al. 2009).  

Soil nitrogen is vital for plant growth and development. Nitrogen is an integral 

component of many essential plant compounds, such as amino acids and nucleic acids. 

Nitrogen is needed for protein development, photosynthesis and the processing of 

carbohydrates within plants (Bang 2007). Nitrogen stimulates root growth and development, 

as well as the uptake of other nutrients (Brady &Weil 2008). Soil phosphorus is also 

important for plant growth. It plays an important role in photosynthesis, nitrogen fixation, 

flowering, fruiting and maturation (Blackshaw & Brandt 2009). Phosphorus encourages root 

growth, especially development of lateral roots and fibrous rootlets (Brady &Weil 2008). 

Carbon is an essential element of soil organic matter; organic-matter-rich soils are generally 

better for plant growth. Organic matter improves soil physical and chemical properties, 

which provides suitable plant growing conditions (Smith & Stitt 2007). Volumetric water 

content is a key hydrological soil physical variable that influences the hydrological response 

of catchment (Dlamini & Chaplot 2012). It influences the partition between runoff and soil 

infiltration. It also controls energy and gas fluxes between the pedosphere, the biosphere and 

the atmosphere, which greatly influence land processes such as soil water denitrification 

(Grimaldi & Chaplot 2000), carbon sequestration, associated climate change and biodiversity 

(Asbjornsen et al. 2011). Thus, volumetric water content plays an important role in soil 

compaction and provides available water for plant growth. 

Spotted knapweed has been shown to reduce soil nitrogen availability and increase 

soil phosphorus availability (Story et al. 1989; Hook et al. 2004; Thorpe et al. 2006; Fraser 

and Carlyle 2011). Hook et al. (2004) reported that spotted knapweed can increase or 
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decrease, but mostly decrease, soil carbon pools in native grasslands. Fraser and Carlyle 

(2011) also reported a decrease in soil carbon in spotted knapweed patches compared to 

rough fescue grassland. Spotted knapweed has been shown to have a greater ability to uptake 

soil water than native grass (Hill et al. 2006). Spotted knapweed can influence soil properties 

but what is not known is whether there are residual effects of spotted knapweed on soil 

properties and plant growth after the spotted knapweed has been removed, and whether 

potential residual effects might affect the successful re-establishment of native species for 

restoration. 

Spotted knapweed is a strong competitor with rough fescue and causes reduced 

biomass of native grasses (Press et al. 1998; Suding et al. 2004). Spotted knapweed has a 

larger leaf area and a higher rate of growth than rough fescue (Press et al. 1998). In addition, 

spotted knapweed secretes allelochemicals that negatively affect the growth of native plants 

(Suding et al. 2004). The question remains whether it is possible to restore rough fescue 

following invasion by spotted knapweed? Press et al. (1998) demonstrated that revegetation 

with fast-growing, tall-statured species can be a method of managing spotted knapweed 

invasion. Therefore, areas invaded by spotted knapweed may have the potential to be 

restored through the removal of spotted knapweed and transplanting rough fescue seedlings.  

Fraser and Carlyle (2011) found that large patch size (>10 m2) of spotted knapweed 

has been shown to have a greater negative effect on soil properties. Therefore, I hypothesize 

that if there are residual soil effects caused by spotted knapweed, these effects will likely be 

greater in sites where the knapweed patch size was larger. In my study, residual effects from 

spotted knapweed were compared between former large and small patches, and the biomass 

accumulation of planted rough fescue seedlings were compared between the different patch 

sizes.  

The field site study was designed to test the following hypotheses: 

(1) Soil nitrogen, carbon, volumetric water content and dry biomass accumulation of 

transplanted rough fescue seedlings will be lower in former spotted knapweed patches than in 

former native grass patches, but soil phosphorus will be higher. 

 (2) Soil nitrogen, phosphorus, carbon, volumetric water content and dry biomass 

accumulation of transplanted rough fescue seedlings will be lower in former large spotted 

knapweed than in former small spotted knapweed patches. 
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 (3) Soil nitrogen, carbon and volumetric water content will have a negative linear 

relationship on biomass of transplanted rough fescue seedlings within former spotted 

knapweed patches, while soil phosphorus will be higher. 

Materials and Methods 

Site description 

 The research was done at Lac du Bios Grassland Provincial Park located to the 

northwest of the city of Kamloops, British Columbia, Canada (N50°47′, W120°26′). Soils of 

Lac Du Bois Park are classified as Chernozems (van Ryswyk et al. 1966) in accordance with 

the Canadian Soil Classification System (Soil Classification Working Group 1998).  Within 

this park, the dominant grass species are Festuca campestris Rydb., Achnatherum 

occidentale (Thurb.) Barkworth ssp. occidentale, and S. richardsonia (Link) Barkworth 

described by van Ryswyk et al. (1996). Spotted knapweed first established in this grassland 

approximately 40 years ago (Fraser & Carlyle 2011). 

  The average annual precipitation is about 260 mm, but it increases up to 310 mm 

with greater precipitation partly from snow melting at higher elevation in the park (Carlyle et 

al. 2011). The highest rainfall is between June and August. The driest period occurs between 

March and April. Snow falls mainly in December and January (Ministry of Environment, 

Lands and Parks Report 2000). The average temperature in the valley bottom is 8.4 ̊C, and 

decreases by approximately 0.5 degrees with an elevation increase every 500 m (Ministry of 

Environment, Lands and Parks Report 2000). The upper elevation grasslands in Lac Du Bois 

Park have higher annual precipitation and lower mean temperature compared to lower and 

middle grasslands. 

 Experimental design 

  The study was designed to test carry over effects from recently removed spotted 

knapweed. The experiment was established in May 2011 and ended in September 2011. 

Forty patches of spotted knapweed (twenty large and twenty small patches) were randomly 

selected within Lac Du Bois Provincial Park. A knapweed patch was identified as a group of 

at least 10 stems, with stems no further than 0.5 m from its neighbor. Patches were separated 

by at least 20 m. Patch size was classified according to a previous study, where a large patch 

had an area larger than 10 m2 and a small patch had an area between 2 m2 and 10 m2 (Fraser 
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& Carlyle 2011). Paired patches of the neighboring native species were located 5 m due 

North from the edge of the knapweed patch. Within the knapweed and paired native patches, 

a 1 m2 area of spotted knapweed and the paired 1 m2 area of neighboring native species were 

respectively cleared by removing the above-ground vegetation in mid-May, 2011. Within 

each cleared area, nine seedlings of rough fescue were transplanted in a 3×3 array, spaced 30 

cm apart (Figure 2.1). The seedlings were about 4 months old, between 5-10 cm tall, and had 

been propagated from seed in the Research Greenhouse at Thompson Rivers University, 

Kamloops, BC. Seedlings were randomly selected for transplant. Seedlings were watered to 

field capacity at the time of the transplant, but there was no further watering. 

 
Figure 2.1 1 m2 quadrat frame in place for rough fescue seedling transplants (left), and 9 
rough fescue seedlings after transplanting (right). 

Sampling, Measurements and Analysis 

 On the day of harvesting (mid-September, 2011) the transplanted rough fescue 

seedlings, the top 10 cm3 of soil at each corner of the 1 m2 plot was collected with the use of 

a soil corer and the four soil samples were combined, stored in zip-lock bags and transported 

to the laboratory where they were air dried. Dry soil samples were sieved with 2 mm mesh to 

separate coarse fragments, roots and small rocks. 

 All the transplanted rough fescue seedlings were clipped at the above-ground level in 

the last week of September. Biomass of each rough fescue seedling was stored in a paper bag 

and transported to the laboratory and oven dried at 75°C for at least 48h, and weighed. 
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 Volumetric water content (%) was measured by using a TDR soil moisture meter 

fitted with a 20 cm soil rod (Spectrum Technologies, Inc.) at each corner of the 1 m2 plot. 

Dry and sieved soil samples were prepared for analysis for total nitrogen, total 

phosphorus and total carbon. Soil nitrogen (ppm) and carbon (ppm) were analyzed with a 

CE-440 Rapid Analysis Elemental Analyzer, Exeter Analytical, Inc. Total soil phosphorus 

(mg·l-1) was measured using Palintest© test kits. The mineral concentration of mg·l-1 is 

equivalent to mg kg-1 (i.e. ppm).  

Statistical Analysis 

 First, paired t- tests were used to compare the biomass of rough fescue seedlings and 

soil properties within 40 former spotted knapweed patches and within 40 former native grass 

patches. Second, 2-sample t-tests were used to compare the biomass of rough fescue 

seedlings and soil properties in former large spotted knapweed patches and in former small 

spotted knapweed patches. Third, linear regressions were applied to predict the effect of soil 

properties on biomass accumulation of rough fescue seedlings. Statistical analysis of the data 

was performed using Minitab®16.2.4. All data followed a normal distribution under a 

Kolmogorov-Smirnov test or an Anderson-Darling test (Appendix A). 

Results 
            Results from the paired t-test indicated that biomass of transplanted rough fescue 

seedlings was higher in the native grass patches compared to the spotted knapweed patches 

(Table 2.1). There was no difference in total phosphorus between spotted knapweed and 

native grass patches. Total nitrogen, total carbon and volumetric water content were found to 

have lower values in the spotted knapweed patches (Table 2.1).  

 Based on the 2 sample t-test biomass of rough fescue seedlings and all measured soil 

variables were found to be not significantly different between the large and small spotted 

knapweed patches (Table 2.2).  

 There were no significant linear regression results between rough fescue biomass and 

soil properties (total nitrogen, total phosphorus, total carbon and volumetric water content); 

or within former spotted knapweed patches that were large or small. 
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Table 2.1 Mean rough fescue biomass and soil parameters measured within the 40 spotted 
knapweed patches and 40 native grass patches with standard error in parentheses. Values in 
bold represent significant differences between the two patch size (P<0.05).  

  Former spotted 

knapweed patches 

Former native 

 grass patches 
P value 

  

Rough fescue seedlings    

     Biomass (g)  0.336 (0.024) 0.384 (0.020) 0.052 

Soil variables    

     Total nitrogen (ppm)  4837 (239)        5838 (312) 0.011 

     Total phosphorus (ppm) 1269.2 (28.3) 1263.6 (27.5) 0.858 

     Total carbon (ppm) 5103 (279) 6287 (336) 0.008 

     Volumetric water content (%) 9.648 ( 0.349) 10.68 (0.370) 0.037 

 

Table 2.2 Mean rough fescue biomass and soil parameters measured within the 20 large 
spotted knapweed patches and 20 small spotted knapweed patches with standard error in 
parentheses. Values in bold represent significant differences between the two patch size 
(P<0.05).  

   Former Spotted Knapweed Patches 
P value 

         (Large)                   (Small) 

Rough fescue seedlings    

     Biomass (g)     0.365 (0.031)           0.307 (0.035) 0.224 

Soil variables    

    Total nitrogen (ppm)     5026 (415)              4648 (242) 0.436 

    Total phosphorus (ppm)      1286 (32)                     1252 (48) 0.554 

    Total carbon (ppm)      5295 (492)                    4911 (272) 0.499 

    Volumetric water content (%)        9.90 (0.63)                            9.39 (0.31) 0.473 
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Discussion 
 Soil nitrogen, carbon, volumetric water content and biomass of transplanted rough 

fescue seedlings were lower in former spotted knapweed patches compared to former native 

grass patches, which supports my first hypothesis. The result indicates that effects from 

spotted knapweed on these three measured soil properties and transplanted rough fescue 

seedlings’ biomass accumulation still exist even though the above-ground parts of the spotted 

knapweed plants were cleared. In contrast, there was no difference in total soil phosphorus 

between former spotted knapweed patches and native grassland. However, Fraser and Carlyle 

(2011) showed that soils where spotted knapweed was present had higher concentrations of 

total phosphorus compared to grassland soils within the same Lac du Bois grasslands as 

studied here. My result suggests that the effects of soil phosphorus caused by spotted 

knapweed are relatively transient. Perhaps the planted rough fescue seedlings were able to 

uptake the extra available phosphorus in the soil within the former knapweed patches.   

Soil nitrogen 

Total soil nitrogen was higher in native grasslands compared to former knapweed 

patches. Harvey and Nowierski (1989) also found that nitrogen concentration was 62% lower 

on soils from a site infested with spotted knapweed than from a site dominated by grasses. 

The differentiation in total nitrogen between the former spotted knapweed patches and 

former native grass patches may be caused by the high mobility and multiple loss pathways 

of mineral soil nitrogen (Schulze 2000). Spotted knapweed is reported to reduce soil nitrogen 

availability (Hook et al. 2004; Story et al. 1989). Under this nutrient-deficient condition, 

bacteria, decomposer fungi and soil fauna will not mineralise organic nitrogen and not 

release ammonium (Schulze 2000). Organic nitrogen mineralization and ammonium release 

contribute to soil total nitrogen, so the decrease of them can cause a lower nitrogen level to 

knapweed-infested areas than non-infested areas. The lower nitrogen within former spotted 

knapweed patches was probably only temporary. Spotted knapweed decreases the rate of 

nitrification, which is driven by bacteria and the root exudate catechin (Thorpe and Callaway 

2010). However, Thorpe and Callaway (2010) found that the inhibitory effects of catechin on 

nitrification decreased over time since some bacteria degrade catechin (Arunachalam et al. 

2003) and catechin oxidizes rapidly in solution and in soils (Inderjit et al. 2008; Pollock et al. 

2009).  
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Soil carbon 

Soil carbon sequestration is limited by the availability of nitrogen and phosphorus (Goll et al. 

2012). De Graaff et al. (2006) suggests that the main driver of soil carbon sequestration is 

soil carbon input through plant growth, which is strongly controlled by nutrient availability. 

Since spotted knapweed reduces soil nitrogen and increases phosphorus, the lower carbon 

within former spotted knapweed patches may be a decrease in sequestration of carbon. Soil 

carbon is a mixture of different organic molecules, ranging from very labile to very stable 

according to their residence time in the soil. Stable carbon is protected against decomposition 

by various mechanism including micro-aggregation, association with clay and silt particles 

and formation of recalcitrant compounds (Six et al. 2002). Labile carbon is by contrast 

affected by rates of decomposition (Epron et al. 2009). (±)Catechin, exudation secreted by 

spotted knapweed may accelerate the decomposition of soil organic matter and stimulate the 

dissolution of insoluble minerals by rhizosphere microorganisms (Haichar et al. 2014), which 

decreases carbon residence time. As a result, a lower carbon level reflected within infested 

areas may because of a decrease in carbon sequestration caused by spotted knapweed.  

Soil phosphorus 

There was no difference in total soil phosphorus between former spotted knapweed 

patches and native grassland. Stevenson and Cole (1999) found that spotted knapweed 

contains catechin which is important in the complexation of iron (Fe), aluminium (Al), and 

calcium (Ca), including the precipitation of Ca–P compounds. As a result, spotted knapweed 

can increase soil available phosphorus in the rhizosphere through chelation of metal 

elements. Furthermore, the amount of phosphorus taken up by plants is governed by the 

equilibria among the numerous phosphorus compounds in the soil and the differing abilities 

of plants to modify their rhizosphere environments. In this experiment, there may be three 

possibilities why phosphorus in former spotted knapweed infected area was the same as 

native grassland: the transplanted rough fescue seedlings may have taken up the soluble 

increased phosphorus; the soluble phosphorus was lost as surface runoff during rainfall 

events within the year the knapweed was removed and the soil was sampled; or there was no 

difference in phosphorus to begin with since the sites were not measured before the rough 

fescue was transplanted. The last point, though, is unlikely considering that Fraser and 
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Carlyle 2011) showed significantly higher soil phosphorus in knapweed patches compared to 

native grasslands within the same site two years earlier 

Soil volumetric water content 

Due to a greater access to soil water sources and a greater ability to extract water 

from deeper soils for invaders (Hill et al. 2006), spotted knapweed has a greater amount of 

water usage than native grasses. As a result, my experiment showed that soil volumetric 

water content was higher where the native grass formerly dominated. Gȍrgens and Wilgen 

(2004) pointed out that it may take several years before streamflow recovery approaches pre-

planting levels after clearing of dense and extensive stands of alien plants, which indicates 

that invasive plants deplete soil water resources and the water take time to be replenished. 

Similarly, loss of soil water within areas invaded by spotted knapweed may take time to 

recover. On the other hand, soil water is influenced by soil structure, the more well- 

aggregated soil the higher the water holding capacity (Liu et al. 2014). Spotted knapweed is 

able to change soil aggregation via changes in soil microbial properties or processes (Lutgen 

& Rillig 2004). While soil aggregation changed by spotted knapweed, soil structure in 

knapweed-infested areas has lower aggregate stability than that in non-infested area. This 

explains that the differences in soil volumetric water content may result from variance of soil 

aggregation between knapweed-infested and non-infested areas.  

Biomass 

Plant productivity is controlled by multiple nutrients and their interactions (Estate & 

Park 2013). Previous studies have shown that spotted knapweed reduces soil nitrogen and 

increases soil phosphorus (Fraser and Carlyle 2011; Thorpe et al. 2006; Olson & Blicker 

2003); thus leading to nitrogen limitation for plant growth. In addition, decreased water 

availability within the former spotted knapweed patches likely caused a further limitation to 

the growth of rough fescue seedlings. Furthermore, spotted knapweed exudes large amounts 

of (±)-catechin from its roots, which is highly allelopathic to North American species 

(Newingham & Callaway 2006). Thus, it is possible that residual allelochemicals have 

effects on plants growth. As a result, the biomass of rough fescue was lower than in the 

former native grass dominated area.  
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Differences between large and small patches 

 There was no difference in soil nitrogen, phosphorus, carbon, volumetric water 

content and biomass of transplanted rough fescue seedlings between former large and small 

spotted knapweed patches, which does not support my second hypothesis. Fraser & Carlyle 

(2011) showed a trend that soil properties (nitrogen, carbon and volumetric water content) 

and plant biomass are negatively associated with patch size, while soil phosphorus is 

positively associated with patch size. That was a correlative study considering knapweed 

biomass as a covariate; it cannot say with certainty that differences in soil properties and 

plant biomass were caused by knapweed patch size. Taking this into consideration, the fact 

that carry over effects from patch size seemed to make no difference in soil properties and 

transplanted rough fescue seedling biomass may be because spotted knapweed was removed. 

Results from my experiment indicate that scale may not be an important consideration in the 

carry over effects of spotted knapweed on soil properties and rough fescue biomass following 

removal of spotted knapweed.  

Linear regression 

 There was no relationship between soil properties (nitrogen, phosphorus, carbon and 

volumetric water content) and the biomass of transplanted rough fescue seedlings within 

former spotted knapweed patches, which does not support my third and last hypothesis. The 

observed differences in plant growth may be due to the complex interactions between soil 

properties caused by spotted knapweed, or allelochemicals (Newingham & Callaway 2006); 

or due to initial variances among rough fescue seedlings, small differences in initial size and 

growth rates between individuals could make differences in a long-term development 

(Mangla et al. 2011). Real effects on biomass of rough fescue seedlings can be hidden if 

variance in initial single soil nutrient availability (nitrogen, phosphorus, carbon and 

volumetric water content) is small compared to differences caused by spotted knapweed. 
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Chapter 3 ˗ Competitive Effects from Spotted Knapweed on Rough Fescue with or 

without Biochar Addition at Different N: P Ratios 

Introduction 

Competition 

 Competition is the negative effect from one organism on another by consuming a 

resource that is limited in availability or controlling access to that resource (Keddy 2001). 

Competition occurs when resources are in short supply because they have been consumed by 

neighboring organisms (Keddy 2001). For plants, intra- or interspecific competition will arise 

when they are sharing resources with neighbors. Plants have the same basic requirements for 

light, water, and nutrients, and they inevitably shade their neighbors and/or have somewhat 

overlapping root systems (McGraw & Chapin 1989).   

Previous studies have shown that the non-native invasive spotted knapweed 

(Centaurea stoebe L. subsp. micranthos (Gugler) Hayek) can reduce biomass of native 

grasses, which indicates that competition occurs between spotted knapweed and native 

grasses, such as rough fescue (Press et al. 1998). The mechanism of spotted knapweed to 

successfully out-compete rough fescue is not clear. It could be that allelopathic root exudates 

restrain the growth of rough fescue (Suding et al. 2004); or the morphology of spotted 

knapweed (rosette leaves and stout taproot) is more competitive (Press et al. 1998); or 

spotted knapweed alters soil properties to the detriment of rough fescue growth rate: spotted 

knapweed reduces soil nitrogen, carbon, water and increases soil phosphorus, which 

influences growth of rough fescue (Story et al. 1989; Hook et al. 2004; Thorpe et al. 2006; 

Hill et al. 2006; Press et al. 1998; Fraser & Carlyle 2011). To understand how spotted 

knapweed competes with rough fescue I designed a pairwise interaction experiment in the 

greenhouse. In this study, N:P ratio was examined as one of factors influencing the growth of 

spotted knapweed and rough fescue. Blicker et al. (2002) reported that competition for 

nitrogen between spotted knapweed and native grasses is various, which means that spotted 

knapweed’s growth response to nitrogen depends on which species it is growing with. 

Results from Suding et al. (2004) showed that reduction of soil phosphorus weakened the 

ability of C. diffusa to tolerate neighbor competition proportionately more than the other 
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focal species. Similarly, under low phosphorus conditions, spotted knapweed may lose its 

competitive advantage. 

N:P ratio 

Soil nitrogen and phosphorus are vital for plant growth and development; however, 

they are often among the most limiting nutrients, especially in grassland soils (Olson & 

Blicker 2003; Goll et al. 2012). While the availability of nitrogen and phosphorus is often 

dynamic and changeable, the growth of spotted knapweed can influence soil nutrient 

availability. For example, Callaway et al. (2004) has shown that spotted knapweed increases 

phosphorus availability; but Hook et al. (2004) and Story et al. (1989) has shown that spotted 

knapweed reduces nitrogen availability. Fraser and Carlyle (2011) have also found that 

spotted knapweed patches have higher amounts of phosphorus and lower amounts of nitrogen 

in soils compared to areas where rough fescue grows.     

Plants are usually exposed to multiple resource limitations, which is saying that they 

are limited by nitrogen, phosphorus, or other resources (e.g., light, CO2, and water) at the 

same time. An increase in nitrogen limitation may create greater limitation in phosphorus 

(Baldwin 2013). In addition, individual plants within a diverse community may have 

different competitive abilities for various limiting resources. They can experience greater or 

lesser limitation to different resources depending on their morphology and physiology. For 

example, plants with larger roots may be competitively superior in soil mineral nutrient 

resource acquisition compared to plants with smaller roots (Baldwin 2013). On the other 

hand, the availability of nitrogen and phosphorus influences plant performance, plant species 

interactions and multi trophic interactions (Baeten et al. 2011). Consequently, altering the 

levels of nitrogen and phosphorus supply may have a significant impact on the growth of 

spotted knapweed and rough fescue and interactions between these two species. This study 

was conducted with three N:P ratios (1:1, 15:1 and 30:1) to determine how nutrient supply 

affects competition between spotted knapweed and rough fescue.  

Biochar 

Biochar is a soil amendment that is produced by thermal decomposition of organic 

material (forest residues such as bark, sawdust, and shavings; and agricultural wastes such as 
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wheat straw and bagasse) under limited supply of oxygen and at relatively low temperatures 

(< 700 °C). Biochar is used to improve soil productivity, carbon storage, or filtration of 

percolating soil water (Lehmann & Joseph 2009). The study of biochar is growing  due to its 

perceived ability to increase plant yields while at the same time reduce the need for fertilizer, 

to decrease soil nutrient runoff losses and reduce atmospheric carbon through the 

sequestration of carbon in the soil (America et al. 2007).  Despite the positive effects 

attributed to biochar soil amendment, little research has been published elucidating the 

mechanisms and effects of biochar. 

 Biochar is considered to have positive effects on plants through influencing soil 

nutrient availability, such as potentially immobilizing plant-available nitrogen (Ventura et al. 

2013). The added biochar is thought to stimulate nitrogen mineralization thereby improving 

nitrogen uptake by plants (Saarnio et al. 2013). Gathorne-Hardy et al. (2009) have shown that 

biochar appears to increase nitrogen use efficiency of crops when it is applied with N 

fertilizer. Similar to the impacts on soil nitrogen, biochar affects availability of phosphorus 

for plants (Biederman & Harpole 2013). Studies have shown that biochar can increase soil 

phosphorus availability through several mechanisms; for example, Parvage et al. (2012), 

Lehmann and Joseph (2009) demonstrate that biochar is a direct source of soluble 

phosphorus and can serve as a binder for positively charged metal complexes (Al3+, Fe3+2+, 

Ca2+). These studies suggest that biochar has the potential to affect plant growth through 

increasing the availability of soil nitrogen and phosphorus for plant uptake. These changes of 

soil properties caused by biochar can influence plant growth (Devereux et al. 2013). 

However, the impact of biochar on plants is still not comprehensive since it is highly variable 

depending on the properties of the biochar and the soil, plant species and environmental 

conditions (Saarnio et al. 2013).  

The availability of nitrogen and phosphorus influences plant performance, plant 

species interactions and multi trophic interactions (Baeten et al. 2011). The growth of spotted 

knapweed can influence soil nutrient availability. For example, Hook et al. (2004) and Story 

et al. (1989) have shown that spotted knapweed reduces nitrogen availability; but Callaway et 

al. (2004) have shown that spotted knapweed increases phosphorus availability. So, by 

manipulating nutrient supply through differing N:P ratios I can test whether spotted 

knapweed will have a greater growth response under a higher relative phosphorus 



26 
 

concentration. Whereas, biochar is more likely to increase nitrogen availability and to bind 

phosphorus (Gathorne-Hardy et al. 2009; Parvage et al. 2012; Lehmann and Joseph 2009), 

which could reduce the growth potential of spotted knapweed. 

The greenhouse study was designed to test three hypotheses: 

(1) Biomass of spotted knapweed will be greater at 1:1 N:P ratio, and relatively less 

so at 15:1 and 30:1 N:P ratios; whereas rough fescue will show the opposite response. 

 (2) Biomass of spotted knapweed is less when grown in biochar, compared to grown 

in pure sand. In contrast, biomass of rough fescue is greater when grown in biochar, 

compared to grown in pure sand. 

 (3) Competitive importance decreases for spotted knapweed with increasing N:P 

ratios and biochar addition, whereas it increases for rough fescue with increasing N:P ratios 

and biochar addition. 

Materials and Methods 

Experimental design 

The design was a 5 plant by 3 nutrient supply ratio by 2 biochar factorial combination 

replicated 8 times for a total of 240 treatment combinations. The five plant treatments 

included spotted knapweed alone, rough fescue alone, two spotted knapweed, two rough 

fescue and the two species in a pair wise interaction; the three nutrient supply ratios included 

N:P ratios of 1:1, 15:1 and 30:1; and the two biochar additions treatments consisted of  a 

biochar added or not. 

Species 

Spotted knapweed is a short-lived perennial forb and an aggressive weed that reduces 

wildlife and livestock forage production, lowers native biodiversity, and increases loss of soil 

mineral nutrients (Sheley & Jacobs 1997; Fraser & Carlyle 2011) in British Columbia, 

Canada. Rough fescue (Festuca campestris Rydb.) is an ecologically and economically 

important native plant species within grasslands of western Canada (Bogen et al. 2002). 

Greenhouse conditions 

 The climate, temperature and relative humidity, were electronically controlled during 

February and May in 2013. Daytime temperature was maintained at 25°C and night time 
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temperature at 17°C (Hendry & Grime 1993). The relative humidity was held constant at 

55% for both daytime and night time. Three 1000W halogen sulphide lamps supplied 

supplemental light for 14 hours in the day. Pots were divided into eight blocks and randomly 

arranged within each block. 

Germination 

 Approximately 600 seeds of spotted knapweed and rough fescue were placed in 

separated plastic Petri dishes filled with a sand medium (fine-textured Home Depot© Play 

Sand) saturated with water. The Petri dishes were placed in the greenhouse receiving 16h of 

light. Rough fescue seeds were sown 4 days before spotted knapweed seeds to ensure 

germination of both species occurred within days of each other. 

Treatments 

 Seedlings were transplanted from Petri dishes into 1.3 L round pots, (11.4 cm high, 

15.2 cm diameter, with 8 drain holes). Each pot was filled with 1 L pure sand (Table 3.1& 

3.2). Each pot received one or two transplants: spotted knapweed alone, rough fescue alone, 

two spotted knapweed together, two rough fescue together, spotted knapweed with rough 

fescue. 

Each species combination that included a biochar addition were treated with 10 grams 

of biochar (Table 3.1 & 3.2). The application rate was biochar to soil ratio of 1:69 on a mass 

basis (Ameloot et al.2013). Biochar was mixed with sand medium one week before the sand 

was saturated with water. The sand medium was saturated with water immediately prior to 

transplantation. Three days after planting, each planting combination was watered with 100 

mL modified Rorison’s nutrient solution (Hendry & Grime 1993) (Table 3.3) at three 

different ratios of nitrogen to phosphorus (N:P) every three days: 1:1, 15:1 and 30:1 N:P.  
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Table 3.1 Biochar and sand properties. Analysis done by Ministry of Environment, 
Environmental Sustainability and Strategic Policy Division Knowledge Management Branch 
– Laboratory using HNO3/HCl Microwave Digest. 

Element Biochar Sand  Element Biochar Sand 

Ca (%) 2.129 1.042  Mo (ppm) 3.9 1.0 

Mg (%) 0.243 0.718  Zn (ppm) 613.4 90.4 

K (%) 0.532 0.261  Cu (ppm) 36.4 31.6 

Fe (%) 1.641 2.022  Total P (ppm) 1004 446 

Al (%) 0.323 1.489  Total N (%) 0.442 0.006 

Na (%) 487 855  Total C (%) 79.35 0.13 

Mn (ppm) 1106 368  pH 9.80 7.99 

B (ppm) 23.1 5.0     

 

Table 3.2 Exchangeable Cations and Effective CEC (0.1 M Barium Chloride) of biochar and 
sand. Analysis done by Ministry of Environment, Environmental Sustainability and Strategic 
Policy Division Knowledge Management Branch – Laboratory. 

Element(cmol+/Kg) Biochar Sand Element(cmol+/Kg) Biochar Sand 

Al 0.303 0.002 Mg 0.523 0.320 

Ca 8.073 1.967 Mn 0.007 0.003 

Fe 0.005 <0.001 Na 0.229 0.060 

K 1.864 0.062 CEC 11.00 2.41 
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Table 3.3 Modified Rorison's nutrient solution as applied to the N: P ratio nutrient treatments 
(preparation of 100 mL; Hendry and Grime 1993). α +, the solution was included; −, the 
solution was omitted from the treatment. 

Element mg. 100mL-1 Stock solutions 
N:P ratioα 

1: 1 15: 1 30: 1 

Ca/N 8.0/5.60 Ca(NO3)2·4H2O + + + 

Mg 2.4 MgSO4·7H2O + + + 

K/P 14.2/5.60 K2HPO4·3H2O + + − 

K/P 0.4/0.18 K2HPO4·3H2O − − + 

Fe 0.3 Fe EDTA + + + 

Mn 0.06 MnSO4·4H2O + + + 

B 0.06 H3BO3 + + + 

Mo 0.01 (NH4)6Mo7O24·4H2O + + + 

Zn 0.01 ZnSO4·7H2O + + + 

Cu 0.01 CuSO4·5H2O + + + 

K 6.81 K2SO4 (0.5molL-1) − − + 

 

Harvesting 

 Harvesting occurred on Day 90. Individuals were separated by species and then by 

above-ground and below-ground biomass. The biomass samples were dried for 48 hours at 

70°C and weighed. 

Statistical analysis 

  To analyze mean potential biomass I used only the data for plants grown alone. A log 

transformation was done for these data; they follow a normal distribution under an Anderson-

Darling test and have equal variances under a Levene’s test (Appendix B). An ANOVA 

(Minitab®16.2.4) was conducted to test the effects of species, N:P ratios and biochar 

addition on the total plant biomass (α=0.05). A log transformation was done for the data 

when plants grown alone and two rough fescues grown together for using ANOVA 

(Appendix B). The data used for testing competitive importance with intraspecific 
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competition had a normal distribution under an Anderson-Darling test and had equal 

variances under a Levene’s test (Appendix B). A reciprocal transformation was done for the 

data when plants grown with interspecific competition. The data had a normal distribution 

under an Anderson-Darling test and had equal variances under a Levene’s test (Appendix B). 

Competitive importance was calculated using the equation: Cimp =
𝑃𝑃−𝑁𝑁−𝑃𝑃+𝑁𝑁

𝑀𝑀𝑃𝑃±𝑁𝑁−min (𝑃𝑃−𝑁𝑁 ,𝑃𝑃+𝑁𝑁)
 , where 

P-N is plant grown without neighbors (alone) and P+N is plant grown with neighbors, and 

MP±N is the maximum value of plant performance in the studied system, regardless of 

neighbors (Seifan et al. 2010— modified after Brooker et al. 2005). In this equation, the 

index has a limited range of -1 to1; where negative values represent competitive interaction 

and positive values represent facilitation. The importance of competition is a relative 

measure of the effect of competition at a point along the gradient relative to other processes, 

it can incorporate the role of other processes in describing the impact of competition (Gilbert 

& Fraser, 2013). 

Results 

Total biomass 

Plants grown alone 

The mean total dry biomass of plants when grown alone (without competition) was 

significantly affected by two of the three main effects (species and N: P ratio) but not by 

biochar addition (Table 3.4). Spotted knapweed had a greater mean biomass (4.83g ± 0.45 

SE) than rough fescue (0.786 ± 0.094 SE). Biochar did not affect plant biomass. 

An interaction between species and N:P ratios was shown to be not significant (Table 

3.4). However, results showed that spotted knapweed had the greatest biomass at 1:1 N/P 

ratio, whereas rough fescue had the greatest biomass at 15:1 N/P ratio. Spotted knapweed’s 

biomass was greater at 15:1 N/P ratio compared to 30:1 N/P ratio. Rough fescue’s biomass 

was greater at 1:1 N/P ratio compared to 30:1 N/P ratio. Biomass of spotted knapweed was 

greater than that of rough fescue at each N/P ratio (Fig. 3.1). 

The two-way interaction between species and biochar addition was not significant, 

neither the interaction between N: P ratio and biochar addition was significant (Table 3.4). 
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Table 3.4 Results of three-way ANOVA with blocking factor examining the effects of 
species, N: P ratio and biochar addition on the mean total biomass of spotted knapweed and 
rough fescue (species grown alone). Significant (α<0.05) values in bold. 

Source Mean squares Degree of freedom F ratio P value 

Block 0.115 7 1.71 0. 125 

Species 10.823 1 160.97 <0.001 

N:P ratio 1.625 2 24.17 <0.001 

Biochar 0.067 1 0.99 0.323 

Species × N:P ratio 0.131 2 1.94 0.153 

Species × Biochar 0.037 1 0.56 0.459 

N:P ratio × Biochar 0.071 2 1.05 0.356 

Species × N:P ratio × Biochar 0.017 2 0.26 0.775 

Error 0.067 56   
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Figure 3.1 Mean total biomass (±1 SE) of Festuca campestris Rydb. and Centaurea Stoebe 
L. grown alone at three N/P ratio. Bars sharing the same letter are not significantly different 
using Bonferroni (P<0.05) between species. 

 Pairwise intraspecific interactions 

The mean total dry biomass of plants when grown together (with intraspecific 

competition) was significantly affected by N:P ratio but not by biochar addition for both 

species (Table 3.5 & Table 3.6); the mean total dry biomass of rough fescue (with 

intraspecific competition) had significant block effect (Table 3.6). Spotted knapweed had a 

greater mean biomass (5.98g ± 0.54 SE) than rough fescue (1.104 ± 0.081 SE).  

Results showed that spotted knapweed had the greatest biomass at 1:1 N/P ratio. 

Spotted knapweed’s biomass was greater at 15:1 N/P ratio compared to 30:1 N/P ratio. On 

the other hand, N/P ratio did not result in any significant differences to rough fescue’s 

biomass. The biomass of spotted knapweed was greater than that of rough fescue at each N/P 

ratio (Fig. 3.2). 

The two-way interaction between N:P ratio and biochar addition was not significant 

for either species (Table 3.5 & Table 3.6). 
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Table 3.5 Results of two-way ANOVA with blocking factor examining the effects of N: P 
ratio and biochar addition on the mean total biomass of spotted knapweed (two same plants 
grown together). Significant (α<0.05) values in bold. 

Source Mean squares Degree of freedom F ratio P value 

Block 3.531 7 0.57 0.776 

N:P ratio 145.331 2 23.36 <0.001 

Biochar 2.582 1 0.41 0.524 

N: P ratio × Biochar 4.557 2 0.73 0.489 

Error 6.221 30   

 

Table 3.6 Results of two-way ANOVA with blocking factor examining the effects of N: P 
ratio and biochar addition on the mean total biomass of rough fescue (two same plants grown 
together). Significant (α<0.05) values in bold 

Source Mean squares Degree of freedom F ratio P value 

Block 0.055 7 3.03 0. 013 

N:P ratio 0.103 2 5.65 0.007 

Biochar 0.001 1 0.03 0.867 

N: P ratio × Biochar 0.012 2 0.66 0.524 

Error 0.018 35   
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Figure 3.2 Mean total biomass (±1 SE) of Festuca campestris Rydb. and Centaurea Stoebe 
L. grown with conspecific plant at three N/P ratio. Bars sharing the same letter are not 
significantly different using Bonferroni (P<0.05) between species. 

Competitive importance 

For both species, competitive importance was not significant by any main effects 

(N:P ratio and biochar addition) when plants grown with intraspecific competition, neither 

was it significantly affected by a two-way interaction between N:P ratio and biochar addition 

(Table 3.7 & Table 3.8).   
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Table 3.7 Results of two-way ANOVA with blocking factor examining the effects of N: P 
ratio and biochar addition on competitive importance of spotted knapweed (intraspecific 
competition). Significant (α<0.05) values in bold. 

Source Mean squares Degree of freedom F ratio P value 

Block 0.059 7 0.60 0.751 

N:P ratio 0.145 2 1.51 0.235 

Biochar 0.179 1 1.86 0.182 

N:P ratio × Biochar 0.264 2 2.75 0.078 

Error 0.096 35   

 

Table 3.8 Results of two-way ANOVA with blocking factor examining the effects of N:P 
ratio and biochar addition on competitive importance of rough fescue (intraspecific 
competition). Significant (α<0.05) values in bold. 

Source Mean squares Degree of freedom F ratio P value 

Block 0.1946 7 1.32 0. 268 

N:P ratio 0.0317 2 0.22 0.807 

Biochar 0.0919 1 0.63 0.434 

N: P ratio × Biochar 0.1735 2 1.18 0.319 

Error 0.1469 35   

Competitive importance was significantly affected by one of the three main effects 

(species), but not by N: P ratio or biochar addition when plants grown with interspecific 

competition (Table 3.9). Results showed that there was a competitive interaction with spotted 

knapweed, the value of competitive importance was -0.136 ± 0.052 SE; whereas rough 

fescue demonstrated a facilitation response, the value of competitive importance was 0.0200 

± 0.0068 SE (Fig. 3.3). This shows that spotted knapweed had a stronger competitive ability 

than rough fescue when grown together. 

The two-way interaction between species and N: P ratio was not significant, neither 

the interaction between species and biochar addition was significant, nor the interaction 

between N: P ratio and biochar addition was significant. 
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Table 3.9 Results of three-way ANOVA with blocking factor examining the effects of 
species, N: P ratio, and biochar addition on competitive importance (interspecific 
competition). Significant (α<0.05) values in bold. 

Source Mean squares Degree of freedom F ratio P value 

Block 0.07796 7 1.18 0. 323 

Species 0.58144 1 8.82 0.004 

N:P ratio 0.08055 2 1.22 0.300 

Biochar 0.09861 1 1.50 0.225 

Species × N: P ratio 0.12673 2 1.92 0.153 

Species × Biochar 0.07089 1 1.08 0.303 

N: P ratio × Biochar 0.02261 2 0.34 0.711 

Species × N: P ratio × Biochar 0.00770 2 0.12 0.890 

Error 0.06594 77   

 

 
Figure 3.3 Competitive importance (±1 SE) of Festuca campestris Rydb. and Centaurea 
Stoebe L. grown together. Bars sharing the same letter are not significantly different using 
Bonferroni (P<0.05). 
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Discussion 

Total biomass 

The results partially supported my first hypothesis because total biomass of spotted 

knapweed when grown alone was greatest at 1:1 N/P ratio and declined as N/P ratio 

increased. Total biomass for both species when two of the same plants grown together was 

greater at 1:1 N: P ratio, and relatively less so at 15:1 and 30:1 N: P ratios. Because a good 

supply of nitrogen stimulates root growth and development, and spotted knapweed prefers a 

high level of nitrogen (Blicker et al. 2002); spotted knapweed had its greatest biomass at 1:1 

N/P ratio when grown alone and grown with its conspecific plant. Due to the polymorphism 

of spotted knapweed, intraspecific competition may not be strong enough to be shown under 

these N:P ratios. Güsewell (2005) suggests that all species seems to have maximum biomass 

at an N: P supply ratio of 15:1 within a level of light and nutrient supply. The result that 

rough fescue had greatest biomass at 15:1 N: P ratio when grown alone accords with 

Güsewell (2005). However, the results when two rough fescues grown together are different 

from when it is grown alone because the condition for growth has been changed. In the 

presence of a competitor, competition for nutrients generates a condition where plants must 

allocate more resources to acquisition of the limiting resource than is optimal for plants in the 

absence of competition (Craine 2006). Due to this condition, biomass of rough fescue may be 

influenced. As a consequence, the biomass of rough fescues grown together is different from 

when grown alone. 

Differing from my prediction, biochar addition made no significant differences in 

total biomass of both species when plants grown alone or grown together. Desserud and 

Naeth (2013) suggest that smooth brome (Bromus inermis), another non-native introduced 

from Europe and Eurasia in the late 1880s, has a strong negative reaction to straw-amended 

soils. For native grasses, biochar addition increases biomass of plants regardless of variability 

introduced by soil and climate (Biederman & Harpole 2013). On the contrary, biomass of 

spotted knapweed and rough fescue were not significantly affected by biochar addition in my 

experiment. Nitrogen is volatilized in proportion to carbon and associated with the carbon in 

the retained fraction sharing its recalcitrance. Therefore, the fact that biochar addition did not 

work as expected might be that nitrogen is not always the limiting resource for plant growth.  
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Competitive importance 

Neither N:P ratio, biochar addition nor the interaction between N:P ratio and biochar 

addition significantly influenced competitive importance for intraspecific interactions.. 

Previous research has indicated that increased nitrogen favors invasive and decreased 

nitrogen availability favors native species (Mangla et al. 2011). Considering this, spotted 

knapweed should have a stronger competition with increasing N:P ratio and rough fescue 

should have a stronger competition with decreasing N:P ratio. Intraspecific competition had 

no different response to biochar for spotted knapweed and rough fescue. Previous study 

indicated that spotted knapweed is able to avoid intraspecific competition since they display 

germination and emergence polymorphism (Interference et al. 2013). Intraspecific 

competition is strongly dependent upon the growth environment (Keddy 2001), for that 

reason, intraspecific competition of rough fescue might not show in this experiment. 

However, small differences in initial size and growth rates between individuals could 

potentially make differences in long-term development (Mangla et al. 2011). Since spotted 

knapweeds and rough fescues were transplanted into pots at early stage and they were 

affected by N: P ratio and biochar, there might be differences in competition between 

individuals for a longer period of experiment. 

Competitive interactions drove spotted knapweed responses while facilitation drove 

the response of rough fescue when the two species were grown together regardless of N:P 

ratio and biochar addition, which means that spotted knapweed was a stronger competitor. 

Suding et al. (2004) reported that Centaurea diffusa remained the best competitor under low 

nitrogen conditions, while lost its competitive advantage under low phosphorus conditions. 

Therefore, Centaurea stoebe L. should have significant responses to various N:P ratios. 

Ridenour and Callaway (2001) showed that activated charcoal (which adsorbs organic 

compounds, similar to biochar) reduced the apparent allelopathic effect of Centaurea stoebe 

L. on Festuca idahoensis in sand culture. It suggests that the balance of competition in favor 

of Centaurea had been shifted by activated carbon. Biochar addition should have similar 

effects on rough fescue grown with spotted knapweed. However, the results from my study 
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has shown that biochar addition had no effect, perhaps because the contact time between soil 

and biochar was not long enough or biochar was not activated before its application. 

The availability of nitrogen and phosphorus influences plant performance, plant 

species interactions and multi trophic interactions (Baeten et al. 2011).  In general, the 

growth of spotted knapweed and rough fescue had significant responses to N:P ratio but not 

to biochar addition. Various N:P ratios and biochar addition did not reduce competition of 

spotted knapweed on rough fescue.  
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Chapter 4 – General conclusions, management implications and directions for future 

research 

Conclusion 
 Lac du Bios grasslands are within the temperate grasslands of the southern interior 

British Columbia, which are a small but unique ecosystems. Unfortunately, they are being 

threatened by several factors, including the invasion of spotted knapweed. Invasive plants 

cause loss of biodiversity. 
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 Carry over effects from spotted knapweed on soil properties and plant growth are 

important considerations when managing invasion. Previous studies have shown that spotted 

knapweed decreases some soil properties (nitrogen, carbon and water), but increases soil 

phosphorus (Hook et al. 2004; Story et al. 1989; Thorpe al. 2006; Hill et al. 2006). In 

addition, previous study has shown that the level of soil properties and biomass of plants are 

lower in large spotted knapweed patches than in small ones (Fraser and Carlyle 2011). While 

this evidence partially helps understand spotted knapweed invasion, my study on residual soil 

effects from spotted knapweed extends the understanding in spotted knapweed invasion.  

 This study has shown that soil properties (nitrogen, carbon and volumetric water 

content) and biomass of rough fescue are in a lower level because of spotted knapweed, even 

though spotted knapweed had been removed for three months. In contrast, soil phosphorus in 

former spotted knapweed patches was the same concentration as native grassland. Besides, 

there was no differences in soil properties (nitrogen, carbon, phosphorus and volumetric 

water content) and biomass of rough fescue between large spotted knapweed patches and 

small ones. This information on residual effects from spotted knapweed gives a general idea 

on how to restore areas infected by spotted knapweed. 

 Ridenour and Callaway (2001) showed that activated charcoal (which adsorbs organic 

compounds, similar to biochar) reduced the apparent allelopathic effect of Centaurea stoebe 

L. on Festuca idahoensis in sand culture. It suggests biochar can be considered as a potential 

material to restrain the ability of spotted knapweed to compete with native grasses. However, 

biochar used in my experiment seems to have no effect on competitive ability of spotted 

knapweed. N: P ratios were also manipulated to determine the effect on spotted knapweed. 

This study showed that biomass of plants is influenced by N: P ratio, but competitive 

importance is not. This information provides evidence that spotted knapweed growth may be 

restrained by increasing N: P ratio.  

 In conclusion, this short-term study identifies immediate impacts on specific 

processes that occur in soils and plants, but only long-term data provide confirmation that 

these effects are having a significant influence on soils and plants over time. Even so, this 

study extends the understanding of spotted knapweed invasion and offers a potential method 

to mitigate spotted knapweed invasion. 
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Management implications 
 Lac Du Bois grasslands are traditionally used for cattle grazing. To maintain 

biodiversity in this community, it is important understand the controlling factors. Invasion of 

spotted knapweed is one of those factors. This study has provided information on how to 

manage spotted knapweed. 

 Soil nitrogen, phosphorus, carbon and volumetric water content are essential elements 

of soil. The carry over effects from spotted knapweed on those soil properties were tested to 

provide directions for managing invasion. To restore infected areas, the solution can be 

improving soil properties which are altered by spotted knapweed. Biomass of plants grown in 

former infected areas are lower. Plant growth is poor in a soil environment with limited 

nutrients. Altering N: P ratios can be seen as a means of improving soil properties. Since N: 

P ratio plays a significant role in plant growth, manipulating N: P ratio in this study is a step 

to figure out the most unsuitable condition for spotted knapweed growth. To sum up, the key 

to recover spotted knapweed invasion is to improve soil properties.  

 Besides, there is no significant findings by comparing soil properties and biomass of 

plants between former large spotted knapweed patches and former small spotted knapweed 

patches. Even so, it is a worthy factor to be considered when managing spotted knapweed. It 

is common that a smaller problem is easier to solve. 

Future research directions 
 In this study, residual soil effects from spotted knapweed were independently tested. 

Instead, current effects and carry over effect should be processed within the same study. To 

be specific, soil sampling should be done twice: once immediately after spotted knapweed is 

cleared; the second time after transplanted rough fescue seedlings are harvested. Through 

comparing these two data points, a more persuasive result could be obtained to better 

represent carry over effects from spotted knapweed. In addition, a long term study could 

provide evidence for residual effects from spotted knapweed. 

 This study has shown that N: P ratio affects spotted knapweed. It is possible to 

manage spotted knapweed invasion through improving infested soil properties. For example, 

a suitable N: P ratio for native grasses could enhance their competitive ability when they 

compete with spotted knapweed, helping to restrain spotted knapweed invasion. 

 Biochar is considered as a potential material to restore spotted knapweed. In this 

study, 10 g were used to each pot without making any difference in the results. In future 
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study, different amounts should be tried to see if biochar really has no effects on spotted 

knapweed. Biochar made from different materials may have various influences on plant 

growth (Ameloot et al. 2013). If conditions allow, various biochars should tested. Last but 

not the least, biochar is more effective when mixed with soil for a long time. A biochar study 

needs to be longer to ensure the impact is properly tested.  
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Appendix A 

 
Figure A. 1 Normality of rough fescue seedlings’ biomass in former spotted knapweed 
patches and native grass patches under a Kolmogorov-Smirnov test (P<0.05). 
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Figure A. 2 Normality of total nitrogen in former spotted knapweed patches and native grass 
patches under an Anderson-Darling test (P<0.05). 
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Figure A. 3 Normality of total phosphorus in former spotted knapweed patches and native 
grass patches under a Kolmogorov-Smirnov test (P<0.05). 
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Figure A.4 Normality of total carbon in former spotted knapweed patches and native grass 
patches under a Kolmogorov-Smirnov test (P<0.05). 
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Figure A. 5 Normality of volumetric water content in former spotted knapweed patches and 
native grass patches under a Kolmogorov-Smirnov test (P<0.05). 
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Figure A. 6 Normality of rough fescue’s biomass in former large and small spotted knapweed 
patches under a Kolmogorov-Smirnov test (P<0.05). 
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Figure A. 7 Normality of total nitrogen in former large and small spotted knapweed patches 
under a Kolmogorov-Smirnov test (P<0.05). 
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Figure A. 8 Normality of total phosphorus in former large and small spotted knapweed 
patches under a Kolmogorov-Smirnov test (P<0.05). 
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Figure A. 9 Normality of total carbon in former large and small spotted knapweed patches 
under a Kolmogorov-Smirnov test (P<0.05). 
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Figure A. 10 Normality of volumetric water content in former large and small spotted 
knapweed patches under a Kolmogorov-Smirnov test (P<0.05). 
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Figure A. 11 Normality of total nitrogen in former 40 spotted knapweed patches under a 
Kolmogorov-Smirnov test (P<0.05). 
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Figure A. 12 Normality of total phosphorus in former 40 spotted knapweed patches under a 
Kolmogorov-Smirnov test (P<0.05). 
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Figure A. 13 Normality of total carbon in former 40 spotted knapweed patches under a 
Kolmogorov-Smirnov test (P<0.05). 
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Figure A. 14 Normality of volumetric water content in former 40 spotted knapweed patches 
under a Kolmogorov-Smirnov test (P<0.05). 
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Appendix B 

 

 
Figure B. 1 Normality of potential biomass using 3-way ANOVA when plants grown alone 
under an Anderson-Darling test (P<0.05). 
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Figure B. 2 Equal Variances of potential biomass using 3-way ANOVA when plants grown 
alone under a Levene’s test (P<0.05). 
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Figure B. 3 Normality of potential biomass using 3-way ANOVA when two spotted 
knapweeds grown together under an Anderson-Darling test (P<0.05). 
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Figure B. 4 Equal Variances of potential biomass using 3-way ANOVA when two spotted 
knapweeds grown together under a Levene’s test (P<0.05). 
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Figure B. 5 Normality of potential biomass using 3-way ANOVA when two rough fescues 
grown together under an Anderson-Darling test (P<0.05). 
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Figure B. 6 Equal Variances of potential biomass using 3-way ANOVA when two rough 
fescues grown together under a Levene’s test (P<0.05). 
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Figure B. 7 Normality of competitive importance using 3-way ANOVA when two spotted 
knapweeds grown together under an Anderson-Darling test (P<0.05). 
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Figure B. 8. Equal Variances of competitive importance using 3-way ANOVA when two 
spotted knapweeds grown together under a Levene’s test (P<0.05). 
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Figure B. 9 Normality of competitive importance using 3-way ANOVA when two rough 
fescues grown together under an Anderson-Darling test (P<0.05). 
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Figure B. 10 Equal Variances of competitive importance using 3-way ANOVA when two 
rough fescues grown together under a Levene’s test (P<0.05). 
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Figure B. 11 Normality of competitive importance using 3-way ANOVA when spotted 
knapweed and rough fescue grown together under an Anderson-Darling test (P<0.05). 
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Figure B. 12 Equal Variances of competitive importance using 3-way ANOVA when spotted 
knapweed and rough fescue grown together under a Levene’s test (P<0.05). 
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