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ABSTRACT 

 
Grasslands in the southern interior of British Columbia are extensively grazed by free 

ranging livestock. Water sources are limited in these grassland landscapes and wetlands are 

commonly used by livestock for drinking water and forage. My study examined the 

impacts of livestock disturbance on the abundance, biomass and community composition of 

aquatic macroinvertebrates residing in these wetlands. Aquatic macroinvertebrates were 

collected in the spring and summer of 2008 from 17 wetlands with a range of grazing 

disturbance. Three sweep and core samples were collected from each wetland and grazing 

intensity was determined by the amount of bare ground at each site.  Spring sweep total 

abundance (r2=0.464, p=0.003) and biomass (r2=0.728, p<0.001) were negatively 

correlated with livestock disturbance as were spring abundance and biomass of zygopterans 

(r2=0.593, p<0.001; adj. r2=0.513, p=0.001). Spring sweep family richness (r2=0.462, 

p=0.003), Shannon’s family diversity (r2=0.569, p<0.001) and Simpson’s family diversity 

(r2=0.385, p=0.008) also decreased as livestock disturbance increased.  Resource managers 

should consider Zygoptera (damselflies) as a potential indicator of wetland water quality 

and livestock impact.  Range plans should adopt only light grazing in wetland areas and 

limit livestock access to sustain the biodiversity and productivity of these valuable aquatic 

ecosystems. 

 
Keywords:  aquatic macroinvertebrates, grassland wetlands, livestock grazing, British 
Columbia, Zygoptera 
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GLOSSARY OF TERMS 

 
Benthic invertebrates:  Aquatic invertebrates living on, or in, the bottom substrates of an 

aquatic habitat. 

Bioturbation: The restructuring of sedimentary deposits, as in a lake bottom or seabed, by 
living organisms (e.g., worms, clams) by activities such as burrowing, or 
ingestion or defecation of sediment grains.  

Depressional wetlands:  Wetlands that occur in topographical depressions which allow the 
accumulation of surface waters. 

Diversity:  A quantitative measure that reflects how many different types (e.g., invertebrate 
families) there are in a dataset and simultaneously takes into account the 
proportions of individuals or how evenly the individuals are distributed among 
those types. 

Endophytic ovipositor:  An organism (e.g., damselfly) that uses a specialized abdominal 
organ (ovipositor) to insert its eggs into plant tissue. 

Lentic systems:  Aquatic habitats situated in still fresh water. 

Lotic systems:  Aquatic habitats situated in flowing fresh water. 

Nektonic invertebrates:  Aquatic invertebrates living in the water column of an aquatic 
habitat, including those mobile organisms along the nekton/benthic (epi-
benthic) boundary and those found on aquatic plants (epi-phytic).   

Richness: A quantitative measure that reflects how many different types (e.g., 
invertebrate families) there are in a dataset. 

 

Latin and common names for the aquatic invertebrates examined in this study are listed in 
Appendix C.  
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CHAPTER 1.   INTRODUCTION 

Wetlands throughout the world are being lost at an alarming rate (Zedler and Kercher 2005; 

Mitsch and Gosselink 2007).  As wetland function and productivity are extremely valuable 

to society, conservation of these ecosystems is of utmost importance.  In British 

Columbia’s (BC) southern interior, ranching operations use grassland and wetland areas to 

provide abundant forage and drinking water for domestic livestock.  Impacts of livestock 

disturbance on wetland aquatic invertebrate communities have not been thoroughly 

examined in Canada (Hornung and Rice 2003; Foote and Rice Hornung 2005; Silver and 

Vamosi 2012), and research in BC is lacking from the primary literature.  Concern has 

been expressed by government agencies, Ducks Unlimited Canada, local researchers and 

ranching operators over the effectiveness of best management practices and sustainable 

levels of livestock use (Bruce Harrison, pers. comm. 2007).  Southern interior wetland 

biodiversity and productivity can be conserved by developing a better understanding of this 

complex relationship between wetlands and ranching practices.  This chapter will discuss 

southern interior grassland and wetland ecosystems, livestock disturbance impacts on 

wetlands, aquatic invertebrates and how aquatic invertebrates can be used to assess wetland 

health.  I will finish with an outline of my thesis objectives.  

Grassland Ecosystems 

British Columbia grasslands are rare on the landscape and occupy less than one percent of 

the land base (Wikeem and Wikeem 2004).  Located in areas of the province where 

summers are hot and dry with little precipitation, provincial grasslands are in the northern 

reaches of the Great Basin shrub-steppe grasslands found in the western United States and 

Mexico (GCCBC 2011).  Almost 90% of BC grasslands lie within the hot semi-arid 

southern interior region.  Grasslands provide many recreational opportunities and are 

economically important to the beef cattle industry, which relies on them for forage.  Water 

is limiting in BC grasslands (Tisdale 1947), and wetland habitats are often primary sources 

of water for both domestic and wild animals.  
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Wetland Ecosystems 

Wetlands are integral components of grassland ecosystems and critical to the survival of 

many organisms (Mitsch and Gosselink 2007).  Generally defined as areas with hydric soils 

and hydrophytic vegetation, wetlands are highly variable in size, hydrology, water 

chemistry and geographic area (Rader 2001; MacKenzie and Moran 2004).  Wetland 

ecosystems provide many important functional contributions to the environment and, thus, 

to society.  Wetlands mitigate water quality by filtering sediments, nutrients and pollutants 

flowing from surface water, streams, rivers, lakes and ground water. They recharge ground 

water, provide relief from flood waters, reduce soil erosion, sequester carbon from the 

atmosphere, and provide habitat and forage for many wildlife species (Delesalle 1998, 

MOE 2004).  Economically, wetlands provide many recreation opportunities such as 

fishing, hunting, and bird watching. They supply irrigation for agriculture operations, and 

water, shade and forage for livestock.  Wetlands are under increasing pressures from 

development and, it is more important now than ever that we understand how to manage 

them for multiple users while maintaining the integrity of the resource for those wildlife 

dependent upon them.   

The depressional wetlands of BC’s southern interior occur as a mosaic throughout the 

grassland landscape and are similar to prairie pothole wetlands in terms of their ecology, 

climate and hydrology. They rely on rainwater or snow melt, have cycles of wet and dry 

years, exist in semi-arid climates with warm summers and cold winters and are usually 

fishless (Wikeem and Wikeem 2004).  These shallow open water wetlands are dynamic 

productive ecosystems and can be further classified based on duration of flooding (Stewart 

and Kantrud 1971).  Different durations of flooding create different vegetation 

communities, which in turn provide a variety of habitats and food resources for aquatic 

invertebrates and both terrestrial and aquatic vertebrates (Murkin and Ross 2000).  In BC, 

32 species at risk are among the 30% of wildlife dependent upon southern interior wetlands 

for survival (Delesalle 1998; Wikeem and Wikeem 2004).  Many studies have examined 

the physical and chemical attributes and aquatic invertebrate communities in BC interior 

wetlands (e.g., Topping and Scudder 1977; Cannings and Scudder 1978; Cannings et al. 

1980; Cannings and Cannings 1987); however, the effects of livestock grazing on these 
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ecosystems has yet to be explored. Poor management of livestock could potentially 

decrease habitat quality and quantity for all wetland users.  

Livestock Grazing   

Livestock ranching is a widespread land use within BC grasslands, and if poorly managed 

can be detrimental to wetland structure and function (Collins et al. 1998; Steinman et al. 

2003). Livestock spend a disproportional amount of time in wetlands versus upland areas 

grazing submergent, emergent and shoreline vegetation, drinking, loitering and cooling off 

(Adams and Fitch 1998; Nader et al. 1998; Ganskopp 2001). Effects of livestock 

disturbance in wetland ecosystems can be both direct and indirect.  Direct impacts include 

vegetation trampling and removal, and fecal and urine inputs which decrease water quality 

and reduce habitat availability (Coffin and Lauenroth 1988; Collins et al. 1998; Steinman et 

al. 2003). Cattle feces and urine decrease dissolved oxygen, vascular plant richness and 

percent cover and increase algal productivity in vernal pool mesocosm experiments (Croel 

and Kneitel 2011).  Indirect effects result from shifts in vegetation communities which 

induce changes throughout higher trophic levels and affect wetland productivity (Rader and 

Richardson 1994; Dodson et al. 2005).  Livestock-induced changes to wetlands have 

caused reductions in available cover and nesting habitat and food resources for waterfowl 

(Ryan et al. 2006).  

Aquatic Invertebrates 

As an important ecological link between primary production and higher trophic levels, 

aquatic invertebrates are a critical component of wetland food webs.  In wetland 

ecosystems invertebrates are primary consumers affecting primary production through 

consumption of living vegetation as herbivores or consumption of plant and animal litter as 

detritivores (van der Valk 2012). They also are secondary consumers or predators, feeding 

on zooplankton, other aquatic invertebrates and small vertebrates (Hershey and Lamberti 

2001; White and Roughley 2008).  Aquatic invertebrates provide abundant food for 

secondary consumers and many vertebrates such as waterfowl are dependent on them. 

Several studies have demonstrated that waterfowl select wetland habitats based on 
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invertebrate densities (e.g., Murkin et al. 1982; Murkin and Kadlec 1986).  Wetland 

invertebrates provide waterfowl with a crucial source of dietary protein (Krapu 1974) and 

inadequate invertebrate densities during the breeding season are known to reduce clutch 

size, egg viability and brood survivorship (Krapu 1981; Cox et al. 1998).  Changes in 

abundance and diversity of aquatic macroinvertebrate communities can be useful in 

determining livestock impacts on wetland productivity and function due to their important 

contributions to wetland food webs. 

Our knowledge of livestock grazing impacts on aquatic invertebrates in wetland 

ecosystems in Canada is limited.  Examinations of aquatic invertebrate communities are a 

well-documented method of assessing and monitoring aquatic resources. Biomonitoring 

studies have traditionally used aquatic invertebrates to examine the effects of 

anthropogenic activities on water and habitat quality in rivers and streams in North 

America (e.g., Hilsenhoff 1988; Rosenberg and Resh 1993; Barbour et al. 1999).  The use 

of biomonitoring practices are wide ranging, examining the before and after effects of 

projects, activities or release of toxicants (e.g., Mackay and Heise 2007; Thomson et al. 

2005; Johnson et al. 2015), compliance monitoring for release of pollutants into aquatic 

systems (e.g., Lowell and Culp 2002), and larger-scale studies to compare impacts of land 

use practices against unstressed reference condition sites (e.g., Bailey et al. 1998).  Aquatic 

invertebrates have also been used to examine agricultural impacts on lotic systems 

including those of cattle grazing (e.g., Moore and Palmer 2005; Carlisle et al. 2008).  More 

recently, biological assemblages have been employed to assess wetland function; however, 

relatively few studies have applied this technique to determine the impacts of livestock 

grazing (e.g., Steinman et al. 2003; Davis and Bidwell 2008).  Canadian studies on wetland 

invertebrate assemblage response to grazing disturbance are rare.  Alberta research has 

revealed that odonates (damselflies and dragonflies) could potentially be used as indicators 

of wetland health due to their close association with and dependence on wetland vegetation 

and the relative ease of their collection and identification (Hornung and Rice 2003, Foote 

and Rice Hornung 2005).   
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Thesis Objectives and Format 

The primary objective of this research was to examine the effects of livestock disturbance 

on BC’s southern interior wetland invertebrate communities.  Wetland aquatic invertebrate 

community density and structure were analyzed in response to a gradient of livestock 

disturbance levels and environmental parameters.  Overall predictions were that because of 

habitat loss and degradation 1) heavy livestock disturbance would decrease the richness 

and diversity of wetland aquatic macroinvertebrate communities and 2) zygopteran 

(damselfly) abundance and biomass would decrease with heavy levels of livestock grazing 

because these taxa have been described in Alberta studies as particularly sensitive to 

grazing-induced reductions in wetland vegetation.  A secondary project objective was to 

characterize and provide baseline data on aquatic invertebrate densities and community 

composition in wetlands near Kamloops, BC.  By examining a range of grazing intensities 

within four different areas on private and public lands, I expected to provide regionally-

specific recommendations for sustainable wetland use to local land managers.  Chapter 2 

describes the study design and the results of livestock grazing on wetland aquatic 

invertebrate communities.  Chapter 3 concludes the thesis with a discussion on the study’s 

limitations, future directions for research and recommendations for resource managers.  
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CHAPTER 2.   EFFECTS OF LIVESTOCK GRAZING ON AQUATIC 

MACROINVERTEBRATES IN SOUTHERN INTERIOR WETLANDS OF 
BRITISH COLUMBIA, CANADA 

Introduction 

Depressional wetlands are common in the grasslands of British Columbia’s (BC) southern 

interior and are often used by free ranging livestock for forage and fresh water.  Livestock 

spend a disproportional amount of time in wetlands versus upland areas grazing 

submergent, emergent and shoreline vegetation and drinking, loitering and cooling off 

(Adams and Fitch 1998; Nader et al. 1998).  These livestock activities can decrease water 

quality with fecal and urine inputs, increase turbidity and decrease biodiversity by altering 

habitats and food resources for insects, amphibians, reptiles, waterfowl and other wildlife 

(Coffin and Lauenroth 1988; Collins et al. 1998; Steinman et al. 2003). Heavy livestock 

use may have negative consequences on the ecological condition and sustainability of these 

important ecosystems. 

  

Aquatic invertebrates play an important role in the trophic dynamics of aquatic systems.  In 

wetlands they function as primary consumers, acting as detritivores on litter and herbivores 

on algae, as well as secondary consumers preying on zooplankton, other aquatic 

invertebrates, and small vertebrates (Pip 1978; Caldwell et al. 1980; Travis et al. 1985; 

Nelson et al. 1990; Wen 1992).  Many benthic taxa also contribute to mixing of sediment 

particles and nutrient flux through bioturbation (Brönmark and Hansson 2002).  Many 

vertebrates are drawn to wetlands for the abundant invertebrate food resources there.  

Aquatic invertebrates account for a large proportion of waterfowl diets (Krapu 1974), 

particularly during the breeding season (Swanson et al. 1985), and are crucial for waterfowl 

brood survival (Cox et al. 1998).  Aquatic invertebrate communities are important 

contributors to the productivity and functioning of wetland ecosystems and compositional 

and density changes in them can be indicative of wetland impairment.  
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The use of aquatic invertebrates as bioindicators of water and habitat quality in lotic 

systems has long been in practice (e.g., Hilsenhoff 1988; Rosenberg and Resh 1993; 

Barbour et al. 1999) with many studies examining cattle impacts (e.g., Moore and Palmer 

2005; Carlisle et al. 2008).  The application of this technique in lentic wetlands has been a 

more recent development with relatively few studies focusing on livestock grazing as the 

disturbance (e.g. Steinman et al. 2003; Ausden et al. 2005; Davis and Bidwell 2008).  

Canadian studies examining invertebrate response to livestock disturbance in wetlands are 

rare and have been conducted only in Alberta and Manitoba.  Manitoba studies examined 

the effects of cattail mowing (Neckles et al. 1990) and hydrologic changes to wetland 

aquatic invertebrates (Murkin and Ross 1999; Murkin and Ross 2000; Wrubleski 2005).  

Alberta studies have either focused on the effects of timing of grazing or specific taxon 

responses to cattle grazing and the disturbance it causes.  Effects of rotational wetland 

grazing were examined by Silver and Vamosi (2012), who found that early grazed wetlands 

had lower abundance and diversity of invertebrates, as well as different common taxa than 

late grazed pastures.  Cattle grazing caused a significant decrease in odonate abundance 

and reproductive effort by reducing vegetation height both within and adjacent to wetlands 

and a reduction in odonate species richness and diversity with complete vegetation removal 

(Hornung and Rice 2003; Foote and Rice Hornung 2005).  To my knowledge, no published 

studies have examined livestock effects on BC’s southern interior depressional wetland 

invertebrate communities.     

 

The primary objective of this research was to clarify the ecological links between livestock 

disturbance and aquatic macroinvertebrate abundance, biomass and community 

composition in grassland wetlands of the southern interior of BC.  I predicted that 1) heavy 

livestock disturbance would decrease the richness and diversity of wetland aquatic 

macroinvertebrate communities and 2) zygopteran abundance and biomass would decrease 

with heavy levels of livestock grazing.  The results of my study will contribute to the 

primary literature, provide crucial regionally specific data and promote the implementation 

of effective management of these wetland resources.  
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Methods 

Study Area 

Seventeen wetlands were examined in four grassland areas near Kamloops (50˚40’N, 

120˚20’W) in the southern interior of British Columbia, Canada: Campbell Range, Rose 

Hill, Hamilton Commonage and Lac Du Bois (Figure 2.1).  These southern interior 

wetlands are situated in the Thompson Very Dry Warm Bunchgrass Variant (BGxw2) 

biogeoclimatic zone (Meidinger and Pojar 1991), and have an average annual precipitation 

of 270 mm (MOFR 2007).  Wetlands ranged in area (0.35 to 2.30 ha), perimeter length 

(0.22 to 0.86 km), elevation (764 to 1227 m) and pH (7.66 to 10.64) across study areas 

(Appendix A).  Conductivity values were highly variable across sites (950 to 11820 µS/cm) 

due to the seasonality and semi-permanence of these waterbodies.  Study wetlands were 

selected based on: 1) an absence of salt tolerant plants; 2) their inclusion in the Ducks 

Unlimited Canada annual waterfowl survey routes (Bruce Harrison pers. comm. 2007); 3) 

that the wetlands examined provided a full range of grazing intensities.  To control and 

limit effects not due to livestock grazing, efforts were made to avoid high salinity wetlands 

as the invertebrate communities are known to be different than those in wetlands with 

lower salinity (e.g., Cannings and Scudder 1978; Cannings et al. 1980).  My highest 

conductivity value was below the 15000 - 45000 µS/cm range at which wetlands are 

considered subsaline or saline in the Alberta Wetland Classification System (AESRD 

2014).  High disturbance wetlands coincided with the high elevation wetlands.  To account 

for elevational differences in emergency timing (i.e., temperature difference), sampling 

sessions began with low elevation sites and concluded with those wetlands found at higher 

elevations.   

 

Two of the study areas, Campbell Range and Rose Hill, are privately owned while the 

other two areas, Hamilton Commonage and Lac du Bois (2 sub-areas: Lac du Bois 

Bachelor and Lac du Bois Long Lake), are grazed under a Crown land lease agreement.  

Cattle are rotated from pasture to pasture in all study areas depending on the season, range  



 

 

 

Figure 2.1.  Location of the four study areas (stars) near Kamloops, BC.  (Map sources: Natural Resource Canada 2004; Google Maps 
2014). 
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conditions and land parcel size.  Ranches in the southern interior are mostly cow-calf 

operations; however, some yearling cattle and horse operations exist in some areas.  Cattle 

are generally Herefords although other breeds occur in smaller numbers.   

Estimates of Livestock Disturbance 

A concurrent study examining impacts of livestock on wetland vegetation provided a 

grazing intensity or livestock disturbance gradient.  The mean number of quadrat corners 

that intersected bare ground was measured at each wetland site and used as a surrogate for 

grazing intensity (Jones et al. 2011).  Bare ground measurements were negatively 

correlated with vegetation biomass and positively correlated with soil bulk density and 

were an efficient way to quantify livestock disturbance. Photographs of wetlands with low 

and high disturbance levels are shown in Appendix B. 

Aquatic Invertebrate Sampling and Processing 

Aquatic invertebrates were sampled in 2008 over a two-week period in both early and mid-

summer to correspond with waterfowl nesting and brood rearing periods.  All wetlands 

sampled were class 4 (Stewart and Kantrud 1971) based on the duration of flooding; this 

allowed the examination of wetlands with similar attributes and varying grazing pressures.  

Seventeen wetlands were sampled in spring (May/June) and 12 in the summer (July).  Five 

dried up before the second sampling session in July.  Conductivity and pH were recorded 

concurrently with invertebrate sampling at three locations on each wetland using an YSI 

multi-probe (YSI Inc., Yellow Springs, Ohio).  

  

Wetland invertebrate sampling sites were chosen by measuring perimeter of each wetland 

on a provincial online map provider (BCGov 2008) and then selecting random sampling 

points along the perimeter using a random number generator.  Sample locations were 

plotted on the online map and GPS coordinates were obtained for each site.  Three sweep 

and core samples were collected from each wetland during each sampling session. Sweep 

net samples of the nektonic community (including mobile epi-benthic and epi-phytic 

 



16 
organisms) were collected 2 metres from the wetted edge of the wetland using a 500 μm 

sweep net lowered to just above the substrate surface and rapidly pulled vertically to the 

water surface (Rader 2001; Merritt et al. 2008b). Water depth was measured at sweep sites 

and used in conjunction with the net area to determine the volume of water sampled; the 

number of organisms per cubic metre was then calculated.  Core samples (5.1 cm diameter 

by 10.2 cm deep) were collected 2 metres from the wetland edge using a benthic hand corer 

(Swanson 1983; Rader 2001). Samples were placed in Whirlpak® bags filled with 70% 

ethanol for later processing. Invertebrates were sorted using a 3X power magnifying lamp.  

Microinvertebrates (e.g., cladocerans) were ignored in samples as the primary focus of this 

study was on the macroinvertebrate community.  Aquatic invertebrates were identified 

using keys and descriptions from Merritt et al. (2008a) and Thorp and Covich (2001). Taxa 

collected and their common names are listed in Appendix C.  Aquatic invertebrates were 

identified to the family level for insects (Orders Ephemeroptera, Trichoptera, Diptera, 

Coleoptera, Hemiptera, and Odonata), molluscs (Classes Gastropoda and Bivalvia) and 

macro-crustaceans (Order Amphipoda), while other aquatic groups were only identified to 

order or higher taxonomic levels.  The large number of immature insect specimens 

prevented identification to genus or species.  Identification keys usually require mature 

larvae for identification beyond the family level. 

   

Biomass was determined using taxon body length and length-mass regressions (Appendix 

D) from the literature where available, or specimens were dried and weighed.  Dry mass 

was determined using M = a Lb, where M = mass, L = body length and a and b are 

constants (Smock 1980; Benke et al. 1999; Johnston and Cunjak 1999).  When chironomid 

larval densities exceeded 100 individuals they were volumetrically subsampled in 500 ml 

of water using a Folsom plankton splitter (McEwen et al. 1954; Glozier et al. 2002). The 

subsampled chironomids were measured and multiplied by the proportion of the sample 

examined to obtain total chironomid biomass. Those taxa to be dried and weighed were 

separated into one of three categories: Gastropoda, Aquatic Others and Terrestrial Others.  

The Aquatic Others category consisted of aquatic Hydrachnidiae, Oligochaeta, Nematoda, 

Hirudinea, Bivalvia, Ostracoda, Collembola and pupae of various insect taxa.  Terrestrial 

Others included Lepidoptera, Homoptera, terrestrial and semi-terrestrial Hemiptera, 
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Araneae, terrestrial Coleoptera, Hymenoptera, Thysanoptera, and adult Diptera, 

Ephemeroptera and Trichoptera.  Taxa grouped into these three categories were transferred 

to pre-weighed aluminum pans and placed in a drying oven at 60°C for 24 h (Johnston and 

Cunjak 1999).  The pans were removed from the oven and placed in a desiccator to cool 

(minimum of 1 hour) and then weighed to a constant mass (± 0.0001 g) on a microbalance.  

Dry weights were conservative estimates as the ethanol preservative results in some loss of 

body mass (Howmiller 1972; Johnston and Cunjak 1999).   

 

Richness and diversity indices were calculated at the family level for insects, molluscs, and 

macro-crustaceans and at higher taxonomic levels for all other aquatic invertebrate groups.  

Therefore, calculations were conservative and should be considered an underestimate of 

actual richness and diversity in the study wetlands.  Shannon’s diversity index was used to 

determine the proportional diversity of wetland taxa (Shannon and Weaver 1949), and 

Simpson’s index was used as a measurement of equitability or evenness (Simpson 1949). 

Statistical Analysis 

All statistical analyses were conducted using the R statistical software program (R 

Development Core Team 2011).  Only dominant and widespread taxa were used in 

analyses.  Taxa that had >5% relative abundance/biomass (Steinman et al. 2003; Corcoran 

et al. 2009) in at least one wetland site and occurred in >50% of wetlands were used in 

analyses (Batzer et al. 2004).  Dominant taxa were determined for abundance and biomass 

separately; they were also selected separately for the two different sampling methods 

(sweeps and cores).  The inclusion of uncommon taxa in these analyses proved statistically 

problematic because of the presence of many zero values.   

 

Nonmetric multidimensional scaling (NMDS), an indirect ordination technique, was used 

to summarize associations among wetland invertebrate community composition and 

environmental variables.  NMDS analysis groups similar sites based on dissimilarities in 

community composition and is robust enough to handle numerous zero values and non-
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normal multivariate data (Clarke 1993).  Ordinations were performed using a Bray-Curtis 

dissimilarity matrix using the metaMDS function in the vegan community ecology package 

for the R statistical software (Oksanen et al. 2011; R Development Core Team 2011).  

Analyses used random starting configurations and the number of dimensions used was 

determined by stress reduction using a scree plot (McCune and Grace 2002).  Significant 

environmental variables were plotted on the ordinations as vectors so that their relationship 

with the invertebrate communities could be readily visualized.    

 

Stepwise linear regressions were explored in the examination of the relationship between 

the response variables (total abundance, total biomass, richness, diversity, and abundance 

and biomass of the most common taxa) and the explanatory variables (disturbance, wetland 

perimeter length, pH and conductivity).  Data were transformed where required to meet the 

test assumptions of normal errors and homoscedasticity.   

Results 

Aquatic Invertebrate Community Structure 

The study documented 37 higher taxa of aquatic macroinvertebrates from nine classes, 

eleven orders and thirty-one families (Appendix C).  This estimate is conservative as 

identification of insects was to order or family level and non-insect groups to order, class or 

phylum.  Both spring sweep abundance and biomass had ten dominant taxa (>50% 

occurrence in all wetlands and >5% relative abundance in at least one wetland) (Table 2.1 

and Table 2.2).  Summer core abundance taxa contained fewer widespread taxa with only 

Oligochaeta, Ceratopogonidae and Chironomidae meeting the above criteria.  Across all 

wetlands, sweep abundance was primarily dominated by dipterans and ostracods in the 

spring and dipterans in the summer (Appendix E, Figure E.1).  Core abundance followed a 

similar pattern, with spring samples consisting primarily of dipterans and ostracods while 

summer core abundance had a large dipteran presence (Appendix E, Figure E.2).  Spring 

sweep biomass had high proportions of zygopterans, whereas zygopterans, dipterans and 

gastropods were most prominent in summer sweeps (Appendix E, Figure E.3).  Both spring 
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and summer core biomass was primarily composed of dipterans; however, when present, 

gastropods, trichopterans and zygopterans greatly contributed to the total biomass 

(Appendix E, Figure E.4).   

 

Abundance, biomass, richness and diversity were inconsistent among wetlands and seasons 

and variance amongst samples was often high (Tables 2.3-2.6).  No consistent pattern of 

abundance, biomass, richness or diversity was found with livestock disturbance at a 

wetland site level.  Summer sweeps had the greatest overall mean abundance (7.98 ± 5.09 

organisms/m3) and biomass (3.13 ± 1.66 mg/m3) densities whereas spring sweeps had the 

lowest mean abundance (5.61 ± 2.75 organisms/m3) and spring cores the lowest mean 

biomass (1.40 ± 0.80 mg/m3) densities.  Mean family richness (9.35 ± 1.59) and diversity 

(Shannon’s 1.27 ± 0.23; Simpson’s 0.58 ± 0.09) was greatest in spring sweep samples. 

Summer cores had the lowest family richness (3.56 ± 0.84) and diversity (Shannon’s 0.68 ± 

0.17; Simpson’s 0.37 ± 0.09).   

 

Table 2.1.  Dominant taxa for sweep and core abundance during spring and summer 
sampling sessions.  Taxa were selected based on their presence in >50% of all wetlands and 
having >5% relative abundance in at least one wetland site. 

Sweep Abundance Core Abundance 
Spring Summer Spring Summer 

Ostracoda Ostracoda Ostracoda Oligochaeta 
Oligochaeta Oligochaeta Oligochaeta Ceratopogonidae 
Gastropoda Ceratopogonidae Nematoda Chironomidae 
Collembola Chironomidae Ceratopogonidae 

 Ceratopogonidae Dytiscidae Chironomidae 
 Chironomidae Lestidae Lestidae 
 Dytiscidae Lymnaeidae 

  Aeshnidae 
   Lestidae 
   Corixidae       
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Table 2.2.  Dominant taxa for sweep and core biomass during spring and summer sampling 
sessions.  Taxa were selected based on their presence in >50% of all wetlands and having 
>5% relative biomass in at least one wetland site. 

Sweep Biomass Core Biomass 
Spring Summer Spring Summer 

Gastropoda Hemiptera Coleoptera Coleoptera 
Ceratopogonidae Gastropoda Ceratopogonidae Ceratopogonidae 

Chironomidae Ceratopogonidae Chironomidae Chironomidae 
Dytiscidae Chironomidae Lestidae Ephydridae 

Hydrophilidae Dytiscidae 
  Libellulidae Aeshnidae 
  Aeshnidae Coenagrionidae 
  Coenagrionidae Lestidae 
  Lestidae 

   Limnephilidae       
 
 

 



 

Table 2.3.  Summary of mean spring sweep abundance, biomass and diversity measures.  Column heading abbreviations are defined as 
Disturb=livestock disturbance gradient (low values are least disturbed), Abu=abundance (organisms/m3), Bio=biomass (mg/m3), 
S=family richness, H’=Shannon’s Diversity Index, and D=Simpson’s Diversity Index. Values in parenthesis represent ± 1 S.E.. 

Study Area Site Disturb Abu Bio S H' D 

Campbell Range 7 1.62 3.79 (1.44) 0.69 (0.17) 13.33 (2.33) 1.50 (0.46) 0.60 (0.18) 
8 0.98 9.65 (3.69) 0.86 (0.18) 12.67 (0.88) 1.24 (0.26) 0.51 (0.11) 

  Mean 1.30 6.72 (2.57) 0.78 (0.17) 13.00 (1.61) 1.37 (0.36) 0.55 (0.14) 

Hamilton Commonage 

4.3 0.14 6.25 (2.81) 9.17 (5.60) 11.67 (1.86) 1.69 (0.19) 0.73 ( 0.05) 
5 1.21 0.71 (0.44) 0.65 (0.63) 5.33 (2.60) 0.95 (0.50) 0.45 (0.23) 

7.1 1.88 0.83 (0.16) 0.17 (0.05) 5.33 (0.88) 1.05 (0.03) 0.58 (0.01) 
9 2.22 2.36 (0.85) 0.23 (0.12) 6.00 (1.53) 0.72 (0.27) 0.39 (0.16) 

  Mean 1.36 2.54 (1.07) 2.56 (1.60) 7.08 (1.72) 1.10 (0.25) 0.54 (0.11) 

Lac Du Bois Batchelor 

4 0.25 4.05 (1.62) 1.36 (0.57) 13.00 (1.00) 1.38 (0.13) 0.61 (0.04) 
4.1 0.46 6.27 (4.32) 2.38 (0.22) 9.00 (1.53) 1.11 (0.13) 0.55 (0.07) 
5 0.27 19.98 (12.25) 9.69 (4.10) 11.33 (1.20) 1.23 (0.15) 0.61 (0.08) 

6.1 0.33 4.58 (2.65) 1.49 (1.13) 9.67 (1.20) 1.40 (0.22) 0.64 (0.09) 
10 0.09 3.29 (1.76) 1.69 (0.86) 11.00 (1.00) 1.90 (0.12) 0.79 (0.04) 

  Mean 0.28 7.63 (4.52) 3.32 (1.37) 10.80 (1.19) 1.40 (0.15) 0.64 (0.07) 

Lac Du Bois Long Lake 
4.1 0.23 9.53 (4.05) 2.71 (1.16) 13.00 (3.51) 1.80 (0.04) 0.80 (0.01) 
6.1 1.32 3.84 (1.70) 0.80 (0.25) 9.00 (2.08) 1.20 (0.17) 0.56 (0.07) 
7 0.06 14.20 (6.89) 1.35 (0.33) 10.33 (1.20) 1.51 (0.21) 0.71 (0.06) 

  Mean 0.54 9.19 (4.21) 1.62 (0.58) 10.78 (2.27) 1.50 (0.14) 0.69 (0.04) 

Rose Hill 
13.1 2.84 0.53 (0.32) 0.20 (0.13) 3.33 (0.88) 0.94 (0.13) 0.57 (0.03) 
14 1.50 4.43 (1.30) 0.71 (0.29) 9.67 (2.19) 0.72 (0.36) 0.30 (0.18) 
19 1.05 1.17 (0.50) 1.45 (1.06) 5.33 (1.20) 1.18 (0.45) 0.55 (0.20) 

  Mean 1.79 2.05 (0.70) 0.79 (0.49) 6.11 (1.42) 0.94 (0.31) 0.47 (0.14) 
Mean Across All Sites   0.97 5.61 (2.75) 2.09 (0.99) 9.35 (1.59) 1.27 (0.23) 0.58 (0.09) 
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Table 2.4.  Summary of mean summer sweep abundance, biomass and diversity measures.  Column heading abbreviations are defined 
as Disturb=livestock disturbance gradient (low values are least disturbed), Abu=abundance (organisms/m3), Bio=biomass (mg/m3), 
S=family richness, H`=Shannon’s Diversity Index, and D=Simpson`s Diversity Index. Values in parentheses represent ± 1 S.E.. 

Study Area Site Disturb Abu Bio S H' D 

Hamilton Commonage 9 2.22 2.89 ( 1.95) 1.78 (1.10) 9.33 (2.33) 1.41 (0.16) 0.65 (0.08) 

Lac Du Bois Batchelor 

4 0.25 2.79 (0.77) 3.44 (1.49) 6.67 (2.19) 0.72 (0.23) 0.34 (0.12) 
4.1 0.46 22.27 (11.64) 8.80 (2.63) 8.33 (2.03) 0.63 (0.28) 0.29 (0.15) 
5 0.27 20.94 (18.35) 5.53 (4.72) 8.33 (2.40) 0.52 (0.03) 0.23 (0.03) 

6.1 0.33 1.20 (0.27) 1.06 (0.66) 7.33 (1.76) 1.25 (0.08) 0.61 (0.01) 
10 0.09 2.80 (1.36) 2.51 (1.03) 6.33 (0.67) 1.04 (0.18) 0.52 (0.11) 

 mean 0.28 10.00 (6.48) 4.27 (2.11) 7.40 (1.81) 0.83 (0.16) 0.40 (0.08) 

Lac Du Bois Long Lake 
4.1 0.23 6.78 (1.89) 1.93 (0.86) 12.33 (0.67) 1.58 (0.13) 0.68 (0.05) 
6.1 1.32 2.02 (0.65) 2.09 (0.90) 10.33 (1.45) 1.38 (0.28) 0.61 (0.11) 
7 0.06 4.03 (1.46) 0.94 (0.17) 7.67 (1.20) 1.22 (0.27) 0.58 (0.12) 

 mean 0.54 4.28 (1.33) 1.66 (0.64) 10.11 (1.11) 1.39 (0.23) 0.62 (0.09) 

Rose Hill 
13.1 2.84 26.28 (21.91) 8.12 (5.78) 7.67 (2.85) 0.83 (0.36) 0.38 (0.15) 
14 1.50 1.59 (0.16) 0.54 (0.24) 10.00 (1.53) 1.42 (0.17) 0.65 (0.06) 
19 1.05 2.20 (0.63) 0.85 (0.38) 8.33 (1.86) 1.13 (0.06) 0.55 (0.05) 

 mean 1.79 10.02 (7.57) 3.17 (2.13) 8.67 (2.08) 1.12 (0.20) 0.53 (0.08) 

Mean Across All Sites  0.89 7.98 (5.09) 3.13 (1.66) 8.56 (1.74) 1.09 (0.19) 0.51 (0.09) 
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Table 2.5.  Summary of mean spring core abundance, biomass and diversity measures.  Column heading abbreviations are defined as 
Disturb=livestock disturbance gradient (low values are least disturbed), Abu=abundance (organisms/m3), Bio=biomass (mg/m3), 
S=family richness, H`=Shannon’s Diversity Index, D=Simpson`s Diversity Index. Values in parentheses represent ± 1 S.E.. 

Study Area Site Disturb Abu Bio S H' D 

Campbell Range  7 1.62 4.39 (1.46) 3.52 (3.22) 4.67 (0.33) 1.04 (0.03) 0.53 (0.04) 
8 0.98 8.90 (4.00) 0.52 (0.29) 6.00 (0.00) 1.48 (0.02) 0.74 (0.01) 

  Mean 1.30 6.64 (2.73) 2.02 (1.76) 5.33 (0.17) 1.26 (0.03) 0.64 (0.03) 

Hamilton Commonage 

4.3 0.14 4.59 (2.13) 0.38 (0.13) 5.00 (2.31) 0.91 (0.49) 0.46 (0.24) 
5 1.21 3.69 (1.28) 1.19 (0.90) 5.00 (0.58) 1.37 (0.08) 0.72 (0.02) 

7.1 1.88 4.55 (1.05) 0.20 (0.05) 5.33 (0.88) 1.21 (0.11) 0.63 (0.04) 
9 2.22 5.33 (2.70) 4.52 (4.25) 5.00 (1.15) 1.31 (0.14) 0.68 (0.03) 

  Mean 1.36 4.54 (1.79) 1.57 (1.33) 5.08 (1.23) 1.20 (0.21) 0.62 (0.08) 

Lac Du Bois Batchelor 

4 0.25 1.60 (0.43) 0.11 (0.03) 4.33 (0.33) 1.21 (0.04) 0.64 (0.04) 
4.1 0.46 8.61 (4.73) 0.23 (0.16) 3.33 (0.88) 0.57 (0.34) 0.29 (0.19) 
5 0.27 10.70 (0.62) 1.72 (0.56) 7.67 (1.20) 1.17 (0.02) 0.57 (0.04) 

6.1 0.33 6.11 (0.42) 0.30 (0.12) 4.33 (0.88) 1.00 (0.19) 0.54 (0.10) 
10 0.09 8.32 (5.43) 0.93 (0.35) 6.00 (0.58) 1.30 (0.31) 0.61 (0.15) 

  Mean 0.54 7.07 (2.33) 0.66 (0.25) 5.13 (0.78) 1.05 (0.18) 0.53 (0.10) 

Lac Du Bois Long Lake 
4.1 0.23 19.39 (8.53) 1.93 (0.93) 6.33 (1.20) 0.99 (0.31) 0.47 (0.16) 
6.1 1.32 7.17 (1.21) 0.44 (0.22) 4.33 (0.88) 0.92 (0.11) 0.52 (0.07) 
7 0.06 5.33 (2.02) 0.56 (0.22) 4.67 (0.33) 0.88 (0.23) 0.45 (0.14) 

  Mean 1.79 10.63 (3.92) 0.98 (0.46) 5.11 (0.81) 0.93 (0.22) 0.48 (0.12) 

Rose Hill 
13.1 2.84 5.53 (0.93) 5.44 (0.86) 3.33 (0.33) 0.82 (0.09) 0.48 (0.08) 
14 1.50 2.66 (0.29) 0.57 (0.34) 3.33 (0.33) 0.76 (0.19) 0.42 (0.12) 
19 1.05 7.05 (0.64) 1.24 (0.94) 4.67 (0.88) 0.95 (0.09) 0.53 (0.00) 

  Mean 1.79 5.08 (0.62) 2.42 (0.72) 3.78 (0.52) 0.85 (0.13) 0.48 (0.07) 
Mean Across All Sites   0.97 6.70 (2.23) 1.40 (0.80) 4.90 (0.77) 1.05 (0.17) 0.55 (0.09) 
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Table 2.6.  Summary of mean summer core abundance, biomass and diversity measures.  Column heading abbreviations are defined as 
Disturb=livestock disturbance gradient (low values are least disturbed), Abu=abundance (organisms/m3), Bio=biomass (mg/m3), 
S=family richness, H`=Shannon’s Diversity Index, D=Simpson`s Diversity Index. Values in parentheses represent ± 1 S.E..   

Study Area Site Disturb Abu Bio S H' D 

Hamilton Commonage 9 2.22 3.61 (0.98) 8.70 (1.80) 5.00 (1.00) 1.13 (0.24) 0.56 (0.10) 

Lac Du Bois Batchelor 

4 0.25 2.99 (1.05) 1.07 (0.89) 2.33 (0.33) 0.69 (0.05) 0.47 (0.02) 
4.1 0.46 7.83 (2.24) 2.38 (1.00) 2.33 (0.88) 0.37 (0.21) 0.21 (0.11) 
5 0.27 4.39 (1.17) 1.94 (0.50) 3.00 (0.58) 0.69 (0.11) 0.39 (0.04) 

6.1 0.33 14.84 (6.00) 5.58 (3.86) 3.00 (0.58) 0.18 (0.04) 0.07 (0.02) 
10 0.09 5.41 (3.20) 0.62 (0.23) 3.33 (0.33) 0.90 (0.06) 0.54 (0.04) 

  mean 0.28 7.09 (2.73) 2.32 (1.30) 2.80 (0.54) 0.57 (0.10) 0.33 (0.05) 

Lac Du Bois Long Lake 
4.1 0.23 13.57 (6.75) 2.81 (1.72) 6.00 (2.00) 0.86 (0.19) 0.43 (0.10) 
6.1 1.32 2.75 (0.95) 1.20 (0.56) 3.33 (1.20) 0.68 (0.35) 0.36 (0.18) 
7 0.06 5.74 (1.61) 2.24 (1.00) 3.67 (0.88) 0.67 (0.25) 0.35 (0.13) 

  mean 0.54 7.35 (3.10) 2.08 (1.10) 4.33 (1.36) 0.74 (0.26) 0.38 (0.14) 

Rose Hill 
13.1 2.84 7.34 (2.17) 2.25 (0.92) 4.00 (1.00) 0.61 (0.09) 0.34 (0.06) 
14 1.50 1.43 (0.23) 0.20 (0.10) 3.00 (0.58) 0.92 (0.26) 0.53 (0.14) 
19 1.05 9.55 (3.46) 2.45 (1.26) 3.67 (0.67) 0.40 (0.20) 0.20 (0.12) 

  mean 1.79 6.11 (1.95) 1.63 (0.76) 3.56 (0.75) 0.64 (0.18) 0.36 (0.11) 

Mean Across All Sites   0.89 6.62 (2.48) 2.62 (1.15) 3.56 (0.84) 0.68 (0.17) 0.37 (0.09) 
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Community Response to Disturbance  

The main impacts of livestock disturbance on wetland macroinvertebrate communities 

occurred primarily in the spring and affected those taxa found within the nektonic 

community.  Livestock disturbance was significantly negatively correlated with spring 

sweep total abundance and total biomass (Figure 2.2).  Significant negative associations 

were also found between livestock disturbance and spring sweep richness, Shannon’s 

diversity and Simpson’s diversity (Figure 2.3).  The only significant benthic community 

response to livestock disturbance also included conductivity; both were negatively 

correlated with spring core richness (Table 2.9).   

 

In a few instances, regression models including both disturbance and conductivity were 

significantly correlated with wetland taxa (Tables 2.7-2.9).  As most of these taxa also had 

significant relationships with disturbance alone, the models that included both 

environmental parameters were not confounded by the effects of conductivity but rather 

improved the model by explaining more of the variation.   

 

NMDS ordinations demonstrated distinct groupings of higher disturbance ponds versus 

lower disturbance ponds in cases where livestock disturbance was significantly correlated 

to the community composition.  See Appendix F for NMDS ordination plots that include 

all environmental variables and Appendix G for NMDS correlation values for the 

environmental variables.  The NMDS plot of spring sweep abundance (2 dimensional 

solution, stress of 10.3%) included disturbance (r2=0.486, p=0.008) as an environmental 

feature related to abundance of macroinvertebrates (Figure 2.4).  The influence of livestock 

disturbance was evident as indicated by site separation within the plot. However, the effect 

of conductivity on the community composition, although not significant (r2=0.322, 

p=0.063), was apparent as disturbed site groupings were not always grouped according to 

disturbance alone.  The ordination of summer sweep abundance (2 dimensional solution, 

stress of 13.3%; Figure 2.5) and summer core abundance communities (2 dimensional 
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solution, stress of 1.7%; Figure 2.6) showed a clear site separation based on livestock 

disturbance (r2=0.714, p=0.006; r2=0.534, p=0.035 respectively).   
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Figure 2.2.  Linear relationship between livestock disturbance and a) spring sweep total 
abundance and b) spring sweep total biomass. Livestock disturbance represents the mean # 
of quadrat corners that intersected bare ground at each wetland (Jones et al. 2011). Dotted 
lines represent 95% confidence intervals.  

r2 = 0.728 
p<0.001 
  
 

b) 

r2 = 0.464 
p = 0.003 

a) 
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Figure 2.3.  Linear relationship between livestock disturbance and spring sweep a) family 
richness, b) Shannon’s family-level diversity (H’) and c) Simpson’s family-level diversity 
(D). Livestock disturbance represents the mean # of quadrat corners that intersected bare 
ground at each wetland (Jones et al. 2011). Dotted lines represent 95% confidence 
intervals.  

r2=0.462 
p=0.003 

r2=0.569 
p<0.001 

a) b) 

r2=0.385 
p=0.008 

c) 
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Figure 2.4.  Nonmetric multidimensional scaling (NMDS) ordination (stress=10.3%) of 
spring sweep abundance dominant taxa community structure with overlay of fitted vector 
representing the significant (r2=0.486, p=0.008) environmental variable livestock 
disturbance (Disturb). Wetland site (in red) disturbance level is represented by a continuum 
with large circles being most disturbed and dots representing least disturbed sites. Taxa (in 
black) are as follows: Aes=Aeshnidae, Bol=Collembola, Cer=Ceratopogonidae, 
Chi=Chironomidae, Cor=Corixidae, Dyt=Dytiscidae, Gas=Gastropoda, Les=Lestidae, 
Oli=Oligochaeta, and Ost=Ostracoda. 
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Figure 2.5.  Nonmetric multidimensional scaling (NMDS) ordination (stress=13.3%) of 
summer sweep abundance dominant taxa community structure with overlay of fitted vector 
representing the significant (r2=0.714, p=0.006) environmental variable livestock 
disturbance (Disturb). Wetland site (in red) disturbance level is represented by a continuum 
with large circles being most disturbed and dots representing least disturbed sites. Taxa (in 
black) are as follows: Cer=Ceratopogonidae, Chi=Chironomidae, Dyt=Dytiscidae, 
Les=Lestidae, Lym=Lymnaeidae, Oli=Oligochaeta, and Ost=Ostracoda.  
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Figure 2.6.  Nonmetric multidimensional scaling (NMDS) ordination (stress=1.74%) of 
summer core abundance dominant taxa community structure with overlay of fitted vector 
representing the significant (r2=0.534, p=0.034) environmental variable livestock 
disturbance (Disturb). Wetland site (in red) disturbance level is represented by a continuum 
with large circles being most disturbed and dots representing least disturbed sites. Taxa (in 
black) are as follows: Cer=Ceratopogonidae, Chi=Chironomidae, Oli=Oligochaeta. 
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Individual Taxa Response to Livestock Disturbance 

Livestock disturbance was an important factor influencing Odonata at the suborder and 

family levels.  Zygoptera (damselfly) spring sweep abundance and biomass were both 

significantly negatively correlated with livestock disturbance (Figure 2.7).  One of the two 

zygopteran families found in spring sweeps, the Lestidae, followed a similar trend with a 

significant decrease in abundance and biomass as disturbance levels increased (Figure 2.7).  

Both spring sweep Lestidae abundance and biomass had significant negative associations 

with a combination of livestock disturbance and perimeter length (Table 2.7-2.8).  Both 

Zygoptera and Lestidae spring core abundance were negatively correlated with livestock 

disturbance (Table 2.9).  In spring sweeps, Aeshnidae (a dragonfly family) abundance was 

the only positive association with livestock disturbance. 

   

Sweep samples containing the families Dytiscidae (Coleoptera), Chironomidae (Diptera), 

and Ceratopogonidae (Diptera) were negatively affected by heavy levels of livestock 

disturbance (Table 2.7-2.8).  Dytiscid abundance was negatively correlated with livestock 

disturbance in spring but positively associated in summer (Table 2.7).  Spring sweep 

chironomid abundance decreased as livestock disturbance increased (Table 2.7).  

Ceratopogonid summer abundance was negatively correlated with livestock use (Table 

2.7).  Spring biomass of both Chironomidae and Ceratopogonidae had negative 

relationships with livestock disturbance (Table 2.8).  

 

Core samples had few significant relationships with livestock disturbance (Table 2.9).  

Summer core Ceratopogonidae abundance and biomass were negatively associated with 

high levels of grazing. In summer, livestock disturbance significantly increased 

Oligochaeta core abundance.  

 

Significant linear relationships with environmental variables other than livestock 

disturbance can be found in Appendix H. 
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Figure 2.7.  Linear relationship between livestock disturbance and spring sweep a) 
Zygoptera abundance b) Zygoptera biomass c) Lestidae abundance and d) Lestidae 
biomass. Livestock disturbance represents the mean # of quadrat corners that intersected 
bare ground at each wetland (Jones et al. 2011). Dotted lines represent 95% confidence 
intervals.  
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p=0.001 
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Table 2.7.  Significant spring and summer sweep abundance regressions with livestock disturbance as the independent variable alone 
or in combination with other environmental variables. Regression slopes are described as either positive (+) or negative (-).  Only 
relationships with p <0.05 are shown. 

Sampling 
Period 

Dependent 
Variable Independent Variable(s) Slope F df p r2 Adj. r2 

Spring Coleoptera Disturbance - 8.60 15 0.010 0.364 0.322 

 
Dytiscidae Disturbance - 9.13 15 0.009 0.378 0.337 

 
Lestidae Disturbance + Perimeter - & -  10.29 14 0.002 0.595 0.537 

 
Aeshnidae Disturbance + 12.51 15 0.003 0.455 0.418 

 
Hemiptera Disturbance + Conductivity - & - 10.17 14 0.002 0.592 0.534 

 
Hemiptera Disturbance - 5.56 15 0.032 0.271 0.222 

 
Corixidae Disturbance + Conductivity - & - 10.17 14 0.002 0.592 0.534 

 
Diptera Disturbance - 9.99 15 0.006 0.400 0.360 

 
Chironomidae Disturbance - 6.77 15 0.020 0.311 0.265 

   
 

     Summer Dytiscidae Disturbance + 10.20 10 0.010 0.505 0.456 
  Ceratopogonidae Disturbance - 8.49 10 0.015 0.459 0.405 
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Table 2.8.  Significant spring sweep biomass regressions with livestock disturbance as the independent variable alone or in 
combination with other environmental variables.  Regression slopes are described as either positive (+) or negative (-).  Only 
relationships with p <0.05 are shown. 

Sampling 
Period 

Dependent 
Variable Independent Variable(s) Slope F df p r2 Adj. r2 

Spring Diptera Disturbance - 17.50 15 <0.001 0.538 0.508 

 
Ceratopogonidae Disturbance+Conductivity  - & - 9.79 14 0.002 0.583 0.524 

 
Ceratopogonidae Disturbance - 10.08 15 0.006 0.402 0.362 

 
Chironomidae Disturbance - 15.49 15 0.001 0.508 0.475 

 
Aeshnidae Disturbance+Conductivity  - & + 7.27 14 0.007 0.510 0.440 

  Lestidae Disturbance+Perimeter - & -  7.89 14 0.005 0.530 0.463 
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Table 2.9.  Significant spring and summer core abundance and summer core biomass regressions with livestock disturbance as the 
independent variable alone or in combination with other environmental variables.  Regression slopes are described as either positive 
(+) or negative (-).  Only relationships with p <0.05 are shown. 

Sampling 
Period 

Dependent 
Variable Independent Variable(s) Slope F df p r2 Adj. r2 

CORE ABUNDANCE 
       Spring Zygoptera Disturbance - 18.86 15 <0.001 0.557 0.528 

 
Lestidae Disturbance - 6.13 15 0.026 0.290 0.243 

 
Richness Disturbance + Conductivity - & - 3.79 14 0.048 0.351 0.259 

   
 

     Summer Ceratopogonidae Disturbance - 8.62 10 0.015 0.463 0.409 

 
Oligochaeta Disturbance  +  10.92 10 0.008 0.522 0.474 

 
Oligochaeta Disturbance + Conductivity  + & - 7.97 9 0.010 0.639 0.559 

CORE BIOMASS 
       Summer Ceratopogonidae Disturbance - 8.65 10 0.015 0.464 0.410 
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Discussion 

Aquatic Invertebrate Community Response  

The results of this study indicate that high levels of livestock grazing negatively affects the 

aquatic macroinvertebrate assemblages in local wetlands by reducing the total abundance, 

total biomass, taxa richness and diversity of these communities.  Strongest relationships 

were observed within nektonic communities during the spring, although benthic and 

summer patterns also emerged.  NMDS ordinations showed significant associations 

amongst macroinvertebrate community composition and livestock disturbance while 

regression analyses indicated heavy disturbance to be an important factor in reducing both 

total abundance and biomass, and family richness and diversity.  The literature both 

supports and refutes these findings and shows the spatial and temporal variability of 

aquatic invertebrate response to livestock disturbance.   

  

Wetland richness and diversity were anticipated to decrease with increasing livestock 

disturbance because of the reduction of submerged and emergent vegetation and the 

elevation of nutrients resulting in increased primary production.  Higher productivity is 

often associated with decreased diversity (Jeppesen et al. 2000). My results are 

corroborated by Ausden et al. (2005), who found species richness was significantly reduced 

by cattle grazing in United Kingdom fens.  Furthermore, a Kansas study found family 

richness was greater in control than in grazed treatments although no difference in diversity 

was detected (Kostecke et al. 2005). In sharp contrast to my study, Marty (2005) reported 

higher aquatic invertebrate richness in grazed versus ungrazed Californian vernal pools.  

Similarly, Davis and Bidwell (2008) found both benthic and nektonic richness and benthic 

diversity were greatest in grazed treatments in Nebraska. Steinman et al. (2003) discovered 

that although invertebrate richness and diversity varied in the two vegetation types present 

in their south-central Florida wetlands, cattle grazing did not have any effect on the aquatic 

invertebrate community. Similar patterns of geographic heterogeneous response to 
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livestock disturbance were also evident with total abundance and biomass of 

macroinvertebrates. 

 

Total macroinvertebrate abundance and biomass decreased in the presence of high 

livestock disturbance.  I had expected a compositional shift in wetland taxa under heavy 

grazing pressure but had surmised this would not necessarily reduce the number or biomass 

of wetland macroinvertebrates present.  McAbendroth et al. (2005) found high invertebrate 

biomass was correlated with high vegetation complexity and suggested habitat complexity 

may control invertebrate biomass in wetlands.  In my study, decreased wetland vegetation 

complexity and structure resulting from heavy grazing is supported by a concurrent study 

examining grazing impacts on wetland vegetation (Jones et al. 2011). Other projects have 

recorded varying abundance and biomass response to livestock disturbance.  In Florida, 

simulated grazing in depressional freshwater marshes decreased macroinvertebrate 

abundance (Morrison and Bohlen 2010). In contrast, Davis and Bidwell (2008), found total 

biomass was greater in grazed than in reference wetlands; however, the opposite was true 

the following year, with reference wetlands having greater biomass of macroinvertebrates 

than the grazed treatments. The high degree of disagreement across, and even within, 

studies suggests that regional differences, such as local climate, geology and elevation may 

prevent detailed comparison of wetland communities (Batzer et al. 2005).  

Zygoptera Response 

Spring sweep biomass was dominated by zygopterans and heavy levels of livestock grazing 

reduced Zygoptera biomass and abundance at the suborder and family (Lestidae) level.  

These results were no surprise due to the connection between wetland vegetation and 

Zygoptera habitat requirements (Hornung and Rice 2003).  Lestes is the only genus of 

Lestidae found in British Columbia and many species of Lestes are specialists of temporary 

wetlands (Cannings 2002).  Most Zygoptera are obligate endophytic ovipositors that lay 

their eggs in emergent as in the case of Lestes, and submergent vegetation within wetlands 

(Duffy 1994; Cannings 2002).  Macrophytes are utilized by larval stages for foraging, 

refugia and emergence.   This reliance on vegetation makes them susceptible to livestock 
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grazing within, and adjacent to, aquatic habitats. Also, Lestes eggs laid in emergent stems 

may be eaten along with the plants in spring and summer.  Vegetation in heavily grazed 

sites was completely lacking or, if present, was sparse and/or reduced in height and did not 

have the visual habitat features adult zygopterans prefer and require (Corbet 1999; Bernath 

et al. 2002).  Foote & Hornung (2005) proposed that vegetation height is also important for 

wind protection, as zygopterans are not strong flyers and wind refugia may be a critical 

structural habitat requirement. My study supports this as plant communities within my 

study wetlands shifted from tall and rhizomatous species to shorter-lived, smaller species in 

the presence of increased grazing (Jones et al. 2011).   

Other Taxa Response to Disturbance 

Not surprisingly, Diptera, because of their rapid reproductive rate, a terrestrial adult stage, 

and the ability of the larvae of many species to extract oxygen from the atmosphere, are a 

common and often a dominant taxon present in wetlands (King and Richardson 2002).  

Within the Diptera, the family Chironomidae usually makes the highest contribution to 

invertebrate abundance in wetlands (Wrubleski 1987; Batzer et al. 2001).  This is supported 

in my study by both the benthic and nektonic communities.  Diptera, primarily family 

Chironomidae, and Ostracoda were the most abundant macroinvertebrate orders in spring; 

in summer, the Diptera were the most abundant.  Morrison and Bohlen (2010) found that 

Diptera abundance increased when vegetation was clipped and removed to simulate 

grazing.  Contrary to their results, I found that spring nekton Diptera and chironomid 

abundance and biomass decreased with heavy grazing.  However, chironomids in the 

spring benthic community responded positively to higher levels of grazing. Given that my 

taxonomic resolution was to family only, I suggest that different genera or species residing 

in the benthos versus in the nekton were responsible for this difference.  Benthic taxa are 

more tolerant of anoxic conditions resulting from eutrophication and increased turbidity 

(Campbell et al. 2009), and would be expected to be less affected by livestock presence.  

The absence of relationships between summer sweep and core dipteran abundance and 

richness might be due to the absence of chironomid collected because of emergence timing. 
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The relationship between Dytiscidae abundance and livestock disturbance was negative in 

the spring but positive in the summer. Dytiscid beetles collected in spring were primarily 

larvae which depend upon wetland vegetation for hunting prey and require contact with the 

surface to obtain atmospheric oxygen (Resh et al. 2008).  During this time, larval dytiscids 

would be more vulnerable to vegetation removal and trampling, and agitation of the water 

surface by livestock. In the absence of fish and birds, Odonata (Suborders Anisoptera and 

Zygoptera), Dytiscidae and Hemiptera are the top predators of macroinvertebrates in semi-

permanent wetlands, and are usually speciose and numerous in these wetland ecosystems 

(Batzer and Wissinger 1996).  I speculate that as livestock disturbance increases and 

zygopterans declined as a result, dytiscid abundance may have increased due to reduced 

competition for prey and resources.       

Study limitations 

As invertebrate communities are highly variable in time and space, my study, because of 

low sampling frequency and intensity, may have failed to find some potential relationships 

caused by livestock disturbance.  Miller et al. (2008) suggest that within-year temporal 

shifts in the community dynamics may result in misconstrued and unreliable data.  Two 

sampling sessions may have been insufficient to accurately portray all effects of livestock 

on macroinvertebrates.  Within-wetland abundance and biomass variability was often high.  

Downing (1991) noted that the structural heterogeneity of wetland habitats causes patchy 

aggregations of macroinvertebrates.  To alleviate this sampling problem, King and 

Richardson (2002) suggest that aggregate samples from more than one habitat are most 

accurate in quantifying the community and recording rare taxa.  More intensive sampling 

of each wetland would give a better picture of the invertebrate community and help to 

determine whether taxa collected were in fact rare or only captured in low numbers due to 

low sampling effort.  More intensive sampling would also potentially allow for genera or 

species analyses, which probably would provide more insight into livestock effects.  

Family level analyses may not be sufficient to detect most responses to livestock impacts 

(King and Richardson 2002).  I was unable to conduct statistical analyses using genera or 

 



 40 
species because of the many immature specimens (difficult or impossible to identify past 

family level) and the many zero observations in my data set. 

Management Recommendations 

Sweep sampling appears to give clearer results than core sampling.  For resource managers, 

this collection method is usually a more efficient technique, requiring less sample 

processing time than core samples.  Although more expensive, the analysis of the biomass 

of aquatic macroinvertebrates, and not just abundance alone, should be explored in these 

wetland systems.  Biomass characterizes food web energy flow of these important prey 

items more accurately than abundance alone, thus providing better insight into wetland 

trophic dynamics and the effects of disturbance.   

 

Resource managers should recommend range use plans that include only light grazing 

regimes and limit livestock access to wetlands.  My data indicate that aquatic 

macroinvertebrates could potentially be used to indicate heavy levels of livestock 

disturbance; such information would assist resource managers in monitoring for wetland 

impairment.  Specifically, damselflies (Odonata: Zygoptera) at the suborder level or family 

level (Zygoptera: Lestidae) show promise as a bioindicator of heavy levels of livestock use 

in British Columbia`s southern interior wetlands.  Resource managers would be prudent to 

include zygopterans in any index developed to assess wetland condition.    

Conclusion 

High intensity livestock grazing in southern interior wetlands is reducing total abundance, 

biomass, richness and diversity of aquatic macroinvertebrates.  My study is the first to 

examine the impact of free-range livestock practices on macroinvertebrates in BC southern 

interior wetlands, but further study is required to fully understand the consequences of this 

wide spread disturbance.  Future work should examine annual patterns of abundance, 

biomass, richness and diversity to produce a better understanding of the temporal 

variability of these systems. This will be increasingly important to our understanding of the 
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resilience of aquatic invertebrate communities with predicted climate change and the 

increasing pressure placed on wetland resources in these dry grassland regions.   

Resource managers should implement sweep sampling as an effective, inexpensive method 

of monitoring wetland water quality and livestock impact.  Consideration should be given 

to producing a local bioassessment index using Zygoptera as an indicator taxon.  Range 

plans should adopt only light grazing in wetland areas and limit livestock access to sustain 

the biodiversity and productivity of these valuable aquatic ecosystems. 
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CHAPTER 3.   CONCLUSION 

Research Summary 

My research objectives were to characterize wetland macroinvertebrate communities in the 

southern interior of British Columbia and to determine their response to a gradient of 

livestock grazing disturbance.  As predicted, 1) macroinvertebrate richness and diversity 

decreased with higher levels of grazing as did 2) zygopteran, specifically Lestidae, 

abundance and biomass.  In addition, total macroinvertebrate abundance and biomass 

decreased as grazing intensity increased.  As a vital link between producers (algae and 

macrophytes) and higher trophic links in wetlands (Batzer and Wissinger 1996), 

invertebrate response to heavy livestock use may have large-scale consequences not only 

for the aquatic macroinvertebrate assemblages, but the entire ecosystem. 

Challenges of Wetland Invertebrate Research and Future Research Directions 

My study provides baseline knowledge of southern interior wetland macroinvertebrate 

assemblages and contributes to the primary literature on the response of these communities 

to livestock grazing disturbance.  As with most ecological studies, there were limitations to 

my study due to finite resources and time constraints.  Low sampling effort and intensity, 

and the lack of identifications at genus and species levels, may have prevented the 

discovery of more detailed associations between livestock grazing and wetland invertebrate 

communities. 

 

Wetland macroinvertebrate distributions vary spatially and temporally.  The complexity of 

wetland habitat structure results in patchy taxon distributions (Downing 1991) and requires 

intensive sampling to thoroughly sample invertebrate communities.  Sampling wetland 

invertebrates is relatively easy; however, extraction of specimens from sediments and 

debris can be laborious, time consuming and consequently expensive.  Accurate 

identification of specimens is the most difficult task of all.  To adequately compare 

livestock effects across a range of grazing intensities required examination of a large 

number of wetlands.  Due to the length of time required to process samples, I was able to 
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collect only three samples per sampling device in each wetland.  This restricted the 

statistical analyses of many taxa due to their scarcity in samples.  I could not determine 

whether some taxa were rare in the study wetlands or were simply not captured.  Future 

research should address this problem by collecting aggregate samples from many different 

habitats within a wetland and subsampling (King and Richardson 2002) to improve the 

diversity of taxa collected and to determine which taxa are, in fact, rare. 

 

Although I sampled during the spring and summer, temporal differences in community 

assemblages may have been missed.  Miller et al. (2008) caution that within-year temporal 

differences in invertebrate community response to gradients of disturbance may be 

unreliable if sampling has occurred over periods of greater than 15 days.  Budgetary 

limitations prevented us from sampling more than twice.  The inclusion of more sampling 

sessions would potentially have allowed genus or species level identifications, because 

larger numbers of mature larvae (more readily identified than immature ones) probably 

would have been collected.  King and Richardson (2002) suggest that family level 

identification may not be adequate as wide ranging disturbance tolerances of species within 

families may result in misinterpretation of family level data.   Future studies should attempt 

to sample over many intervals throughout the year to provide a temporal baseline of 

wetland invertebrate densities and composition.  This would help alleviate concerns 

regarding the interpretation of environmental disturbance impacts on invertebrate 

communities.  

 

Despite some sampling inadequacies and only moderate taxonomic resolution, I was able 

to show clear effects of livestock disturbance on wetland macroinvertebrates.  These 

differences were detected at both the community level and, in the case of zygopterans, at 

the family level.   

Management Implications  

Range and wildlife managers face challenges in balancing economic feasibility with best 

management practises for wetland and upland areas.  In BC’s grasslands there is no formal 
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legislation for protection of depressional wetlands; however, livestock grazing is managed 

through the use of best management practices (BMPs) (MFLRNO 2015).  Grazing within 

Crown range is allocated through the province’s Range Program which requires tenure and 

lease holders to develop prescriptive Range Use Plans (RUP) or Range Stewardship Plans.  

Livestock grazing on private land relies on landowners to employ BMPs and conduct their 

operations with consideration for what best suits their livelihood and the environment.  

This can often be difficult for smaller operators as indicated by the range of grazing 

disturbance within my study.  With one exception, study wetlands located within Crown 

land in Lac du Bois Provincial Park were all grazed at the low end of the livestock grazing 

gradient whereas many of the wetlands on private land were in the middle or in the upper 

end of the gradient.   

 

The negative effects of livestock grazing can be avoided by following an adaptive 

management plan that includes the four principals of range management: distribution, use 

level, rest and time and duration of grazing (Fraser 2013).  Should adverse livestock 

grazing effects become evident, RUPs can be adapted to effectively mitigate further 

impacts.  Tenure and lease holders are encouraged to assess their land management 

practices, and are given online brochures and training by the provincial ministry (BCMFR 

2006).  Overgrazing of riparian areas is often an issue of livestock distribution due to 

livestock’s affinity for wetland versus upland areas (Ganskopp 2001).  In many cases, it is 

more cost-effective for managers either to completely fence off wetland areas and provide 

off-site water or use fencing to limit livestock access, rather than reducing stocking 

densities to compensate for over-usage (Stillings et al. 2003).    

 

Aquatic invertebrate research is important to the understanding and management of 

wetland ecosystems in southern interior grasslands. North America studies show highly 

variable responses of ecosystems to livestock disturbance, suggesting regionally specific 

studies are necessary to characterize communities and their response.  My study provides 

regionally specific data on macroinvertebrate community assemblages and shows that 

aquatic invertebrates respond to high levels of livestock disturbance in wetlands.  Managers 
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should consider aquatic macroinvertebrates as an assessment tool for determining 

sustainable levels of livestock grazing in wetlands.  The development of regional indices of 

biological integrity would allow the establishment of long-term monitoring programs.  

Zygoptera and perhaps Lestidae should be included as a metric as they respond strongly to 

the removal of vegetation during heavy grazing. 

Recommendations 

Based on the findings of this study, I propose two recommendations that will improve 

monitoring and management of southern interior wetlands to sustain and conserve them for 

wildlife and the ranching community.  

 

My first recommendation is for provincial ministries to consider developing an index of 

biological integrity to monitor and prevent impairment of regional wetlands.  Nektonic 

communities showed a stronger response to heavy grazing than benthic communities, and 

if rapid assessment is the goal of land or wildlife managers, research should focus on sweep 

sampling as a monitoring method.  Due to their clear response to high livestock 

disturbance, the damselfly suborder Zygoptera should be used as a possible indicator taxon.  

 

Secondly, southern interior ranchers should adopt only light grazing in local wetlands.  

This can be achieved by limiting the time livestock spend at each wetland and associated 

riparian area with rest rotation grazing cycles.  Fencing and/or off-site watering stations 

should also be implemented to limit livestock access to wetlands.  Crown land managers 

should ensure that ranchers are closely adhering to the principles outlined in their RUPs 

and should monitor for compliance to ensure plans are effective at preventing or reducing 

livestock damage to grasslands and wetland areas.  Regulatory agencies should establish a 

working relationship with private ranches and farms to promote stewardship and assist in 

the development of sustainable livestock grazing management plans that protect wetlands 

found on private properties.   
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APPENDIX A.  Physical Data 

Table A.1.  UTM coordinates, elevation, area, perimeter length, mean pH and mean conductivity values for wetlands in spring 
(May/June) and summer (July), 2008 (n=3). 

Study Area Wetland  UTM Coordinates      
(NAD 83) 

Elevation 
(m) 

Area        
(ha) 

Perimeter 
Length (km) 

 pH Conductivity (µS/cm) 

June July June July 

Campbell 
Range 

7 10: 708561, 5604710 1076 1.20 0.43 7.68 wetland dry 2401 wetland dry 

8 10: 707444, 5606570 1099 1.30 0.47 9.59 wetland dry 1384 wetland dry 

Hamilton 
Commonage 

4.3 10: 683727, 5553621 1168 0.85 0.42 8.87 wetland dry 2906 wetland dry 

5 10: 685113, 5552865 1196 2.30 0.86 9.94 wetland dry 3343 wetland dry 

 
7.1 10: 683129, 5550460 1197 1.40 0.63 10.52 wetland dry 3152 wetland dry 

 
9 10: 683646, 5549430 1227 1.50 0.73 8.65 10.35 1842 2481 

Lac Du Bois 
Bachelor 

4 10: 681244, 5627504 784 0.38 0.34 8.67 9.15 9144 11820 

4.1 10: 681094, 5627892 798 0.44 0.38 8.60 8.81 5604 8571 

 
5 10: 681013, 5628073 816 0.35 0.23 8.39 9.40 3098 3686 

 
6.1 10: 680559, 5628828 861 0.43 0.28 8.67 9.70 4044 4705 

  10 10: 679933, 5632183 936 0.37 0.22 9.00 10.64 1947 1613 

Lac Du Bois   
Long Lake 

4.1 10: 682899, 5631165 764 1.10 0.50 8.63 9.06 1088 952 

6.1 10: 683235, 5630800 811 0.31 0.22 8.66 9.15 6581 9538 

 
7 10: 683804, 5630309 855 1.50 0.70 8.13 8.77 3179 3491 

Rose Hill 13.1 10: 692569, 5611180 1009 0.43 0.25 8.10 9.46 2392 2721 

 
14 10: 694156, 5611476 1029 1.00 0.46 7.66 8.78 2140 2220 

  19 10: 692334, 5605109 891 0.53 0.32 8.06 7.91 3083 4174 
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APPENDIX B.  Photos of livestock disturbance at study wetlands. 

 

 

Figure B.1.  July 2008 photos of study wetlands with a) low (LDBL 7) and b) high (RH 
13.1) levels of livestock grazing disturbance.

a) 

b) 

 



  

APPENDIX C.  Aquatic macroinvertebrate taxa list 

Table C.1.  List of aquatic macroinvertebrate taxa found in wetlands sampled May/June (Spring) and July (Summer), 2008 near 
Kamloops, British Columbia, Canada. An “X” denotes taxon presence in sample type (sweeps or cores) and season. 

    Spring (n = 17) Summer (n = 12) 
Macroinvertebrate Taxon Common Name Sweeps Cores Sweeps Cores  
EPHEMEROPTERA Mayflies     
     Baetidae Small Minnow Mayflies X X X 

 TRICHOPTERA Caddisflies     
     Limnephilidae Northern Case-maker Caddisflies 

  
X 

 DIPTERA True Flies     
     Chironomidae Non-biting Midges X X X X 
     Ceratopogonidae Biting Midges, No-See-Ums X X X X 
     Tipulidae Crane Flies X X X X 
     Chaoboridae Phantom Midges X X X X 
     Culicidae Mosquitoes X X X X 
     Dixidae Dixid Midges, Meniscus midges X 

 
X X 

     Psychodidae Moth and Sand Flies 
  

X 
      Sciomyzidae Marsh Flies, Snail-killing Flies X X   

     Stratiomyidae Soldier Flies X X X 
      Tabanidae Horse Flies, Deer Flies X X X X 

     Ephydridae Shore and Brine  Flies X X 
 

X 
     Empididae Dance Flies 

  
X 

      Dolichopodidae Longlegged Flies 
 

X X 
 HEMIPTERA True Bugs     

     Corixidae Water Boatmen X 
 

X X 
     Notonectidae Backswimmers X 

 
X X 

     Gerridae Water Striders X X X 
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COLEOPTERA Beetles     
     Dytiscidae  Predaceous Diving Beetles X X X X 
     Hydrophilidae  Water Scavenger Beetles X X X X 
     Haliplidae  Crawling Water Beetles X X X X 
ODONATA (ZYGOPTERA) Damselflies     
     Lestidae Spreadwings X X X X 
     Coenagrionidae Pond Damsels X X X X 
ODONATA (ANISOPTERA) Dragonflies     
     Aeshnidae Darner Dragonflies X X X X 
     Libellulidae Skimmer Dragonflies X X X 

 COLLEMBOLA Springtails X  X  
AMPHIPODA Scuds, Side-swimmers     
     Hyalellidae no common name X X X X 
     Gammaridae no common name 

  
X 

 GASTROPODA Snails and Limpets     
     Planorbidae Ram's horn Snails X X X X 
     Lymnaeidae Pond Snails X X X X 
     Physidae Bladder Snails X 

 
X 

 OSTRACODA Seed Shrimps X X X X 
BIVALVIA Freshwater Clams and Mussels     
     Sphaeriidae Fingernail Clams X 

 
X 

 HIRUDINEA Leeches X 
 

X 
 OLIGOCHAETA Aquatic Earthworms X X X X 

NEMATODA Roundworms X X X X 
ACARINA  Water Mites X X X X 
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APPENDIX D.  Length-mass regression equations   

Table D.1.  Length-mass regression equations used to determine biomass from taxon body 
lengths. Dry mass was determined using M = a Lb, where M = mass, L = body length and a 
and b are constants. Reference sources can be found in the Literature Cited section of 
Chapter 2. 

Taxon a b Reference 
EPHEMEROPTERA 

      Baetidae 0.0068 2.72 Benke 1993 
TRICHOPTERA 

      Limnephilidae 0.0052 2.832 Smock 1980 
DIPTERA 

      Chironomidae 0.0051 2.322 Smock 1980 
   Ceratopogonidae 0.0039 2.144 Smock 1980 
   Tipulidae 0.0054 2.463 Smock 1980 
   Chaoboridae 0.000453 2.43 Eaton 1983  
   Culicidae 0.000453 2.43 Eaton 1983  
   Dixidae 0.0051 2.322 Smock 1980 
   Psychodidae 0.0051 2.322 Smock 1980 
   Sciomyzidae 0.0066 2.436 Smock 1980 
   Stratiomyidae 0.0066 2.436 Smock 1980 
   Tabanidae 0.0050 2.591 Smock 1980 
   Ephydridae 0.0066 2.436 Smock 1980 
   Empididae 0.0066 2.436 Smock 1980 
   Dolichopodidae 0.0066 2.436 Smock 1980 
HEMIPTERA 

      Corixidae 0.0031 2.904 Smock 1980 
   Notonectidae 0.0031 2.904 Smock 1980 
   Gerridae 0.0150 2.596 Smock 1980 
COLEOPTERA 

      Dytiscidae (Adult) 0.0618 2.502 Smock 1980 
   Dytiscidae (Larva) 0.0111 2.490 Smock 1980 
   Hydrophilidae (Adult) 0.0618 2.502 Smock 1980 
   Hydrophilidae (Larva) 0.0111 2.490 Smock 1980 
   Haliplidae (Adult) 0.0271 2.744 Smock 1980 
   Haliplidae (Larva) 0.0111 2.490 Smock 1980 
ODONATA 

      Zygoptera 
           Lestidae 0.00745 2.97 Pavlov and Zubina 1990 

        Coenagrionidae 0.0086 2.666 Smock 1980 
   Anisoptera 

           Aeshnidae 0.0082 2.813 Smock 1980 
        Libellulidae 0.0072 2.618 Benke 1993 
AMPHIPODA 

      Hyalellidae 0.0049 3.001 Marchant and Hynes 1981  
   Gammaridae 0.0049 3.001 Marchant and Hynes 1981  
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APPENDIX E.  Relative abundance and biomass (%) of spring and summer aquatic 
macroinvertebrates. 
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Figure E.1.  Relative aquatic macroinvertebrate abundance (%) of a) spring and b) summer 
nektonic communities. To better illustrate the community composition, taxa that were 
present in >25% of the wetlands and had >5% relative abundance in at least one wetland 
are shown. Note that this cut-off protocol is different than the criteria used for statistical 
analyses (see Chapter 2, Methods Section). 
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Figure E.2.  Relative aquatic macroinvertebrate abundance (%) of a) spring and b) summer 
benthic communities. To better illustrate the community composition, taxa that were 
present in >25% of the wetlands and had >5% relative abundance in at least one wetland 
are shown. Note that this cut-off protocol is different than the criteria used for statistical 
analyses (see Chapter 2, Methods Section). 
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Figure E.3.  Relative aquatic macroinvertebrate biomass (%) of a) spring and b) summer 
nektonic communities. To better illustrate the community composition, taxa that were 
present in >25% of the wetlands and had >5% relative abundance in at least one wetland 
are shown. Note that this cut-off protocol is different than the criteria used for statistical 
analyses (see Chapter 2, Methods Section). 
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Figure E.4.  Relative aquatic macroinvertebrate biomass (%) of a) spring and b) summer 
benthic communities. To better illustrate the community composition, taxa that were 
present in >25% of the wetlands and had >5% relative abundance in at least one wetland 
are shown. Note that this cut-off protocol is different than the criteria used for statistical 
analyses (see Chapter 2, Methods Section). 
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APPENDIX F.  Nonmetric multidimensional scaling (NMDS) ordinations of dominant 
taxa community structure and environmental variables. 

 

Figure F.1.  Nonmetric multidimensional scaling (NMDS) ordination (stress=10.3%) of 
spring sweep abundance dominant taxa community structure. The environmental variables 
of livestock disturbance (Disturb), conductivity (Cond), perimeter length (Perim) and pH 
are shown as fitted vectors with the length of the arrow corresponding to the strength of the 
relationship.  Livestock disturbance was significantly correlated with the ordination 
(r2=0.486, p=0.008). Wetland site (in red) disturbance level is represented by a continuum 
with large circles being most disturbed and dots representing least disturbed sites. Taxa (in 
black) are as follows: Aes=Aeshnidae, Bol=Collembola, Cer=Ceratopogonidae, 
Chi=Chironomidae, Cor=Corixidae, Dyt=Dytiscidae, Gas=Gastropoda, Les=Lestidae, 
Oli=Oligochaeta, and Ost=Ostracoda. 
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Table F.2.  Nonmetric multidimensional scaling (NMDS) ordination (stress=13.3%) of 
summer sweep abundance dominant taxa community structure. The environmental 
variables of livestock disturbance (Disturb), conductivity (Cond), perimeter length (Perim) 
and pH are shown as fitted vectors with the length of the arrow corresponding to the 
strength of the relationship.  Livestock disturbance was significantly correlated with the 
ordination (r2=0.714, p=0.006). Wetland site (in red) disturbance level is represented by a 
continuum with large circles being most disturbed and dots representing least disturbed 
sites. Taxa (in black) are as follows: Cer=Ceratopogonidae, Chi=Chironomidae, 
Dyt=Dytiscidae, Les=Lestidae, Lym=Lymnaeidae, Oli=Oligochaeta, and Ost=Ostracoda. 
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Figure F.3.  Nonmetric multidimensional scaling (NMDS) ordination (stress=1.74%) of 
summer core abundance dominant taxa community structure. The environmental variables 
of livestock disturbance (Disturb), conductivity (Cond), perimeter length (Perim) and pH 
are shown as fitted vectors with the length of the arrow corresponding to the strength of the 
relationship.  Livestock disturbance was significantly correlated with the ordination 
(r2=0.534, p=0.034). Wetland site (in red) disturbance level is represented by a continuum 
with large circles being most disturbed and dots representing least disturbed sites. Taxa (in 
black) are as follows:  Cer=Ceratopogonidae, Chi=Chironomidae, Oli=Oligochaeta. 
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APPENDIX G.  Environmental variable correlation values from nonmetric 
multidimensional scaling (NMDS) ordinations. 

Table G.1.  Environmental variable correlation values from nonmetric multidimensional 
scaling (NMDS) ordinations. Only ordinations with at least one significant association with 
an environmental variable are shown.  Significant variables (p≤0.05) are in bold. 

Sample Environmental Variables r2 p value 

Spring Sweep Abundance Disturbance 0.486 0.008 

 
Perimeter 0.089 0.529 

 
pH 0.126 0.426 

  Conductivity 0.322 0.063 
Summer Sweep Abundance Disturbance 0.721 0.005 

 
Perimeter 0.229 0.307 

 
pH 0.275 0.238 

  Conductivity 0.300 0.187 
Summer Core Abundance Disturbance 0.534 0.035 

 
Perimeter 0.094 0.627 

 
pH 0.152 0.455 

  Conductivity 0.357 0.133 
 

 

 



  

APPENDIX H.  Significant linear regressions with macroinvertebrates and environmental variables other than livestock 
disturbance. 

Table H.1.  Significant linear regressions with macroinvertebrate communities and environmental variables other than livestock 
disturbance. Regression slopes are described as either positive (+) or negative (-).  Only relationships with p <0.05 are shown. 

Sampling 
Period 

Dependent 
Variable Independent Variable(s) Slope F df p r2 Adj. r2 

SWEEP ABUNDANCE 
       Spring Lestidae Perimeter - 4.71 15 0.046 0.239 0.188 

         Summer Oligochaeta pH + Conductivity - & - 21.82 9 0.000 0.829 0.791 

 
Oligochaeta pH - 8.65 10 0.015 0.464 0.410 

SWEEP BIOMASS 
       Spring Aeshnidae Conductivity  +  7.89 15 0.013 0.345 0.301 

         Summer Hemiptera Conductivity - 4.89 10 0.051 0.328 0.261 

CORE ABUNDANCE 
       Spring Shannon Diversity pH  +  8.12 15 0.012 0.351 0.308 

 
Simpson's Diversity pH  +  6.69 15 0.021 0.308 0.262 

         Summer Oligochaeta Conductivity - 6.62 10 0.028 0.398 0.338 

 
Richness Conductivity - 11.38 10 0.007 0.532 0.486 

CORE BIOMASS 
       Summer Coleoptera pH - 5.52 10 0.041 0.356 0.291 
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