THOMPSON RIVERS

Course Outline

Department of Computing Science Faculty of Science

COMP 3710 - 3 Applied Artificial Intelligence (3,1,0) Fall 2015

Instructor:	
Office:	

Phone/Voice Mail: E-Mail:

Course Description :

Students investigate non-deterministic computer algorithms that are used in wide application areas but cannot be written in pseudo programming languages. Nondeterministic algorithms have been known as topics of machine learning or artificial intelligence. Students are introduced to the use of classical artificial intelligence techniques and soft computing techniques. Classical artificial intelligence techniques include knowledge representation, heuristic algorithms, rule based systems, and probabilistic reasoning. Soft computing techniques include fuzzy systems, neural networks, and genetic algorithms.

Educational Objectives/Outcomes

Upon successful completion of the course, the student will demonstrate the ability to:

- 1. Understand the major areas and challenges of AI.
- 2. Identify problems that are amenable to solution by AI methods, and which AI methods may be suited to solving a given problem.
- 3. Formalize a given problem in the language/framework of different AI methods.
- 4. Implement basic AI algorithms.
- 5. Apply basic AI knowledge and algorithms to solve problems.
- 6. Design simple software to experiment with various AI concepts and analyse results.

Prerequisites

- COMP 2230 Data Structures, Algorithm Analysis, and Program Design
- STAT 2000 Introduction to Statistics

Required Texts/Materials

• Artificial Intelligence Illuminated, Ben Coppin, Jones and Bartlett Illuminated Series.

Other Available/Recommended Resources

• Norvig P. Russell S., Artificial Intelligence: A Modern Approach, Prentice Hall.

Syllabus – Lecture Topics:

(Note: Not necessarily in this exact order and duration, but very close)

•	Part I – Introduction to Artificial Intelligence	1 weeks	
	 A Brief History of Artificial Intelligence 		Chapter 1
	 Uses and Limitations 		Chapter 2
	 Problem characteristics 		Lecture note
	 Nature of agents 		Lecture note
•	Part II – Classical Artificial Intelligence	5 weeks	
	 Knowledge Representation 		Chapter 3
	o Searching		Chapter 4, 5, 14
	Search Methodologies		
	Advanced Search		
	Genetic Algorithms (not much classical))	
	 Knowledge Representation and Automated 	Reasoning	Chapter 7, 8, 9
	Propositional and Predicate Logic		
	Inference and Resolution for Problem S	Solving	
	Rules and Expert Systems		
•	Part III – Machine Learning	4 weeks	
	o Introduction		Chapter 10
	 Neural Networks 		Chapter 11
	 Probabilistic Reasoning 		Chapter 12
	 Artificial Life 		Chapter 13
•	Part IV – Advanced Topics	3 weeks	
	 Fuzzy Reasoning 		Chapter 18
			Lecture note
	 Intelligent Agents 		Chapter 19

- o Introduction to Understanding Language (when time permits) Chapter 20
- Introduction to Machine Vision (when time permits)
 Chapter 21

Syllabus – Seminar/Lab Topics :

- Solving the problems regarding to the concept of artificial intelligence
- Solving problems using A* and advanced heuristics
- Solving a problem using a generic algorithm
- Solving the problems regarding to formal languages
- Solving problems using backward chaining and forward chaining
- Implementation of a fuzzy control system
- Solving a problem using a decision tree
- Solving problems using neural networks
- Solving problems using probabilistic reasoning

ACM / IEEE Knowledge Area Coverage

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area (core)	Total Hours of Coverage
IS-Intelligent Systems	Total 10
IS/Fundamental Issues	1
IS/Basic Search Strategies	4
IS/Basic Knowledge Representation	3
and Reasoning	
IS/Basic Machine Learning	2
DS-Discrete Structures	Total 4
DS/Basic Logic	4
Knowledge Area (elective)	Total Hours of Coverage
IS-Intelligent Systems	Total 3
IS/Advanced Search	1
IS/Advanced Representation and	0.5
Reasoning	
IS/Reasoning Under Uncertainty	1
IS/Advanced Machine Learning	0.5

Body of Knowledge coverage

KA	Knowledge Unit	Topics Covered	Hours
IS	Fundamental Issues	Overview of AI problems, examples of	1
	(Core-Tier2)	successful recent AI applications	
		What is intelligent behavior?	
		The Turing test	
		Rational versus non-rational reasoning	
		Problem characteristics	
		Fully versus partially observable	
		Single versus multi-agent	
		Deterministic versus stochastic	
		Static versus dynamic	
		Discrete versus continuous	
		Nature of agents	-
		Autonomous versus semi-autonomous	
		• Reflexive, goal-based, and utility-based	
		The importance of perception and	
		environmental interactions	
IS	Basic Search Strategies	Problem spaces, problem solving by	4
	(Core-Tier2)	search	
		Factored representation (factoring state in	
		variables)	
		Uninformed search (breadth-first, depth-	
		first with interactive deepening)	
		Heuristics and informed search (hill-	
		climbing, generic best-first, A*)	
		Space and time efficiency of search	
		Two-player games (introduction to	
		minimax search)	
		Constraint satisfaction (backtracking and	
		local search methods)	
IS	Basic Knowledge	Review of propositional and predicate	3
	Representation and	logic	
	Reasoning (Core-Tier2)	Resolution and theorem proving	
		(propositional logic only)	
		Forward chaining, backward chaining	

		Review of probabilistic reasoning, Bayes	
		theorem	
IS	Basic Machine Learning	Definition and examples of broad variety of	2
	(Core-Tier2)	machine learning tasks, including	
		classification	
		Inductive learning	
		Simple statistical-based learning, such as	
		Naïve Bayesian Classifier, decision trees	
		The over-fitting problem	
		Measuring classifier accuracy	
IS	Advanced Search	Stochastic search – Simulated annealing;	
	(Elective)	Genetic algorithm	
		Implementation of A* search	
IS	Advanced	Rule-based Expert systems	
	Representation and		
	Reasoning (Elective)		
IS	Reasoning Under	Review of basic probability	
	Uncertainty (Elective)	Random variables and probability	
		distributions	
		 Probabilistic inference 	
		Bayes' rule	
		Knowledge representations	
		Bayesian Networks	
IS	Advanced Machine	Definition and examples of broad variety of	
	Learning (Elective)	machine learning tasks	
		Nearest-neighbor algorithms	
DS	Basic Logic (Core-	Review of propositional and predicate	4
	Tier1)	logic	
		Normal forms (conjunctive and disjunctive)	
		Validity of well-formed formula	
		Propositional inference rules (concepts of	
		modus ponens and modus tollens)	
		Predicate logic – universal and existential	
		quantification	
		Limitations of propositional and predicate	
		logic (e.g., expressiveness issues)	