
1

Course Outline

Department of Computing Science

Faculty of Science

COMP 2920 – 3

Software Architecture & Design (3,1,0)
Fall, 2015

Instructor: Phone/Voice Mail: Office: E-Mail: Office Hours:

Calendar /Course Description

Students learn how to establish, define and manage the requirements for a software system.
Students gain knowledge of fundamental concepts and methods of software design. Students
learn how to use design notations of unified modeling language to develop design of a software
product. Students are introduced to the design guidelines, quality, and evaluation criteria of
software architecture. Students study how to design, generate, and modify software patterns and
their use in software development.

Course/Learning Outcomes

Upon successful completion of the course, the student will demonstrate the ability to:

1. Identify both functional and non-functional requirements of a software system.
2. Use a design paradigm to design a simple software system.
3. Construct models of the design of a simple software system.
4. Articulate and evaluate software architecture of a simple system.
5. Apply simple examples of patterns in a software design.
6. Understand the intellectual property of a software design.

Pre-requisite: COMP 1230 a minimum of “C”

Text Book:

1. Object-Oriented Modeling and Design with UML, Michael R. Blaha, James R Rumbaugh,
ISBN-13: 978-0130159205.

2. Software Architecture in Practice (3rd Edition), Len Bass, Paul Clements, Rick Kazman,
ISBN-13: 978-0321815736.

3. Reference Book (R-1): Ethics for the Information Age (6th Edition) Michael J. Quinn,
Addison-Wesley

2

Syllabus

Topics Week Book

Overview of Prominent OO Methodologies (The Rumbaugh
OMT, The Booch methodology, Jacobson's OOSE methodologies,
Unified Process, Introduction to UML) Intellectual Property
issues and concerns with software design

1 1

Requirements Elicitation Concepts, Requirements Elicitation
Activities, Requirements Types

Modeling Requirements (Use Case Diagram)

2 2

Relationships between use cases - extend, include, and
generalize.

Activity Diagram (Action State, Activity State, Object Node,
Control and Object Flow, Transition, Guidelines for Creating
Activity Diagrams, Action Decomposition, Partition)

3 2

Interaction Modeling (Sequence Diagram) (Sequence diagram
notations and examples, iterations, conditional messaging,
branching, object creation and destruction, time constraints, origin
of links, Activations in sequence diagram)

4 3

Interaction Modeling (Collaboration Diagram) (Collaboration
diagram notations and examples, iterations, conditional
messaging, branching, object creation and destruction, time
constraints, origin of links, activations in sequence diagram.

5 3

Static Structural Modeling (Class diagram, diagram notations
and modeling, relations among objects and examples, mapping
use cases to classes, relationships among classes)

6 4

Class Modeling and Design Approaches (System
decomposition, Guidelines for designing class diagram, Cohesion,
Coupling, Forms of coupling (identity, representational, subclass,
inheritance), Associations, Dependencies., Inheritance -
Generalizations, Aggregation)

7 4

Behavioral (Dynamic Structural Modeling) State Diagram
(State Diagram Notations, events (signal events, change events,
Time events). b. State Diagram states (composite states, parallel
states, History states), transition and condition, state diagram
behavior(activity effect, do-activity, entry and exit activity),
completion transition, sending signals)

8 5

Component & Deployment Diagram (Component and Interface
design, notations and modeling, Deployment diagram of the
system, understanding package design)

9

3

Design Guidelines Developing Systems (Addressing design
goals, decomposing systems, top - down approach for dynamic
systems, bottom - up approach for dynamic systems, flexibility
guidelines for behavioral design)

10 6

Software Architecture (Architecture Views, Context of software
architecture in business, technical, stakeholders, Designing an
architecture, Quality attributes of software architecture,
Architecture Evaluation)

11 B-2(1,3,
21)

Design Patterns & Frameworks (Creational Patterns, Structural
Patterns, Behavioral Patterns, Reuse of frameworks, black box
framework, white box frame works)

12 Instructor
Notes

Intellectual Property 13 R-1 (4)

Lab Topics:

Topics Week

Introduction to UML Tool 1

Use Case Diagram Exercises 2

Implementing extend, include, and generalize relations Exercises 4

Activity Diagram Exercises 4

Sequence Diagram Exercises 5

Collaboration Diagram Exercises 6

Class Diagram Exercises 7

State Diagram Exercises 8

Component, Deployment Diagram Exercises 9

Creational Patterns Exercises 10

Structural Patterns Exercises 11

Behavioral Patterns Exercises 12

ACM / IEEE Knowledge Area Coverage

IEEE Knowledge Areas that contain topics and learning outcomes covered in the course

4

Knowledge Area Total Hours of Coverage

SE/Requirements Engineering 4

SE/Software Design 8

SP/ Intellectual Property 2

IEEE Body of Knowledge coverage

KA Knowledge Unit Topics Covered T1 hours T2 hours Elective
hours

 SE/Requirements
Engineering

Describing functional
requirements using, for example,
use cases or users stories

• Properties of requirements
including consistency, validity,
completeness, and feasibility

Software requirements elicitation
• Describing system data using,
for example, class diagrams or
entity-relationship diagrams
• Non-functional requirements
and their relationship to software
quality (cross-reference
IAS/Secure
Software Engineering)

• Evaluation and use of
requirements specifications

1 3

 SE/Software Design

System design principles: levels
of abstraction (architectural
design and detailed design),
separation of
concerns, information hiding,
coupling and cohesion, re-use of
standard structures
• Design Paradigms such as
structured design (top-down
functional decomposition), object-
oriented analysis
and design, event driven design,
component-level design, data-
structured centered, aspect
oriented,

3 5

5

function oriented, service
oriented
• Structural and behavioral
models of software designs

• Design patterns

Relationships between
requirements and designs:
transformation of models, design
of contracts, invariants
• Software architecture concepts
and standard architectures (e.g.
client-server, n-layer, transform
centered,
pipes-and-filters)
• Refactoring designs using
design patterns
• The use of components in
design: component selection,
design, adaptation and assembly
of components,
components and patterns,
components and objects (for
example, building a GUI using a
standard widget

set)

SP Intellectual Property Philosophical foundations of
intellectual property

• Intellectual property rights
(cross-reference IM/Information
Storage and Retrieval/intellectual
property and

protection)

• Intangible digital intellectual
property (IDIP)

• Legal foundations for intellectual
property protection

• Digital rights management

• Copyrights, patents, trade
secrets, trademarks

• Plagiarism

2

