
1

Course Outline

Department of Computing Science
Faculty of Science

COMP 2230 - 3
Data Structures and Algorithm Analysis (3,1,0)

Fall 2015

Instructor: Phone/Voice Mail:
Office: E-Mail:

Course Description

Students are introduction to the basic methods of representing data in Computing
Science. Students review, implement and analyze several fundamental data
structures including lists, stacks, queues, and graphs. Students learn the
implementation of algorithms using these data structures and the efficiency and
cost tradeoffs of each of them.

Educational Objectives/Outcomes

Upon successful completion of the course, the student will demonstrate the ability
to:

1. Familiar with the programming problems that can be solved using these data

structures.
2. Understand the common operations on these data structures and how to

implement them using Java.
3. Understand the sorting algorithms such as bubble, selection, insertion, merge,

and quick.
4. Explain the use of search methods such as linear, binary, hash.
5. Familiar with the use of mathematical techniques to analyse the efficiency of

the various searching, and sorting algorithms.
6. Understand the programming techniques appropriate to developing middle-

sized programs.

Prerequisites

A letter grade of C or better in Computing 1230 and Computing 1390

2

Required Texts/Materials

1. Lewis, DePasquale and Chase; Java Foundations, An Introduction to

Program Design and Data Structures, 3rd ed, Pearson Education Inc., 2014,
ISBN 0-13-337046-1

2. Storage device for saving programs, etc. (e.g. flash memory device)
3. TRU Lab/Network Computer Account.
4. Standard 8.5 x 11 (letter-size) laser/inkjet printer paper (for printing in TRU

computer labs).

Syllabus - Lecture Topics:
Unit Chapter Duration

1. Linked Structures -- Stacks chapter 13 1 week
2. Queues .. chapter 14 1/2 week
3. Lists ... chapter 15 1/2 week
4. Iterators ... chapter 16 1 week
5. Sorting ... chapter 18 1 week
6. Trees ... chapter 19 1 week
7. Binary Search Trees ... chapter 20 1 week
8. Heaps and priority queues chapter 21 1 week
9. Hashing .. App I 1 week
10. Sets and maps .. chapter 22 1 week
11. Graphs ... chapter 24 1 week
12. Modelling and Simulation Instructor notes 1 week
13. Multi-way Search Trees Chapter 23 1 week
14. Midterms & review 1 week

Syllabus - Lab Topics:
Unit

1. Linked Structures – Stacks
 Complete implementation of linked stack from text book

Design and implement a drop out stack
2. Queues

Complete implementation of linked stack from text book
Complete implementation of Circular Array Queue from text book

3. Lists
Complete implementation of Linked List Class from text book
Complete implementation of Linked Ordered List Class from text book

4. Iterators
Add an iterator to the Linked List Class
Add an iterator to the Linked Ordered List Class

5. Sorting
 Comparison of the different sorting algorithms via testing

6. Trees

3

7. Binary Search Trees
Build an array implementation of a binary search tree

8. Heaps and priority queues
Complete implementation of heap from text book
Implement a priority queue using a heap

9. Hashing
 Build a hashing application

10. Sets and maps
 Programming an application using sets and maps

11. Graphs
 Using graphs to solve maze problems

12. Modelling and Simulation
 Build a queuing simulation

ACM / IEEE Knowledge Area Coverage

Knowledge Areas that contain topics and learning outcomes covered in the
course

Knowledge Area Total Hours of Coverage

AL/Basic Analysis 4

AL/Fundamental Data Structures and
Algorithms

12

CN/Introduction to Modeling and
Simulation

1

DS/Graphs and Trees 4

PL/Functional Programming 7

SDF/Algorithm Design 11

SDF/Fundamental Data Structures 4

Body of Knowledge coverage

KA Knowledge Unit Topics Covered T1
hou
rs

T2
hou
rs

Electi
ve
hours

AL Basic Analysis [Core-Tier1]
• Differences among best,
expected, and worst case
behaviors of an algorithm
• Asymptotic analysis of upper
and expected complexity bounds
• Big O notation: formal definition
• Complexity classes, such as
constant, logarithmic, linear,

2 2 0

4

quadratic, and exponential
• Empirical measurements of
performance
• Time and space trade-offs in
algorithms
[Core-Tier2]
• Big O notation: use
• Little o, big omega and big theta
notation
• Recurrence relations
• Analysis of iterative and
recursive algorithms
• Some version of a Master
Theorem

AL Fundamental Data Structures and
Algorithms

[Core-Tier1]
• Simple numerical algorithms,
such as computing the average of
a list of numbers, finding the min,
max,
and mode in a list, approximating
the square root of a number, or
finding the greatest common
divisor
• Sequential and binary search
algorithms
• Worst case quadratic sorting
algorithms (selection, insertion)
• Worst or average case O(N log
N) sorting algorithms (quicksort,
heapsort, mergesort)
• Hash tables, including strategies
for avoiding and resolving
collisions
• Binary search trees
o Common operations on binary
search trees such as select min,
max, insert, delete, iterate over
tree
• Graphs and graph algorithms
o Representations of graphs (e.g.,
adjacency list, adjacency matrix)
o Depth- and breadth-first
traversals
[Core-Tier2]
• Heaps
• Graphs and graph algorithms

9 3 0

5

o Shortest-path algorithms
(Dijkstra’s and Floyd’s algorithms)
o Minimum spanning tree (Prim’s
and Kruskal’s algorithms)
• Pattern matching and string/text
algorithms (e.g., substring
matching, regular expression
matching, longest
common subsequence
algorithms)

CN Introduction to Modeling and
Simulation

Topics:
• Models as abstractions of
situations
• Simulations as dynamic
modeling
• Simulation techniques and tools,
such as physical simulations,
human-in-the-loop guided
simulations, and
virtual reality
• Foundational approaches to
validating models (e.g.,
comparing a simulation’s output to
real data or the
output of another model)
• Presentation of results in a form
relevant to the system being
modeled

1 0 0

DS Graphs and Trees [Core-Tier1]
• Trees
o Properties
o Traversal strategies
• Undirected graphs
• Directed graphs
• Weighted graphs
[Core-Tier2]
• Spanning trees/forests
• Graph isomorphism

3 1 0

PL Functional Programming [Core-Tier1]
• Effect-free programming
o Function calls have no side
effects, facilitating compositional
reasoning
o Variables are immutable,
preventing unexpected changes
to program data by other code

3 4 0

6

o Data can be freely aliased or
copied without introducing
unintended effects from mutation
• Processing structured data (e.g.,
trees) via functions with cases for
each data variant
o Associated language constructs
such as discriminated unions and
pattern-matching over them
o Functions defined over
compound data in terms of
functions applied to the
constituent pieces
• First-class functions (taking,
returning, and storing functions)
[Core-Tier2]
• Function closures (functions
using variables in the enclosing
lexical environment)
o Basic meaning and definition --
creating closures at run-time by
capturing the environment
o Canonical idioms: call-backs,
arguments to iterators, reusable
code via function arguments
o Using a closure to encapsulate
data in its environment
o Currying and partial application
• Defining higher-order operations
on aggregates, especially map,
reduce/fold, and filter

SD
F

Algorithm Design • The concept and properties of
algorithms
o Informal comparison of
algorithm efficiency (e.g.,
operation counts)
• The role of algorithms in the
problem-solving process
• Problem-solving strategies
o Iterative and recursive
mathematical functions
o Iterative and recursive traversal
of data structures
o Divide-and-conquer strategies
• Fundamental design concepts
and principles

11 0 0

7

o Abstraction
o Program decomposition
o Encapsulation and information
hiding
o Separation of behavior and
implementation

SD
F

Fundamental Data Structures 0 4 0

