

Course Outline

Computing Science Department Faculty of Science

COMP 1130 – 1 Computer Programming I (3,1,1)

Instructor:	Phone/Voice Mail:
Office:	E-Mail:

Calendar Description

Students are introduced to the use of structured problem solving methods, algorithms, structured programming, and object-oriented programming. Students use a high level programming language to learn how to design, develop, and document well-structured programs using software engineering principles. Students learn the workings of a computer as part of programming. This course is for students who plan to take further courses in Computing Science or to learn basic programming concepts.

Educational Objectives/Outcomes

Upon successful completion of the course, the student will demonstrate the ability to:

- 1. Understand the fundamental programming aspects and use of Java programming language.
- 2. Apply basic object-oriented programming concepts.
- 3. Design, develop, and document well-structured programs using software-engineering principles.
- 4. Use problem-solving skills to write software applications.

Prerequisites

None. Students with programming experience in another language should take COMP 2120.

Required Texts/Materials

- Lewis, DePasquale and Chase; Java Foundations, An Introduction to Program Design and Data Structures, 3rd ed, Pearson Education Inc., 2011, ISBN-13: 978-0-13-337046-1 or ISBN-10: 0-13-337046-1. An e-book/e-chapters is also available at http://www.coursesmart.com/IR/2170045/9780133449624?__hdv=6.8
- 2. TRU Lab/Network Computer Account.

Course Topics

Chapter 1. Introduction to Java	1 Week		
Chapter 2. Data and Expressions	1.5 Weeks		
Debugging (Instructor Notes)	0.5 Week		
Chapter 3. Using Classes and Objects	2 Weeks		
Chapter 4. Conditionals and Loops	2 Weeks		
Chapter 5. Writing Classes	2.5 Weeks		
Chapter 7. Arrays	2 Weeks		
Chapter 17: Introduction to Recursion	1.5 Week		

Syllabus - Lab Topics :

Lab Topics	Tool	Duration
Ch. 1: Introduction to the use of an	Java	2 hours
appropriate IDE. Instructor to	Editor	
ensure students are familiar with		
using a Java Editor for writing and		
compiling Java code.		
Instructor to select appropriate		
exercise questions and		
programming project questions to		
the concepts presenting in Ch. 1.		
Ch. 2: Data and Expressions:	Java	4 hours
Instructor to select appropriate	Editor	
exercise questions and		
programming project questions that		
would test student knowledge of		
the various concepts presented in		
Ch. 2.		
Ch. 3: Using Classes & Objects:	Java	2 hours
Instructor to select appropriate	Editor	
exercise questions and		
programming project questions that		
would test student knowledge of		
the various concepts presented in		
Ch.3.	-	
Ch. 4: Conditionals & Loops:	Java	4 hours
Instructor to select appropriate	Editor	
exercise questions and		
programming project questions that		
would test student knowledge of		

the various concepts presented in		
Ch.4.		
Ch. 5: Writing Classes: Instructor to select appropriate exercise questions and programming project questions that would test student knowledge of the various concepts presented in Ch.5.	Java Editor	6 hours
Ch. 7: Arrays: Instructor to select appropriate exercise questions and programming project questions that would test student knowledge of the various concepts presented in Ch.7.	Java Editor	4 hours
Ch. 17: Introduction to Recursion: Instructor to select appropriate exercise questions and programming project questions that would test student knowledge of the various concepts presented in Ch.17.	Java Editor	2 hours
Debugging and related testing concepts: On-going during most lab/seminar sessions of the semester.	Java Editor	2 hours

ACM / IEEE Knowledge Area Coverage

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area	Total Hours of Coverage
AL/Fundamental Data Structures and	2
Algorithms	
PL/Object-Oriented Programming	3
PL/Basic Types Systems	0.5
SDF/Fundamental Programming Concepts	10
SDF/Fundamental Data Structures	2
SDF/Development Methods	6
PL/Functional Programming	1

Body of Knowledge coverage

KA	Knowledge Unit	Topics Covered	T1 bre	T2	Electiv
AL	Fundamentals Data Structures and Algorithms	[Core-Tier1] • Simple numerical algorithms, such as computing the average of a list of numbers, finding the min, max, and mode in a list, approximating the square root of a number, or finding the greatest common divisor	2	0	0
PL	Object Oriented Programming	 [Core-Tier1] Object-oriented design Decomposition into objects carrying state and having behavior Definition of classes: fields, methods, and constructors [Core-Tier2] Object-oriented idioms for encapsulation with privacy and visibility of class members Using collection classes, iterators and other common library components 	2	1	0
PL	Basic Types Systems	 [Core-Tier1] A type as a set of values together with a set of operations Primitive types (e.g., numbers, Boolean) Compound types built from other types (e.g., records, unions, arrays, lists, functions, references) Association of types to variables, arguments, results, and fields 	0.5	0	0
SD F	Fundamental Programming Concepts	 Basic syntax and semantics of a higher-level language Variables and primitive data types (e.g., numbers, characters, Booleans) Expressions and assignments Simple I/O including file I/O 	10	0	0

SD F	Fundamental Data Structures	 Conditional and iterative control structures Functions and parameter passing The concept of recursion [Core-Tier1] Arrays Strings and string processing 	2	0	0
SD F	Development Methods	 [Core-Tier1] Program comprehension Program correctness Types of errors (Syntax, logic, run-time) Testing fundamentals and test-case generation Unit testing Modern programming environments Programming using library components and their APIs Debugging strategies Documentation and program style 	6	0	0
PL	Functional Programming	 [Core-Tier1] First class functions (taking, returning, and storing functions) 	1	0	0