
Page 1 of 5/W14

Course Outline

Computing Science Department
Faculty of Science

COMP 1130 − 1
Computer Programming I (3,1,1)

Instructor: Phone/Voice Mail:

Office: E-Mail:

Calendar Description

Students are introduced to the use of structured problem solving methods, algorithms, structured
programming, and object-oriented programming. Students use a high level programming
language to learn how to design, develop, and document well-structured programs using software
engineering principles. Students learn the workings of a computer as part of programming. This
course is for students who plan to take further courses in Computing Science or to learn basic
programming concepts.

Educational Objectives/Outcomes

Upon successful completion of the course, the student will demonstrate the ability to:

1. Understand the fundamental programming aspects and use of Java programming language.
2. Apply basic object-oriented programming concepts.
3. Design, develop, and document well-structured programs using software-engineering

principles.
4. Use problem-solving skills to write software applications.

Prerequisites

None. Students with programming experience in another language should take COMP 2120.

Required Texts/Materials

1. Lewis, DePasquale and Chase; Java Foundations, An Introduction to Program Design and

Data Structures,3rd ed, Pearson Education Inc., 2011, ISBN-13: 978-0-13-337046-1 or ISBN-
10: 0-13-337046-1. An e-book/e-chapters is also available at
http://www.coursesmart.com/IR/2170045/9780133449624?__hdv=6.8

2. TRU Lab/Network Computer Account.

http://www.coursesmart.com/IR/2170045/9780133449624?__hdv=6.8

2

Course Topics

Chapter 1. Introduction to Java 1 Week

Chapter 2. Data and Expressions 1.5 Weeks

Debugging (Instructor Notes) 0.5 Week

Chapter 3. Using Classes and Objects 2 Weeks

Chapter 4. Conditionals and Loops 2 Weeks

Chapter 5. Writing Classes 2.5 Weeks

Chapter 7. Arrays 2 Weeks

Chapter 17: Introduction to Recursion 1.5 Week

Syllabus - Lab Topics :

Lab Topics Tool Duration

Ch. 1: Introduction to the use of an
appropriate IDE. Instructor to
ensure students are familiar with
using a Java Editor for writing and
compiling Java code.
Instructor to select appropriate
exercise questions and
programming project questions to
the concepts presenting in Ch. 1.

Java
Editor

2 hours

Ch. 2: Data and Expressions:
Instructor to select appropriate
exercise questions and
programming project questions that
would test student knowledge of
the various concepts presented in
Ch. 2.

Java
Editor

4 hours

Ch. 3: Using Classes & Objects:
Instructor to select appropriate
exercise questions and
programming project questions that
would test student knowledge of
the various concepts presented in
Ch.3.

Java
Editor

2 hours

Ch. 4: Conditionals & Loops:
Instructor to select appropriate
exercise questions and
programming project questions that
would test student knowledge of

Java
Editor

4 hours

3

the various concepts presented in
Ch.4.

Ch. 5: Writing Classes: Instructor
to select appropriate exercise
questions and programming project
questions that would test student
knowledge of the various concepts
presented in Ch.5.

Java
Editor

6 hours

Ch. 7: Arrays: Instructor to select
appropriate exercise questions and
programming project questions that
would test student knowledge of
the various concepts presented in
Ch.7.

Java
Editor

4 hours

Ch. 17: Introduction to Recursion:
Instructor to select appropriate
exercise questions and
programming project questions that
would test student knowledge of
the various concepts presented in
Ch.17.

Java
Editor

2 hours

Debugging and related testing
concepts: On-going during most
lab/seminar sessions of the
semester.

Java
Editor

2 hours

ACM / IEEE Knowledge Area Coverage

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

AL/Fundamental Data Structures and
Algorithms

2

PL/Object-Oriented Programming 3

PL/Basic Types Systems 0.5

SDF/Fundamental Programming Concepts 10

SDF/Fundamental Data Structures 2

SDF/Development Methods 6

PL/Functional Programming 1

4

Body of Knowledge coverage

KA

Knowledge Unit Topics Covered T1
hrs

T2
hrs

Electiv
e hrs

AL Fundamentals Data
Structures and Algorithms

[Core-Tier1]
• Simple numerical algorithms,
such as computing the average of
a list of numbers, finding the min,
max,
and mode in a list, approximating
the square root of a number, or
finding the greatest common
divisor

2 0 0

PL Object Oriented Programming [Core-Tier1]
• Object-oriented design

o Decomposition into objects
carrying state and having
behavior

 Definition of classes: fields,
methods, and constructors

[Core-Tier2]

 Object-oriented idioms for
encapsulation with privacy and
visibility of class members

 Using collection classes,
iterators and other common
library components

2 1 0

PL Basic Types Systems [Core-Tier1]
• A type as a set of values
together with a set of operations

o Primitive types (e.g.,
numbers, Boolean)

o Compound types built from
other types (e.g., records,
unions, arrays, lists,
functions, references)

 Association of types to
variables, arguments, results,
and fields

0.5 0 0

SD
F

Fundamental Programming
Concepts

 Basic syntax and semantics of
a higher-level language

 Variables and primitive data
types (e.g., numbers,
characters, Booleans)

 Expressions and assignments

 Simple I/O including file I/O

10 0 0

5

 Conditional and iterative
control structures

 Functions and parameter
passing

 The concept of recursion

SD
F

Fundamental Data Structures [Core-Tier1]
• Arrays

 Strings and string processing

2 0 0

SD
F

Development Methods [Core-Tier1]
• Program comprehension

 Program correctness
o Types of errors (Syntax,

logic, run-time)
o Testing fundamentals

and test-case
generation

o Unit testing

 Modern programming
environments

o Programming using
library components and
their APIs

 Debugging strategies

 Documentation and program
style

6 0 0

PL Functional Programming [Core-Tier1]

 First class functions (taking,
returning, and storing
functions)

1 0 0

