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Abstract

Landfills are the most common method of waste management. Inside a landfill facility

anaerobic waste decomposition releases gases – including methane and carbon dioxide – which

can escape into the environment when mismanaged. Methane in sufficiently high concentra-

tions is explosive, flammable, toxic, and is one of the major contributors to greenhouse gases.

Therefore, it is vital to know how the gas flows within the solid waste matrix to allow for ad-

equate collection, safe removal and control of emissions. In particular, a correctly working

facility would aim to collect as much gas as possible to prevent inadvertent escape into the

environment. Current practices rely on decades of experience; however, there is little to no

mathematical analysis readily available. Designers and operators require access to gas flow

information to build and manage landfills with efficiency and minimal environmental impacts.

One of the important effects is the intrinsic heterogeneity of the waste matrix. Such types

of media are known as anisotropic, since the heterogeneity means the resistance to fluid flow

depends on the flow direction. Analytical solutions exist for anisotropic media, describing the

fluid flow by giving pressure and velocity at any desired point in simplified geometric settings.

However, since the pressure gradient (velocity) varies over four orders of magnitude from the

perimeter of the landfill to the centre, traditional methods of visualization, such as isocontours

for pressure or arrow representation for the velocity vector field, are ineffective. A custom code

was developed in Octave/MATLAB to visualize a large set of configurations with an arbitrary

number of sectors and distinct permeabilities. This code implements backward integration of

pathlines with customized seeding of starting points and is focused on the ability to accurately

locate any present stagnation points and visualize how the gas moves around them.

The code’s robustness was verified by running it for a wide range of sector angles and

landfill parameters. The success of these runs was then classified by the qualitative visual

features present in each flow field, such as reasonable density, smoothness of pathlines, and

efficient coverage of key points in the flow. The code was only deemed robust and ready to use

by practitioners once it was able to integrate and plot pathlines for a wide range of parameters.

These visuals will provide landfill designers and engineers with crucial information regarding
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the efficiency of landfill operations. Specifically, the code will make it possible to identify

regions of recirculation and escape, subsequently aiding in the design and optimization of

more efficient and environmentally conscious landfills.

Keywords: analytical solutions, anisotropic media, isocontours, landfill gas, landfill well,

pathlines, permeability, vectors
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1 Introduction

Historically landfills have been the most common method of waste management. During

the operating life of a landfill facility waste is periodically added and over time it decomposes

and settles. This process forms layers as well as laterally distributed subdomains, each with

a distinct density and permeability which depends on the composition of each layer. As a

direct result of the decomposition reaction, a mix of primarily methane and carbon dioxide

is generated via the anaerobic decomposition of the solid waste material. Both methane and

carbon dioxide pose various health and safety concerns. Methane and carbon dioxide are major

contributors to greenhouse gases, however methane has a higher heat trapping ability and is also

flammable (Wang et al., 2022). Therefore when left to accumulate, methane has the potential

to lead to fires or even explosions (Li et al., 2012).

To remedy this issue, collection wells are installed within the landfill with the purpose of

drawing out the gas, preventing it from being released into the environment. These wells are

constructed in various formations, e.g. horizontal, vertical and combined networks, and they

utilize a vacuum system to direct the gas to a collection point (Li et al., 2012). Figure 1 shows a

schematic of a landfill gas collection well: landfill well embedded within solid waste (left) and

a two-dimensional cross-section (right). Although this diagram shows a vertical well, the same

structure applies to a horizontal well. The far end of the well is blocked, and suction is applied

at the outlet. The gas can enter the well at any point along the pipe via small perforations in

the pipe wall. Therefore the pressure in the well is lowest near the outlet (left panel, top cross-

section) and the vacuum slowly dissipates towards the far end of the well (left panel, bottom

cross-section). Thus taking a single two-dimensional cross-section with a suction level in the

full range between the two extreme values is the setting being studied in this project. In other

words, a two dimensional section with a given suction value can represent a position anywhere

along the well with different outlet vacuum. In light of the above, all gas flow demonstration

below will be done on a two-dimensional cross-section.
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Well Landfill Perimeter

Applied Vacuum

-

6

25 inWC
Medium

5 inWC
Weak

50 inWC
Strong

Suction Level Landfill Perimeter

Well

Figure 1: Simplified three dimensional and cross section examples of a generic landfill set-up.
Note: In a physical landfill wells can be horizontal, vertical or a combination network. The
dimensions in this figure are not to scale and realistic suction variation is non-linear.

If the collection system fails, the escaping gases can lead to the catastrophic events men-

tioned above. Therefore when designing a landfill, it is important to know how the gas is

moving, what causes it to escape and where that might happen. Unfortunately, despite the

fact that landfills play a vital role in today’s society, there is surprisingly little research, and

education focused on the mechanisms, operation, and management of landfills. By contrast,

decomposition chemistry, toxic by-products and the environmental impact thereof are well re-

searched. With current technology the movement of landfill gas is very difficult to monitor, so

analytical solutions were previously obtained to map the gas movement surrounding the landfill

wells (Nec and Huculak, 2020). Although the solutions are analytical and in closed mathemat-

ical form, they are expressed via complicated formulae and are impossible to interpret without

additional visualization aids. Therefore the purpose of this project was to develop an accessi-

ble and versatile code, which allows users to visualize the gas flow for various landfill settings.

Availability of such visualization aids will facilitate the advancement of engineering practices

and decision making in regards to the well’s ability to collect gas.
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1.1 Landfill Operation and Parameters

A landfill is essentially a waste management tool, like any other tool or machine, where

different operational settings and variables affect the efficiency of operations. The primary

variables responsible for the operation of a landfill are well suction, landfill radius, gas gen-

eration rate and the permeability of the waste matrix. Well suction is the amount of vacuum

applied to the well and is recorded in inches of water column (inWC), defined as the pressure

exerted by a column of water that is one inch high. This setting is the easiest to change and is

controlled by the landfill operators. Figure 1 shows how the suction level varies along the well

when moving away from the vacuum source. The landfill radius is the distance from the centre

of the well to the perimeter of the landfill. The generation rate is the amount of gas produced

per unit time as the waste decomposes. This variable is highly dependent on the type of waste.

For example, waste that decomposes easily, such as agricultural organic material or food waste,

will generate more reaction by-products than construction and demolition waste. Finally, the

permeability describes how easily gas particles can pass through a given porous material. This

is also dependent on the type of waste, in particular its density and settling properties. All

of these parameters interact, resulting in an overall resistance to the flow of gas through the

porous medium. For example, if the generation rate or size of the landfill increases, the suction

level would also need to be increased to account for the additional amount of gas produced or

additional distance that the gas is travelling. Or, if the permeability of the waste is lowered,

then the well suction would also need to be increased. This principle is explained further via

Darcy’s Law in Chapter 2. The interaction of these parameters is part of what makes the code

development challenging and lies at the heart of the code testing. This will be discussed in

more detail in Chapters 2 – 4.

A realistic waste matrix is highly heterogeneous, since different waste types are added in

different locations. The designers and operators will be aware of the expected differences

and therefore can assign distinct effective permeability values in different azimuthal directions

around the well. Since the purpose of the well is to create a radial flow of gas to the well pipe,

the polar geometry is convenient, but does not imply that the landfill is necessarily circular. In

light of the above, the cross-section is divided into several sectors. Each sector is assigned a
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(a) (b)

(c)

θo

θ1

θ2

θ3

θ4

k1

k2

k3

k4

Figure 2: Sector configurations and counting notation of landfill well cross-sections for (a)
semicircular sectors, (b) two unequal sectors and (c) arbitrary number of sectors (Nec and
Huculak, 2020).

distinct permeability value. Mathematically it is required to number both the sectors and their

boundary lines. Figure 2 shows the indexing of the rays / boundary lines is counterclockwise

from the first non-negative angle. The sector indexing is also counterclockwise, starting below

the first ray. For s = N the index s+ 1 refers to the next sector, which is s = 1.

As part of the testing procedure, these parameters will be divided into two main groups:

anisotropy related parameters and generic physical parameters. The anisotropy group includes

the number of sectors, the angles, and the permeabilities. From this point on, a given set thereof

will be referred to as the landfill layout. The generic group pertains to any landfill, whether

the modelling is isotropic or not, and includes the suction, outer radius, and generation rate.

A fully defined setup of geometry and physical parameters constitutes a landfill configuration.

The grouping of tests by layout and configuration is detailed in Chapter 2.

1.2 Analytical Solutions

The description below covers the principal equations of fluid flow through a porous medium,

the conditions needed to obtain a valid flow solution in an anisotropic layout of the type shown

in Figure 2, and the simpler instances of possible resultant flow fields (Nec and Huculak, 2020).
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The equation of conservation of mass for all steady fluids as they flow through a porous

medium is
1

r

∂

∂r
(rρu) +

1

r

∂

∂θ
(ρv) = C, (1.1a)

where r is the radius, θ represents the azimuthal angle, C is the generation rate, ρ is the density,

u is the radial velocity component and v is the azimuthal velocity component. When consider-

ing the flow conditions of a landfill, it is reasonable to use the ideal gas equation equation, since

both pressure and temperature are moderate (Young, 1989). Thus, the relationship between the

density and pressure is given by p = ρRT , where p, ρ, R, and T are pressure, density, ideal

gas constant and temperature respectively (Young, 1989).

The balance of momentum equation is

u = −k
µ
∇p = −k

µ

(
∂p

∂r
,

1

r

∂p

∂θ

)
, (1.1b)

which describes how fluid moves through a granular bed. Equation 1.1b is also known as

Darcy’s law. Here µ is the fluid viscosity (in this case the fluid is landfill gas), k is the perme-

ability of the medium (the waste) and the two components of u are u and v in Equation (1.1a).

Equations (1.1a) and (1.1b) are combined with the ideal gas formula, giving

∂

∂r

(
ksr

∂p2s
∂r

)
+

∂

∂θ

(
ks
r

∂p2s
∂θ

)
= −2µRTCr, s = {1, . . . , N}, (1.2)

where the subscript 1 ≤ s ≤ N denotes quantities that are distinct for different sectors.

∂

∂r

(
ksr

∂p2s
∂r

)
+

∂

∂θ

(
ks
r

∂p2s
∂θ

)
= −2Cr, s = {1, . . . , N}, (1.3a)

is Equation (1.2) in a dimensionless form, and

p2s(r, θs) = p2s+1(r, θs), 1 ≤ s ≤ N, (1.3b)

and

ks
∂p2s
∂θ

∣∣∣∣∣
θ−s

= ks+1

∂p2s+1

∂θ

∣∣∣∣∣
θ+s

, 1 ≤ s ≤ N. (1.3c)
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are the continuity conditions, which must hold on every contiguity ray θs in order for a solution

to be valid. The boundary conditions for all of the solutions used in this project formally are

p (rP , θ) = pP (θ), p (rX , θ) = pX(θ) (1.4)

where the well suction pout, which is one of the main parameters discussed in the following

sections is the mean of pP . The mean of pX is 0 inWC (gauge pressure). The fluctuation in θ is

small and is involved in the construction of the anisotropic solution (Nec and Huculak, 2020).

The simplest layout available is the semicircular one: the cross-section annulus is divided

into equal bottom and top sectors with contiguity rays at θ1 = 0 and θ2 = π. Assigning

respective permeabilities k1 and k2 to these sectors, the pressure in the top sector is given by,

P (2) = − C

2k2
r2 + b1 + b2 ln r, (1.5a)

and similarly in the bottom sector,

P (1) =
C

2
r2

{(
1

k1
− 1

k2

)
cos(2θ)− 1

k1

}
+ b1 + b2 ln r. (1.5b)

Note that the top sector solution is a purely radial function, whereas the bottom solution is

angle dependent. The constants b1 and b2 are determined from boundary conditions. It is also

possible to have

P (s) =
C

2ks
r2

(
cos(2θ)

cos(2θ0)
− 1

)
+ b1 + b2 ln r,

s = {1, 2}, θs−1 ≤ θ ≤ θs, (1.6)

which is the equation for a landfill with a two sector configuration with boundary angles θ1 = θ0

and θ2 = π− θ0 with 0 < θ0 < π/2 (Nec and Huculak, 2020). This equation will be explained

further in Chapters 2 and 3.

For layouts with three and more sectors the most general solution used is:

P (s) =
C

2ks
r2
(
a(s) sin(2θ) + b(s) cos(2θ)− 1

)
+ b1 + b2 ln r,
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θs−1 ≤ θ ≤ θs, s = {1, . . . , N}, (1.7)

where the coefficients a and b satisfy a linear system of equations that must be solved numeri-

cally (Nec and Huculak, 2020). This will be explained further in Chapter 4.

1.3 Software

Due to the complexity of the analytical solutions, visualizing a landfill gas flow field re-

quires software satisfying specific requirements. Two programs were used in this project, each

with its own distinct and equally important purpose. The first program, VU, is predominantly a

visualization software used to illustrate solutions of differential equations, enabling the display

and manipulation of complex solutions for applications such as fluid dynamics, combustion,

computational chemistry (VuChem). The second program, Octave, which is the open source

equivalent of Mathworks’ MATLAB, is a program designed for advanced numerical computa-

tions and is commonly used for problems including solutions of linear and nonlinear equations,

statistics, linear algebra, and other numerical applications (Eaton et al., 2018). In this project,

VU was mostly used in the initial stages to help with selecting visualization settings, which

were then implemented in the Octave code. VU requires expertise in graphical visualization of

vector fields to operate effectively and its interface is not easy to learn. As a result, it is rarely

used outside academia. It is also limited as a computational tool. Therefore most of the project

utilized Octave as the primary software. Once some visualization features were explored using

VU, Octave was used to develop a more versatile code and visualize a wide range of landfill

configurations. This will also be explained further in Chapter 2.

1.4 Visualization Methods of Landfill Gas Flow

There are three primary ways to visualize fluid flow solutions: pressure contours, velocity

vectors and pathlines. Respective types of visuals are shown in Figure 3. Pressure contours

are the curves of equal pressure in a given area, where the closer the lines are to one another,

the steeper the pressure gradient (see Figure 3a). Due to the presence of very high gradients

near the landfill centre, pressure contours do not provide enough detail. The contour rep-
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resentation provides the reader with information regarding the position in the landfill with the

highest density of gas (simultaneously the highest pressure), from which one can deduce where

the velocity would be the highest. However, in more complicated scenarios where one or more

stagnation points are present, the contours alone do not provide the exact location of the stagna-

tion points. In light of all the foregoing arguments, contours were eliminated as a visualization

method prior to the beginning of this project.

(a) Contour (b) Vectors (c) Pathlines

Figure 3: Three visualization methods used to visualize fluid flow through a porous medium.

Vectors depict the direction and velocity of the gas, using the length of the arrows to rep-

resent the magnitude of the velocity (Figure 3b). VU and Octave were both used in the initial

stages of developing the generic code. VU was used to make several decisions regarding basic

visualization strategies. First, a mesh was created using Octave, as VU does not have the capa-

bility to create figures from equations alone. Next, a vector plot was created in VU. However,

as shown in Figure 4, since the velocity of the landfill gas surrounding the well is orders of

magnitude larger than at the perimeter of the landfill. This means that when the vector lengths

are not artificially scaled, the arrows in the centre of the image entirely obstruct the rest of the

figure, making the image unusable. When the length is scaled, an image of the type in Figure

3b ensues, but the information on the velocity magnitude is lost. Two more facts make this

visual impracticable. One, observe that the flow field in Figure 3b contains a stagnation point.

In its vicinity the velocities are even smaller than at the landfill perimeter, so much so that it is

impossible to tell in what directions the arrow are pointing. Two, the well is an important part

of the landfill, but its dimensions are small relative to the full landfill area. The natural arrange-

ment in the polar coordinates is that near the well there will always be less space to draw the

arrows than away from the well. Since over most of the domain the velocity magnitude trend is
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the opposite to what is conventional for vector representation, this type of visual simply cannot

be improved.

Figure 4: Vector representation created using VU, showing the issues occuring when the
magnitude of the vectors is depicted to scale. Here the large red arrows represent gas flow
with a high velocity immediately around the well, which completely obstruct the small blue
arrows representing the gas flow with lower velocity around the perimeter of the landfill.

Finally, pathlines (Figure 3c) show the trajectory of a particle as it moves from a certain

point. Pathlines were selected as the best visualization tool in this application, because they

demonstrate the movement of the landfill gas and allow the reader to locate any stagnation

points present within the area of the landfill. The visuals obtained with this method provide all

information required by a landfill designer and do not involve an additional level of interpreta-

tion by the viewer as contours do. VU was used at the initial stage for obtaining both the vector

and pathline representations.

Once the method of using pathlines was selected, the initial visualization setting was edited.

This included using both forward and backward integration. A forward integration means the

pathlines originate at the perimeter of the landfill and travel towards the well, just as would
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occur in reality. For backward integration the pathlines begin at the well or the close vicinity

of a stagnation point and move in the direction opposite to the actual gas flow. Since the

exact locations of both the well and the stagnation points are known, backward integration was

selected to allow for each group of pathlines to originate at the region of highest importance

as well as certainty (this will be briefly discussed further in §2.1.2). Forward integration also

avoids unnecessary clustering of pathlines in the centre of the figure, which is an issue induced

by the polar geometry, since the size of an element rdrdθ is not constant and quickly diminishes

near the well. This problem is demonstrated in Figure 5.

(a) Forward integration (b) Backward integration

Figure 5: Examples of forward and backward integration of pathlines for a landfill with two
equal sectors, generated in VU.

1.5 Parameter Selection

To determine the robustness of the optimized code, many tests were run using a series

of parameter combinations. Initially these variables included diameter of the pipe (d), well

suction (pout), landfill radius (rx), generation rate (C), and the permeability of the top (kt) and

bottom (kb) sectors. Hereinafter positive values of pout correspond to negative gauge pressure

relative to the atmospheric pressure (1 atm).

pout(inWC) rx(m) C(scfm) d(ft)
Minimum 5 5 50 0.25
Midpoint 25 25 500 0.5
Maximum 50 50 5000 1

Table 1: Parameter values for parametric scanning.
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The method of parametric scanning was used to eliminate variables which did not have a

significant effect on the output. Table 1 shows the combinations of high, low and midpoint val-

ues for four parameters, d, pout, rx, andC, that were run for a variety of different permeabilities.

Based on preliminary tests, flow field patterns suggested a significant amount of repetition. In

particular, three values of well diameter (d) were tested using the largest applicable range of the

other parameters. During each of these tests, the three values of the well diameter were varied

and the other variables were kept constant. Figure 6 is an example showing the similarity of the

figures generated using the three values of the well radius, suggesting that the well diameter

has little effect on the visualization and can be eliminated from future tests.

Figure 6: Three configurations with varied d values and all other parameters held constant.

The permeability values used when testing the code are listed below in Table 2 and were

selected by considering the following. First, only orders of magnitude were tested, because

resolution changes below this are too small and in practice it does not make sense to use more

significant figures. Orders of magnitude for permeability are the standard for all porous media

flows in large environmental applications such as flow of groundwater, shale gas, petroleum

etc (Bear, 1972; Wikipedia, 2023). Second, the bottom sector always has a lower permeability

than the top, however the layout can be rotated due to the rotational invariance of the equations,

so the tests do cover the rare cases of a less dense bottom medium. Finally, the difference in

orders of magnitude does not exceed three. In Chapters 3 and 4 only one order of magnitude

difference was used.
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Permeability of Bottom Sector (m2) Permeability of Top Sector (m2)
1e − 05 1e − 04
1e − 06 1e − 05
1e − 07 1e − 06
1e − 08 1e − 07
1e − 09 1e − 08
1e − 10 1e − 09
1e− 06 1e− 04
1e− 07 1e− 05
1e− 08 1e− 06
1e− 09 1e− 07
1e− 10 1e− 08
1e− 07 1e− 04
1e− 08 1e− 05
1e− 09 1e− 06
1e− 10 1e− 07

Table 2: All possible permeability combinations used for the top and bottom sectors for two
sector runs. Note: the bolded permeability values were used for all semicircular sector runs
and the permeabilities not bolded were only used for the code developed from Equation (1.6).

Literature Review

Optimizing the visualization of gas flow in porous media is still a relatively unexplored area

of applied mathematics. Because of its novelty the literature on the topic is limited. The few

papers featured below encountered similar visualization difficulties in a range of applications,

from the velocity of electro-osmotic flows through modelling groundwater to mapping the gas

flow in drying mechanisms. Since the focus of those studies was on the physical problem itself,

the quality of the visualization was not prioritized.

Most studies of gas diffusivity in soils assume isotropic media, however the article ’Gas

diffusivity in soils compared to ideal isotropic porous media’ by Kuhne et al. (2012) looks at

the modelling of gas diffusivity in anisotropic soil environments. There are many different

physical measurements that can be made during an analysis of soil cores (root density, aeration

porosity, and gas diffusivity), however 3D modelling is essential to integrate all possible diffu-

sion pathways. While this paper includes modelling of gas diffusion within a porous medium

(in this case, soil), the end goal for this paper and many others reviewed were graphs or figures
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demonstrating the observational results of their experiment rather than the visualization of the

gas flow velocities (Kuhne et al., 2012).

In the paper ’Modelling Groundwater Flow Fields Containing Point Singularities: Stream-

lines, Travel Times and Breakthrough Curves’, the modelling of steady state groundwater flow

fields containing injection and extraction wells was explored. Figure 7 shows that the stream-

lines seem to originate at one point, which is the well. In reality, streamlines cannot intersect,

because the path of the particle released at a given location is predetermined, while an intersec-

tion would mean that the particle can switch to a different path or that several particles might

collide. In Figure 7, the streamlines are extremely dense near the well, creating an inaccurate

representation (Charbeneau and Street, 1979). This example provides another example where

the goal of a study was to understand a physical problem rather than on producing quality

visuals.

Figure 7: Analytical and numerically generated streamlines of the smoothed linear velocity
field (left) and the quadratic velocity field (right) (Charbeneau and Street, 1979, Figure 3 and
4).

’Multi-functional Lagrangian flow structures in three-dimensional AC electro-osmotic mi-

cro flows’, explores three-dimensional micro-flows using AC electro-osmosis (ACEO) and uti-

lizes Lagrangian fluid trajectories to determine transport properties geometrically. Many of the

figures in this article represent the different numerical simulations of ACEO flows for different

geometries and boundary conditions. Figure 8 shows the planar and normal velocities in the
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2D cross section of the flow field. Due to the nature of the flow field being visualized, there are

various issues which are apparent in these visuals. In Image 8(a) the first issue is that the vec-

tor lengths are quite small, making the figure difficult to read. Second, the stagnation point is

difficult to identify. In fact it is not clear how many such points there are. Third, all around the

circumference it is impossible to tell whether there is no flow at all or just no normal flow. This

is partly related to the issue with the vector lengths. If there is slip flow along the boundary,

it is impossible to tell which way the arrows point and whether there are stagnation points on

the boundary too. In Image 8(c) the first issue stems from the presence of the boundary layers

resulting from the high gradient, and second, it is unclear whether the pointed segments are in

reality smooth when the image is enlarged. Finally, in Image 8(b) , the contour resolution is

low. This is a consequence of a high density at the “source" point, poor density elsewhere, im-

plying a highly non-uniform gradient. These issues are similar to ones which were encountered

during this project.

(c)

Figure 8: The planar velocity (a) and the normal velocity (b) of a two dimensional cross section
of the flow field. Image (c) shows the slip velocity where the grey bar represents the electrode
(Speetjens et al., 2011, Figure 4).

The article ’Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs’
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used a numerical model in order to understand how permeability, pressure gradients and anisotropy

affect fluid flow in shale formations (Negara et al., 2015). All of the visualization issues are the

same as those that were encountered in this project, however, it was not the goal of the article

to optimize the visualization methods. Figure 9 shows an example using standard vector repre-

sentation. It is evident that with the chosen figure, and the sizing of the arrows, it is difficult to

understand what is happening with the flow field. It is also impossible to determine what type

of stagnation point is present.

The foregoing observations regarding the priorities of each paper mentioned in the Litera-

ture Review are in no way a criticism of the work completed by each team. Instead, this review

features an important gap in visualization methods, which supports the need for the tools de-

veloped in this project. When dealing with landfill gas solutions, one cannot use incomplete

or poorly legible visuals, as it is important for landfill designers and operators to know how

the gas is moving, where each stagnation point is located, and what kind of stagnation point

it is. Access to such visuals thus provides additional tools to improve the effectiveness of the

landfill. In other words, for the landfill industry the visuals are a working tool, not an end

result.

It is also important to note that in the discipline of fluid dynamics colour is primarily used

to depict an additional scalar field, separate from the primary entity being visualized. For

example, colour may be used to show changes in temperature or pressure superimposed on a

velocity field. Such double visualization is outside the scope of this project. Thus, all flow field

diagrams will be displayed in greyscale. However, the visualization software that is based on

the results of this project, and currently in evaluation by landfill industry professionals, does

display the zone of collection in colour.
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Figure 9: Standard vector representation of the velocity field distributions generated for the
matrix and fracture (Negara et al., 2015).
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2 Semicircular Sectors

The simplest landfill geometry was selected as a starting point for the development of the

generic code. This geometry is a two sector semicircular layout where the contiguity rays are

at θ1 = 0 and θ2 = π, and in practice each sector would represent a different type of waste

or mixture of waste. There are several reasons behind starting with semicircular sectors (also

referred to as two equal sectors). Keeping the angle of the boundary between the two sectors

equal, there are fewer variables to account for. This means that when testing the robustness

of the code (discussed in §2.2.1), far fewer runs are needed. Second, because of the axial

symmetry inherent to the circle as a geometric shape, a two sector partition will always have

a line of symmetry bisecting both. Thus it is possible to solve the problem on half the domain

and simply reflect the pathlines to the other half. This saves computation time and simplifies

testing. Third, from the point of view of the landfill designers and operators, having simple top

versus bottom sector designations is more convenient to assess.

2.1 Methodology

There are two possible solutions for this layout, which are given by (1.5) and (1.6). For the

majority of configurations explored in this chapter, the pathlines in the top sector are radial,

since Equation 1.5a is not angle dependent. However, it is also possible to obtain the solution

for two equal sectors from Equation (1.6), which is the solution for any two sector landfill

geometry (Nec and Huculak, 2020). Since the functional shape is the same for the top and

bottom sectors, Equation (1.6) produces pathlines which are angle dependent in both sectors.

2.1.1 Stagnation Points

Not all combinations of variables allow for an efficient landfill. A sufficient condition to

deem a landfill poorly functional is the presence of one or more stagnation points. In fluid

dynamics a stagnation point is the point in a flow field where all components of the velocity

vector are zero. In this application a stagnation point can also be referred to as a flow reversal

point, as this marks the location where the landfill gas is no longer being influenced by the well
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suction and therefore the gas beyond this point is flowing in the outward direction. Essentially,

when a stagnation point is present in the flow field of a landfill, beyond that point the gas will

not be collected by the well and therefore escape to the surrounding environment. Depending

on the solution used, it is possible to have a variety of different stagnation point constellations

and the number of stagnation points depends on the overall resistance acting on the gas. The

possible locations were determined by taking the derivative of Solutions (1.5) or (1.6), first

with respect to r and then with respect to θ and setting these derivatives to zero, to solve for

the critical point. The derivative with respect to r is

−Cr
k2

+
b2
r

= 0 (2.1)

for Equation (1.5a). Since the top sector is radial, there is no θ component. The derivatives

with respect to r and θ for Equation (1.5b) are

Cr

{(
1

k1
− 1

k2

)
cos(2θ)− 1

k1

}
+
b2
r

= 0, (2.2a)

and

sin(2θ) = 0 (2.2b)

respectfully. Finally, the derivatives with respect to r and θ for Equation (1.6) are

Cr

ks

(
cos(2θ)

cos(2θ0)
− 1

)
+
b2
r

= 0, (2.3a)

and

sin(2θ) = 0. (2.3b)

Both (2.2b) and (2.3b) result in the same candidate angles: 0, π/2, π and 3π/2. For each angle

the radius is then calculated from either (2.2a) as

r2 = −b2
C

{(
1

k1
− 1

k2

)
cos(2θ)− 1

k1

}−1

(2.4a)
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or (2.3a) as

r2 = −b2ks
C

(
cos(2θ)

cos(2θ0)
− 1

)−1

, (2.4b)

and a check is performed, to show that the radius is indeed less than the tested landfill radius.

From the vantage point of physics there must be a stagnation point present at some point,

which leaves the question of whether it is within the landfill or not. However, the solution with

the radial top sector is almost unphysical in this regard, since it cannot have a realistic isolated

stagnation point. Instead it has a whole arc of stagnation points, because the azimuthal velocity

is 0 in the entire sector. This arc lies very very far out, where the radial velocity reverses. This

is why the isotropic model is not reliable, as it predicts that the well drains an area orders of

magnitude larger than in reality.

2.1.2 Code Development

1

2a

2b

2c

3

4

5

Legend:
1 - Landfill Well
2 - Stagnation Points
2a - Stagnation Point at θ = π/2

2b - Stagnation Point at θ = 3π/2

2c - Stagnation Point at θ = 0

3 - Upper Landfill Perimeter
4 - Lower Landfill Perimeter
5 - Side Landfill Perimeter

Figure 10: Regions of integration seeding where the numerical order corresponds to the fre-
quency of occurance.

To achieve a reasonable density of pathlines throughout the domain, multiple points of

interest were designated as origins of integration. These regions, shown in Figure 10, were
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selected based on the areas of the landfill, which provided the most important information,

including a circle around the landfill well (1), circles around any stagnation points within the

radius of the landfill (2) and any perimeter arc lying on the other side of a stagnation point

(3-5). For landfills with two equal sectors, two solutions were used to integrate the pathlines:

the first example, which will be referred to as Type I, occurs when the top sector has a radial

boundary condition that results in purely radial flow in that sector (Equation (1.5)), and the

second example, which will be referred to as Type II, is where both sectors have an azimuthal

component (Equation (1.6)). For landfills with two equal sectors, where the flow in the top

sector is radial (Type I), these regions or initial points of integration were designated based on

reasonably uniform coverage of the landfill area by pathlines. However, for landfills with two

equal sectors, where the top and bottom have symmetrical boundary conditions (Type II), or

two unequal sectors, a hierarchy was found that made it possible to rank the regions by fre-

quency of occurrence and integrate in that order. This hierarchy is also explained by Flowchart

1, which shows how the implemented code settings correspond to the features present in each

landfill configuration. The simplest configuration, referred to as the basic group, does not have

any stagnation points, therefore the only integration seeding necessary is from the well. All the

particles follow a trajectory that is close to a straight line from the well to the perimeter of the

landfill (showing that the gas should flow directly to the well in practice). The lower branches

on the flow chart describe how the presence of one (occurring in both Type I and Type II config-

urations), two (in Type II configurations) or three (in Type I configurations) stagnation points

affects the integration requirements. If any of the stagnation points are within the radius of

the landfill, the pathlines are integrated from the circle around the well, a circle around each

stagnation point and the corresponding landfill arc. The seeding circle around each stagnation

point provides good coverage near the stagnation point and shows how the flow behaves in that

region of slow motion. Since the stagnation point in essence forms a barrier, it is necessary to

seed a new set of pathlines on the perimeter arc on its other side to cover the entire desired area.

Finally, if the circle surrounding the stagnation point intersects with the circle around the well,

pathlines from the well, which cross into the region around the stagnation point, are entirely

removed. The code for pathlines in Type I configurations appears in Appendix A and pathlines
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in Type II configurations appears in Appendix B.

In all cases the function ode45, Octave’s main built-in integration facility for ordinary dif-

ferential equations, was used to convert the flow velocities, known in closed form from the

analytical solutions, to particle positions within the circular domain. The seeding described

above provides the initial positions from which the integration proceeds to create particle tra-

jectories, i.e. pathlines.

Symmetric Top & Bottom
Sectors

Radial Top Sector

Stagnation Point Constella-
tions: Two Equal Sectors

Two stagnation points along
the vertical axis at π/2 and
3π/2

No Stagnation points One stagnation point along
the vertical axis at 3π/2

Three stagnation points at 0,
π and 3π/2

Integrate pathlines from the
well, stagnation points, up-
per landfill perimeter and
lower landfill perimeter

Integrate pathlines from the
upper and lower well

Integrate pathlines from the
well, stagnation point and
lower landfill perimeter

Integrate pathlines from the
well, stagnation points, and
lower landfill perimeter

?

? ? ?

?

?
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Flowchart 1: Regions of integration according to number and location of stagnation point(s)
for landfills with two equal sectors.

The length of integration is used to determine the length of the pathlines. Initially, each

integration length was set manually for each configuration, which was essentially determined

using trial and error: if the pathlines were too long or too short the length of integration for that

region was changed. To remove unnecessary variables and therefore improve the versatility

of the code, an integration halt was included. This mechanism made it possible to set an

integration length exceeding any length required by the problem, and then have integration

stop along any individual pathline until it reaches its desired location. For most lines this point

is the perimeter of the landfill.
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2.2 Results & Discussion

In order to have confidence in the robustness of the code being developed, it was crucial to

learn the limitations of the physically feasible input. To achieve this, the variables listed in Ta-

bles 1 and 2 were combined to observe the maximal range of landfill scenarios. As mentioned

previously , two separate codes for a landfill with two equal sectors were developed. Therefore

throughout this section, the two versions will be described as either Type I or Type II, where

Type I was developed from Equation 1.5 and Type II was developed from Equation 1.6.

2.2.1 Classification of Run Success

Determining the robustness and versatility of the code is a critical step. This was done

by running a series of parameter combinations using the values from Table 1 and a range

of permeability arrangements shown in Table 2. To determine whether a code is robust,

first the classification of what makes an integration satisfactory was defined. The success

of a run was defined as: satisfactory (Y), unsatisfactory (N) or borderline (B). An exam-

ple of this is shown in Table 3. All run classification data were stored in a spreadsheet

file ClassificationOfRunSuccessData that accompanies the thesis and can be found at

https://tru.arcabc.ca/islandora/object/tru%3A6181 (Boham, 2023). The complete

set of results for the current case is tabulated in the supplementary material in spreadsheets

2 Equal (Type I) and 2 Equal (Type II). For Type I configurations a total of 405 tests

were run resulting in 240 satisfactory, 23 borderline and 142 unsatisfactory configurations, and

for Type II configurations 162 tests were run resulting in 112 satisfactory, 10 borderline and 13

unsatisfactory configurations. The classification was done by manual scrutiny of each image to

determine whether the run fit the criteria for each of the mentioned classification groups. This

process positively confirmed the code could handle a wide range of landfill configurations.
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pout (inWc) rx (m) C (scfm) Run Success Classification
5, 25, 50 5, 25, 50 50, 500, 5000 Satisfactory (Y), Borderline (B),

Unsatisfactory (N)
1 5 5 50 Y
2 5 5 500 Y
3 5 5 5000 N
4 5 25 50 Y
5 5 25 500 Y
6 5 25 5000 N
7 5 50 50 Y
8 5 50 500 Y
9 5 50 5000 N
10 25 5 50 Y
11 25 5 500 Y
12 25 5 5000 Y
13 25 25 50 Y
14 25 25 500 Y
15 25 25 5000 Y
16 25 50 50 Y
17 25 50 500 Y
18 25 50 5000 Y
19 50 5 50 Y
20 50 5 500 Y
21 50 5 5000 Y
22 50 25 50 Y
23 50 25 500 Y
24 50 25 5000 Y
25 50 50 50 Y
26 50 50 500 Y
27 50 50 5000 Y

Table 3: Results of a code robustness test for landfills with two equal sectors (radial top sector)
and permeabilities of k = [1e− 07m2 1e− 06m2].

In a satisfactory run, the pathlines are relatively evenly spaced out, they cover the desired

area of the landfill (regardless of the presence or absence of stagnation points) and the integra-

tion is halted at the correct location.
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(a) An example of a satisfactory Type I run with zero
stagnation points and permeabilities of 1e − 05m2

and 1e − 06m2 for the top and bottom sectors re-
spectfully.

(b) An example of a satisfactory Type II run with zero
stagnation points and permeabilities of 1e − 05m2

and 1e − 06m2 for the top and bottom sectors re-
spectfully.

(c) An example of a satisfactory Type I run with one
stagnation point and permeabilities of 1e−07m2 and
1e−08m2 for the top and bottom sectors respectfully.

(d) An example of a satisfactory Type II run with one
stagnation point and permeabilities of 1e−07m2 and
1e−08m2 for the top and bottom sectors respectfully.

(e) An example of a satisfactory Type I run with three
stagnation points and permeabilities of 1e − 08m2

and 1e − 09m2 for the top and bottom sectors re-
spectfully.

(f) An example of a satisfactory Type II run with two
stagnation points and permeabilities of 1e − 08m2

and 1e − 09m2 for the top and bottom sectors re-
spectfully.

Figure 11: Comparison between satisfactory TypeI and Type II runs with varying number of
stagnation points. All examples in this figure have a suction level of 5 inWC, a landfill radius
of 5 m, and a generation rate of 50 scfm. The division between the two sectors is shown with
the green line, idem throughout.

Figure 11 shows six different examples of satisfactory runs. Subfigures 11a, 11c and 11e,

show configurations where the top sector is radial (Type I) and the three images on the right

(Subfigures 11b, 11d and 11f), show configurations where both the top and bottom sectors are

θ dependent (Type II). In Subfigures 11a and 11b the permeabilities are high, meaning there

are no stagnation points present and therefore all the pathlines (landfill gas) reach the landfill
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well. These two figures also do not differ all that much, just the slightly curved top pathlines,

so in reality the debate over which solution is better is often moot. n Subfigures 11c and 11d

the permeabilities are moderate, which results in one stagnation point. This means that some

pathlines do not reach the landfill well and suggests that the landfill configuration would result

in gas escaping the collection system. In Subfigures 11e and 11f the permeabilities are low,

resulting in either three stagnation points (in systems where the top sectors are radial) or two

stagnation points (where both sectors are dependent on the angle of the starting point of the

pathlines). This means that even more of the gas is escaping the system. In Subfigure 11e note

that the two stagnation points along the horizontal axis are really only half stagnation points.

This peculiar status is due to the anisotropy, since the medium permeability jumps abruptly

across the contiguity ray, whilst the stagnation point is directly on the ray. Therefore when the

points happen to be on the ray, it is harder to predict what is going on in terms of the flow field,

since such critical points are not conventional. Subfigures 11e and 11f are also examples of

scenarios where a stagnation point circle encroaches on the well circle area and the interference

had to be resolved by the addition of an appropriate integration halt. Finally, despite the fact all

the images in this figure are classified as successful, in practice the only two which represent a

properly functional landfill set up are Subfigures 11a and 11b. Subfigures 11c and 11d are fine

but still show some escaping gas therefore this would tell the engineers to instal an additional

well at the stagnation point location.

A borderline visual is partially balanced (may include minor coverage gaps) and the path-

lines do not all reach the perimeter of the landfill. Some examples are given in Figure 9. These

visuals provide some information about the movement of the gas, however it is clear that the

visual is lacking if one were to use it for the purpose of flow field interpretation: due to the

properties of the landfill and the settings of the code, some of the lines are not fully integrated.

It would be possible to obtain figures where the pathlines are fully integrated, provided a cus-

tom integration time was set. In practice, if a visual cannot be obtained within a reasonable

period of time, it is a clear indication to the designer or operator that the input configuration is

not an effectively functioning landfill. A reasonable visual construction time was determined

in consultation with landfill engineers (GNH Consulting Ltd., Delta, British Columbia) to be
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60sec or less on a home computer of moderate technical specifications. The borderline visuals

are sufficient to infer which input parameters require modification.

(a) An example of a Type I borderline run with one
stagnation point. This example has a suction level
of 5 inWC, a landfill radius of 25 m, a generation
rate of 50 scfm, and permeabilities of 1e− 07m2 and
1e−08m2 for the top and bottom sectors respectfully.

(b) An example of a Type II borderline run with one
stagnation point. This example has a suction level
of 5 inWC, a landfill radius of 25 m, a generation
rate of 50 scfm, and permeabilities of 1e− 07m2 and
1e−08m2 for the top and bottom sectors respectfully.

(c) An example of a Type I borderline run with three
stagnation points. This example has a suction level
of 25 inWC, a landfill radius of 50 m, a generation
rate of 500 scfm, and permeabilities of 1e−08m2 and
1e−09m2 for the top and bottom sectors respectfully.

(d) An example of a Type II borderline run with two
stagnation points. This example has a suction level
of 5 inWC, a landfill radius of 25 m, a generation
rate of 50 scfm, and permeabilities of 1e− 08m2 and
1e−09m2 for the top and bottom sectors respectfully.

Figure 12: Comparison between Type I and Type II borderline runs with one or two stagnation
points.

Subfigures 12a and 12b show examples of Type I and II landfill configurations respectively

with one stagnation point. Subfigure 12c shows a landfill configuration with three stagnation

points. Like Subfigure 12a, this is also an example of a Type I configuration. This is a unique

arrangement where two stagnation points lie on the contiguity ray, and as the image shows,

only half the pathlines behave as expected near a typical saddle point. Subfigure 12d shows

another Type II landfill configuration with two stagnation points. All of these examples provide

the necessary information regarding how the gas is behaving without the pathlines filling the

complete landfill area. For all these examples, the order of integration follows Flowchart 1.

An unsatisfactory run is one that has major structural issues and could not be accepted as
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borderline. For example, issues such as overlapping pathlines that originated from different

integration regions (this is an indication of the fact the integration was not accurate enough,

since in a correct flow field pathlines cannot intersect ) or major gaps in coverage. Figure 13

shows four different examples of unsatisfactory runs, where crucial information that the figure

should provide, is missing.

(a) An example of an unsatisfactory Type I run with
one stagnation point. This example has a suction
level of 25 inWC, a landfill radius of 50 m, a genera-
tion rate of 50 scfm, and permeabilities of 1e− 08m2

and 1e−09m2 for the top and bottom sectors respect-
fully.

(b) An example of an unsatisfactory Type II run with
one stagnation point. This example has a suction
level of 25 inWC, asatisfactory landfill radius of 50
m, a generation rate of 50 scfm, and permeabilities
of 1e − 08m2 and 1e − 09m2 for the top and bottom
sectors respectfully.

(c) An example of an unsatisfactory Type I run with
three stagnation points. This example has a suction
level of 5 inWC, a landfill radius of 25 m, a generation
rate of 50 scfm, and permeabilities of 1e− 08m2 and
1e−09m2 for the top and bottom sectors respectfully.

(d) An example of an unsatisfactory Type II run with
two stagnation points. This example has a suction
level of 5 inWC, a landfill radius of 50 m, a generation
rate of 50 scfm, and permeabilities of 1e− 08m2 and
1e−09m2 for the top and bottom sectors respectfully.

Figure 13: Comparison between unsatisfactory Type I and Type II runs with one, two, or three
stagnation points.

Subfigure 13a shows a configuration with one stagnation point. This configuration is an

example which was also generated from Equation 1.5, and therefore has a radial top sector.

Subfigure 13b also shows a landfill configuration with one stagnation point. This configuration

was generated from Equation 1.6, and all the pathlines are dependent on the angle. The exam-

ple in subfigure 13c shows an unsatisfactory configuration with three stagnation points. Like

Subfigure 13a, Subfigure 13c was generated from Equation 1.5, which means the pathlines in
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top sector are also radial. Subfigure 13d gives an example with two stagnation points and was

was generated from Equation 1.6, therefore just like Subfigure 13b all the pathlines are angle

dependent.

In the code developed from Equation (1.6), there were also instances where regardless of

the settings the integration would not complete. Such scenarios were designated by an X in our

evaluation of run success.

Finally it is important to note that regardless of whether a run is deemed satisfactory or not,

the classifications previously discussed were entirely based on the ability to produce an image.

This does not determine whether the landfill itself would function efficiently. In a correct

design, none of the generated gas should be escaping from the well, therefore the presence of

one or more stagnation points would imply that those landfill parameters were not ideal.
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3 Two Sectors of Unequal Angles

The next logical step in code development and analysis was a landfill with two sectors

of unequal angles. Including the boundary angle between sectors as an additional variable

increased the complexity of the flow field and thence the choices made in the code in order

to create effective visuals. Many observations and code development methods determined in

Chapter 2 were the backbone for approaching the visualization of a landfill configuration with

two unequal sectors, and the differences are detailed in this chapter.

3.1 Parameter Selection & Code Development

The values of parameters selected for two unequal sectors were predominantly the same

as for two equal sectors. These include suction applied to the well, landfill radius, generation

rate, and the permeability of the top and bottom sectors.Unlike the case of two equal sectors,

the angle between the two sectors is no longer constant, therefore when testing the robustness

of the generic code, various sector angles were tested. These are shown in Figure 14: π/3 and

π/6 were selected as the angles used in the test runs as they fall on either side of π/4, which is

a value where no solution exists and a cross-over occurs from stagnation points on horizontal

to vertical or vice versa. Equation (1.6) confirms that it is not possible to have a boundary at

π/4, since θ0 = π/4 would give a fraction with a zero denominator. This also explains why

stagnation points, shown later in §3.2, jump between the horizontal and vertical axes. Since

no steady state exists at π/4, it it not possible to locate the position of any stagnation points,

and when the boundary passes through this angle, the flow field "jumps". This effect will be

visualized below.

To ensure that all possible geometry settings were explored, the negative values for each

of the two angles were selected. This also achieves the same outcome as swapping the perme-

abilities from the top to bottom sector and therefore mimicking the effect of the lower sectors

having higher permeabilities. Overall these choices create a uniform coverage of the circular

domain. The correspondence of all equations to a naturally occurring phenomenon and conti-

nuity in all parameters together ensure that any configuration lying between successfully tested



30

ones would also result in satisfactory visuals.

(a) π/3 (b) π/6

(c) −π/3 (d) −π/6

Figure 14: Angles used in the classification of run success.

Since the landfill examples in this chapter are more complex than those in Chapter 2, the

need for a second integration halt arose. This halt was added slightly outside of the original

in an attempt to stop some of the runaway pathlines which persistently appeared. Despite

this effort, some particularly complicated cases (runs with high resistance acting on the gas)

had pathlines breaching the second halt. This is exemplified later in Figure 20. The halt

execution during an integration is a built-in option in the Octave function ode45. The function

checks whether the requested value was crossed and if yes, stops the integration. However, one

limitation of ode45 is that if the very first step overshoots the halt value, the halt procedure

irrevocably fails. Thus adding an additional halt as an attempt to define one more threshold

that the first step would not cross, is pointless, since the pathlines go too far for the visual to

depict the landfill as desired.
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3.1.1 Stagnation Points

Just as in the two equal sectors scenario, discussed in §2.1.1, the presence of any stagnation

points shows the location where the landfill gas is no longer being influenced by the well’s

suction. For landfill configurations with low or moderate resistance, either zero or one stag-

nation point will be present at 3π/2. For configurations with high resistance, two points are

present, with their location is dependent on the angle of the boundary between the two sectors.

When the angle is less than π/4, the two stagnation points are on the vertical axis at π/2 and

3π/2, and when the angle is greater than π/4, the points are on the horizontal axis at 0 and

π. The locations of these stagnation points were determined by differentiating Equation (1.6)

with respect to r and θ and setting the derives to zero. Therefore Equations (2.3), are also used

to solve for the critical points.

3.1.2 Code Development

The code for a landfill with two unequal sectors uses a hierarchy system of variables in order

to determine which regions of the landfill need to be integrated. As shown in Figure 10, these

regions are numbered according to the frequency of their occurrence. The integration around

the landfill well is designated as region 1, as it is present in every configuration regardless of

the number of stagnation points. The stagnation points are designated as region 2 along with

the letters (a) through (c) according to increasing θ value. The letter designations are the only

features that are not frequency dependent and are simply dependent on the increasing value of

the angle θsp, at which the stagnation point is situated. Since the integration is symmetrical

across the vertical plane, a point at π is not necessary as it is a reflection of the point at 0.

Since a single stagnation point at 3π/2 is the most common constellation of stagnation point,

the lower landfill perimeter region is designated as region 3. The upper landfill perimeter is

designated as region 4 and finally the side landfill perimeter is designated as region 5. All of

these scenarios are summarized in Flowchart 2, where the regions or integration are entirely

dependent on the number and location of the stagnation points.
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Stagnation Point Constella-
tions: 2 Unequal Sectors

Zero stagnation points One stagnation point along
vertical axis at 3π/2

Two stagnation points along
the vertical axis at π/2 and
3π/2

Two stagnation points along
horizontal axis at 0 and π

Integrate pathlines from the
upper and lower well

Integrate pathlines from the
well, stagnation point and
lower landfill perimeter

Integrate pathlines from the
well, stagnation point, upper
landfill perimeter and lower
landfill perimeter

Integrate pathlines from the
well, stagnation point and
side landfill perimeter

?

? ? ?

?

?

���
���

���
����

HHH
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Flowchart 2: Regions of integration according to number and location of stagnation point(s)
for landfills with two unequal sectors.

3.2 Results & Discussion

The testing of code robustness is performed in a similar manner to that described in §2.2.1,

however, for two unequal sectors the additional variable of the sector angle increases the num-

ber of runs required. For this system, all of the variables listed in Tables 1 (excluding the

diameter of the well) and the bolded permeabilities in Table 2 were combined with the values

in Table 14. Overall, for the two unequal sectors system, 648 tests were run.

3.2.1 Classification of Run Success

The figures generated during the robustness tests were divided into the same four cate-

gories as in Chapter 2: satisfactory (Y), borderline (B), unsatisfactory (N), and unfinished

(X). These results are tabulated in the spreadsheet file ClassificationOfRunSuccessData

(Boham, 2023). The complete set of results for this Chapter is tabulated in the spreadsheet,

2 Unequal. In sum, there were 411 satisfactory, 32 borderline, 45 unsatisfactory, and 160

failed configurations. Similar to Chapter 2, satisfactory runs are those which include all nec-

essary details in order to be able to understand how the landfill gas is behaving in a particular

system. All of the pathlines are proportionally spaced and reach the outer boundary without
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exceeding the landfill radius. Figure 15 includes four examples of satisfactory runs without

stagnation points. Parameter values for these examples are on the higher side of low resis-

tance, enabling the visualization of the differences between the different boundary angles. As

the pathlines approach an area where a stagnation point is situated, the lines begin to bend.

In Subfigures 15a the pathlines bend away from the horizontal line suggesting the presence

of two stagnation points further along the horizontal axis. Subfigures 15b and 15d both show

examples where the lines are bending outwards at the bottom of the landfill, implying that one

stagnation point will appear within that sector before a second point is present elsewhere. This

will be more apparent below when Figure 17 is discussed. Finally, Subfigure 15c follows the

same trend as Subfigure 15a, though the pathline behaviour is more subtle.

(a) Example of a satisfactory run with zero stagnation
points and a boundary angle of π/3.

(b) Example of a satisfactory run with zero stagnation
points and a boundary angle of π/6.

(c) Example of a satisfactory run with zero stagnation
points and a boundary angle of −π/3.

(d) Example of a satisfactory run with zero stagnation
points and a boundary angle of −π/6.

Figure 15: Comparison of satisfactory runs without stagnation points. The four landfill ex-
amples have a suction level of 5 inWC, a landfill diameter of 5 m, a generation rate of 50 scfm
and permeabilities of 1e− 08m2 and 1e− 09m2 for the top and bottom sectors respectively.

Figure 16 includes two examples of satisfactory runs with one stagnation point. Such flow

fields are only possible when the boundary angles are either π/6 (Subfigure 16a) or −π/6

(Subfigure 16b), because when the boundary angle is below π/4, the stagnation points lie

along the vertical axis, i.e. each point is situated in a different sector and thus subjected to a
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different permeability. Therefore points on the vertical axis are not at an equal distance from

the well, meaning it is possible for the resistance acting on the landfill gas to be just enough

that only one point is present. As mentioned before, this will be more apparent when Figure 17

is discussed. Finally, the examples in Figure 16 are the first where breaking of pathlines as they

cross the contiguity rays is observed. This phenomenon was also observed in an experimental

application (Sahu and Flynn, 2015). The experimental set up involved mapping fluid flow

through glass beads to demonstrate the break in flow field slope as the fluid moves from one

permeability region to another (Sahu and Flynn, 2015).

(a) Example of a satisfactory run with one stagnation
point and a boundary angle of π/6.

(b) Example of a satisfactory run with one stagnation
point and a boundary angle of −π/6.

Figure 16: Comparison of satisfactory runs with one stagnation point. The two examples
have a suction level of 5 inWC, a landfill diameter of 5 m, a generation rate of 50 scfm and
permeabilities of 1e− 07m2 and 1e− 08m2 for the top and bottom sectors respectively.

Figure 17 includes four examples of satisfactory runs with two stagnation points. Subfigure

17a shows an example where the boundary between the two sectors has an angle of π/3. Here

the two stagnation points are situated along the horizontal axis very close to the landfill well,

and their distances therefrom are equal. When the boundary angle is above π/4, the stagnation

points lie on the horizontal axis, so the two points are positioned in the same sector. This means

that there is the same resistance acting on the landfill gas, which results in the stagnation points

being positioned at an equal distance from the well. The vertical symmetry is another reason for

the equal distancing. Subfigure 17b shows an example where the boundary angle is π/6. Here

the two stagnation points occur along the vertical axis however, with the lower point closer to

the well since the bottom permeability is lower. Subfigure 17c shows an example where the

boundary angle is −π/3. The two stagnation points here are also along the horizontal axis

and their distances from the landfill well are equal just as in Subfigure 17a. However, despite
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the parameter values being the same for all examples in the figure, the stagnation points in

Subfigure 17a are much closer to the well than Subfigure 17c because the size of the upper

and lower sectors varies between the positive and negative versions of the angles, whereas

the respective sector permeabilities remain the same. Subfigure 17d shows an example where

the boundary angle is −π/6. Just as in Subfigure 17b, both stagnation points are along the

vertical axis and the distances between each point and the well are not equal. Finally, all of the

examples in Figure 17 show the pathlines breaking as they pass over the boundary.

(a) Example of a satisfactory run with two stagnation
points and a boundary angle of π/3.

(b) Example of a satisfactory run with two stagnation
points and a boundary angle of π/6.

(c) Example of a satisfactory run with two stagnation
points and a boundary angle of −π/3.

(d) Example of a satisfactory run with two stagnation
points and a boundary angle of −π/6.

Figure 17: Comparison of satisfactory runs with two stagnation points. The four landfill
examples have a suction level of 5 inWC, a landfill diameter of 25 m, a generation rate of 500
scfm and permeabilities of 1e−07m2 and 1e−08m2 for the top and bottom sectors respectively.

As discussed previously in Chapter 2, despite figures being classified as successful, only

Figure 15 represents a functional landfill, as there are no stagnation points present and all

pathlines are shown travelling towards the well.

Runs were classified as borderline for two primary reasons: first, if there were one or two

lines which exceeded the perimeter of the landfill, and second, if there were minor gaps in the

pathline density which did not affect the ability to determine what was occurring in the land-

fill. As mentioned in §3.1, a second integration halt was added for the purpose of preventing
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pathlines in some of the more difficult cases from escaping the landfill perimeter, and Figure

18 shows two examples of minor runaway lines. In the following paragraphs an analogue clock

face will be used to describe the locations of runaway lines or gaps in integration. In Subfig-

ure 18a the boundary angle was π/6, therefore the stagnation points are on the vertical axis,

however the pathlines run away in the horizontal direction (from two and ten o’clock and in

the direction of three and nine o’clock). In Subfigure 18b the angle of the boundary was π/3,

which means both stagnation points are on the horizontal axis, however the pathlines runaway

in the vertical direction (from one and eleven o’clock). The positioning of the stagnation points

on the vertical means that the paths would have to bend when coming near. It is known that

all points in two sector configurations are of the saddle type (Nec, 2021). In combination with

vertical symmetry, this implies the bending has to be in the form of a "plus", so vertical lines

become horizontal. Technically this means that we misjudged the seeding somewhat: the lines

that look good actually came from the well. The points on the perimeter are the successfully

halted lines and those two just did not halt, essentially the ode45 step overshoots the set halt

threshold.

(a) Example of a borderline run with two stagnation
points. The parameters include a well suction of 25
inWC, a landfill radius of 25 m, a generation rate
or 5000 scfm, permeabilities of 1e − 06m2 and 1e −
07m2 for the top and bottom sectors respectively, and
a boundary angle of π/6.

(b) Borderline run with two stagnation points. The
parameters include a well suction of 50 inWC, a land-
fill radius of 25 m, a generation rate or 5000 scfm,
permeabilities of 1e − 06m2 and 1e − 07m2 for the
top and bottom sectors respectively, and a boundary
angle of π/3.

Figure 18: Comparison of borderline runs which involve singular runaway lines.

Figure 19 gives examples of the second type of borderline visuals. Subfigure 19a shows

an example where the boundary is π/3. Here, the gaps due to pathline length are along the

vertical axis (specifically at six o’clock) which, just like the runaway lines, is perpendicular

to the axis the stagnation points are positioned on. The boundary in Subfigure 19b is π/6,
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and demonstrates gaps in integration lying on the horizontal axis (directly between three and

nine o’clock). Subfigures 19c and 19d are for the negative angles of π/3 and π/6 respectively.

These figures follow trends similar to their positive counterparts: the gaps lie on the vertical

axis (six o’clock) for −π/3 and on the horizontal axis (between three and nine o’clock) for

−π/6. Finally, one interesting feature that is present in Subfigures 19a and 19c is the gap at

the top left and right corners.

(a) Example of a borderline run with two stagnation
points and a boundary angle of π/3.

(b) Example of a borderline run with two stagnation
points and a boundary angle of π/6.

(c) Example of a borderline run with two stagnation
points and a boundary angle of −π/3.

(d) Example of a borderline run with two stagnation
points and a boundary angle of −π/6.

Figure 19: Comparison of borderline runs which include moderate gaps within the figure.
The four landfill examples have a suction level of 5 inWC, a landfill diameter of 25 m, and a
generation rate of 50 scfm. The permeabilities of Subfigures 19a and 19b are 1e − 08m2 and
1e − 09m2 for the top and bottom sectors respectively. The permeabilities of Subfigures 19c
and 19d are 1e− 09m2 and 1e− 10m2 for the top and bottom sectors respectively.

Finally, runs were classified as unsatisfactory if significant structural issues were present.

These primarily present as examples with major gaps in the integration or examples with a

significant number of pathlines escaping the integration halt. Figure 20 shows four examples

of unsatisfactory runs with large numbers of runaway pathlines. These examples essentially

show more extreme scenarios of the examples in Figure 18, where Subfigures 20a and 20c have

stagnation points along the horizontal axis and runaway pathlines travelling along the vertical
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axis, and 20b and 20d have stagnation points along the vertical axis and runaway pathlines

travelling along the horizontal axis.

(a) Example of an unsatisfactory run with two stag-
nation points and a boundary angle of π/3.

(b) Example of an unsatisfactory run with two stag-
nation points and a boundary angle of π/6.

(c) Example of an unsatisfactory run with two stag-
nation points and a boundary angle of −π/3.

(d) Example of an unsatisfactory run with two stag-
nation points and a boundary angle of −π/6.

Figure 20: Comparison of unsatisfactory runs which include a large number of runs which
are not halted by the integration halt. The four landfill examples have a suction level of 5
inWC, a landfill diameter of 25 m, a generation rate of 50 scfm and permeabilities of 1e−06m2

and 1e− 07m2 for the top and bottom sectors respectively.

Figure 21 shows four examples of unsatisfactory runs which are hindered by severe gaps

in the integration. Just like Figure 18, there are some apparent trends between vertical and

horizontal gaps for Subfigures 21a and 21c, and Subfigures 21b and 21d respectively.
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(a) Example of an unsatisfactory run with two stag-
nation points and a boundary angle of π/3.

(b) Example of an unsatisfactory run with two stag-
nation points and a boundary angle of π/6.

(c) Example of an unsatisfactory run with two stag-
nation points and a boundary angle of −π/3.

(d) Example of an unsatisfactory run with two stag-
nation points and a boundary angle of −π/6.

Figure 21: Comparison of unsatisfactory runs withmajor gaps in the pathline integration. The
four landfill examples have a suction level of 5 inWC, a landfill diameter of 50 m, a generation
rate of 50 scfm and permeabilities of 1e− 08m2 and 1e− 09m2 for the top and bottom sectors
respectively.

It is important to note that if a computation was given an infinite integration time, it would

be possible to produce satisfactory versions of the borderline and unsatisfactory images. How-

ever since these cases are examples of completely dysfunctional landfills, the time and effort

was not deemed worth the potential result.
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4 Arbitrary Number of Sectors

Landfill configurations with three sectors are much more complex than any configuration

previously tested. An additional sector adds not only one more contiguity angle, but also

one more permeability value. This results in complete freedom of location for the stagnation

points, as opposed to being restricted to the vertical and horizontal axes. Moreover, the number

of possible stagnation point constellations increases significantly in this chapter. Therefore, the

methodology and processing of run results required adaptation by comparison to Chapters 2

and 3.

4.1 Methodology & Code Developement

Transitioning from two to three sectors involves the addition of many parameter options.

First, all the values tested in Chapters 2 and 3 for well suction, landfill radius and generation

rate were used, however only 4 different permeability combinations were run. These values are

listed in Table 4 and due to the complexity of three sectors paired with the issues encountered

in Chapters 2 and 3, the lowest permeability tested previously of 1e − 10m2 was eliminated.

Next, the number of possible permeability arrangements was calculated, so that in a given run

for each sector a permutation of all permeabilities is tested. Therefore, as shown in Table 5,

it is possible to have six different permeability arrangements for these sectors. The counting

convention for where each permeability value is assigned in reference to each boundary is

explained in §1.1 and shown in Figure 2

Value of K1 (in m2) Value of K2 (in m2) Value of K3 (in m2)
1e− 04 1e− 05 1e− 06
1e− 05 1e− 06 1e− 07
1e− 06 1e− 07 1e− 08
1e− 07 1e− 08 1e− 09

Table 4: All permeability combinations run for the three sectors case.
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Sector 1 Sector 2 Sector 3
K1 K2 K3

K1 K3 K2

K2 K1 K3

K2 K3 K1

K3 K2 K2

K3 K2 K1

Table 5: Possible permeability arrangements for the three sectors case.

π/6

π/3

π/2

2π/3

5π/6

π

7π/6

4π/3

3π/2

5π/3

11π/6

2π

1

2

3

4

5

6

7

8

9

10

11

12

Figure 22: Diagram showing the angles tested (left) and corresponding number designation
(right).
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(1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14)

(15) (16) (17) (18) (19) (20) (21)

(22) (23) (24) (25) (26) (27) (28)

(29) (30) (31) (32) (33) (34) (35)

(36) (37) (38) (39) (40) (41) (42)

(43) (44) (45) (46) (47) (48) (49)

(50) (51) (52) (53) (54) (55)

Figure 23: All possible geometries for a landfill with three sectors given the angles available
(Figure 22).

In order to run the tests efficiently, it is necessary to decide on the number of different pos-

sible boundary angles to be tested. This process started with dividing the landfill into sector

units. To create a reasonable coverage of the angle parameter space, a unit of π/6 was chosen.

Figure 22 shows that the angle θ = π/6 is at placement 1, and the remaining angles were uni-

formly spaced and labelled 1 through 12, with 12 corresponding to θ3, the last contiguity ray.

Because of rotational invariance it is possible to keep θ3 fixed at that value. Figure 23 depicts

all distinct individual layouts. Due to the rotational invariance of the governing equations each

of these layouts might be arbitrarily rotated as needed in practice. Therefore it was possible to

reduce the number of runs by observing that some of these layouts coincide. Table 6 summa-

rizes the result of this process, where the first column shows the number of angle units in each



43

of the sectors, the second column shows which angles were used for the runs in §4.2 and the

last column gives the respective layout number from Figure 23.

Sector Size [K1 K2 K3] Boundary Angle Positions Corresponding Number

[θ1 θ2 θ3] from Figure 23

[1 1 10] [1 2 12] 1, 10, 55

[1 2 9] [1 3 12] 2, 9, 11, 19, 53, 54

[1 3 8] [1 4 12] 3, 8, 20, 27, 50, 52

[1 4 7] [1 5 12] 4, 7, 28, 34, 46, 49

[1 5 6] [1 6 12] 5, 6, 35, 40, 41, 45

[2 2 8] [2 4 12] 12, 18, 21, 26, 51

[2 3 7] [2 5 12] 13, 17, 47, 48

[2 4 6] [2 6 12] 14, 16, 29, 33, 42, 44

[2 5 5] [2 7 12] 15, 36, 39

[3 3 6] [3 6 12] 22, 25, 43

[3 4 5] [3 7 12] 23, 24, 30, 32, 37, 38

[4 4 4] [4 8 12] 31

Table 6: Distinct geometries obtained when taking rotational variance into account.

With all the simplifications complete, the total number of required runs was narrowed down

to a manageable number (Table 7).
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Landfill Parameters Original Number of Reduced Number of
Options Options

Number of Angle Geometries 55 12
Permeability Combinations 5 4
Permeability Arrangements 6 6

Configurations Values 27 27
(pout, rx, and C)

Total Runs 44,550 7,776

Table 7: Difference between number of runs before and after parameter reduction.

4.1.1 Calculations & Solutions

The possible stagnation point locations were determined by taking the derivative of Solu-

tions (1.7), with respect to r and θ. Just as in Chapters 2 and 3, these derivatives were set to

zero to solve for any existing critical points:

Cr

ks
(a(s) sin(2θ) + b(s) cos(2θ)− 1) +

b2
r

= 0, (4.1a)

θ =
1

2
arctan

(
a(s)

b(s)

)
+
πn

2
, n ∈ Z. (4.1b)

These generate a sequence and Appendix C.9 is used to check how many points out of the

sequence fall within a sector.

4.2 Results & Discussion

4.2.1 Classification of Run Success

The criteria used to classify runs in Chaper 4 are different from Chapters 2 and 3. Since a

much more complicated system is being handled, the uniform density of pathline distribution

was less of a priority and the focus was shifted to whether a run demonstrated the necessary in-

formation to understand the flow field induced by a given landfill configuration. The runs were

classified into three categories: satisfactory, borderline and unsatisfactory. Any visual without

major gaps in integration or visible intersecting lines was deemed satisfactory (Y). From the
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tests run there were 5,303 satisfactory configurations. A run was classified as borderline (B)

when either large gaps were present or pathlines intersected due to insufficient integration accu-

racy. For three sector configurations there were 953 borderline configurations. Unsatisfactory

runs (N) were runs which failed to integrate entirely. There were 1520 such runs. In the com-

panion spreadsheet classifying all runs (ClassificationOfRunSuccessData) the following

colour code was used to indicate the number of stagnation points in each configuration: none

(green), one (yellow), two (orange), three (pink), and five (purple) (Boham, 2023). Constella-

tions of three and five stagnation points were rare and only appeared in low permeability media,

and where one of the three sectors had an area much larger than the other two, individually or

together.

Runs that were classified as satisfactory essentially followed the same criteria as in previous

chapters. These were runs with moderately spaced pathlines, which provide adequate informa-

tion regarding how the gas is behaving. However, runs with runaway or intersecting lines could

not be classified as satisfactory as this suggests an insufficient integration accuracy. Figure 24

shows two examples of satisfactory runs with no stagnation points and therefore examples of

two functional landfill collection systems.

(a) Example of a satisfactory run with zero stagnation
points and boundary angles of π/6, π/3 and 2π.

(b) Example of a satisfactory run with zero stagnation
points and boundary angles of 2π/3, 4π/3 and 2π.

Figure 24: Two examples of satisfactory runs without stagnation points. The two landfill
examples have a suction level of 5 inWC, a landfill diameter of 5 m, a generation rate of 50
scfm and permeabilities of 1e− 05m2, 1e− 06m2 and 1e− 07m2.

Figure 25 shows four examples of satisfactory runs with a single stagnation point. Since

the permutation of the permeabilities varies between subfigures, the location of the stagnation

point can change dramatically. Subfigure 25a shows an example where the largest sector has

the lowest permeability, therefore the one stagnation point present is further away from the well
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and other pathlines are reasonably uniform. In Subfigure 25b the largest sector has the middle

permeability. Here, the stagnation point is in a similar relative position as in Subfigure 25a,

however the experience more drastic changes in direction, due to the jump in permeabilities

between sectors. Finally Subfigures 25c and 25d show fairly similar examples. Both subfigures

have sectors which are close in size and stagnation points very close to the well. The primary

difference between the two subfigures is the sectors where the stagnation point is located:

sector 2 in Subfigure 25c and sector 3 in 25d, which, in both cases, corresponds to the lowest

permeability sector of the three.

(a) Example of a satisfactory run with one stagnation
point and boundary angles at π/6, π/3 and 2π. Land-
fill parameters include a suction level of 25 inWC,
a landfill diameter of 5 m, a generation rate of 50
scfm and permeabilities of 1e−06m2, 1e−07m2 and
1e− 08m2.

(b) Example of a satisfactory run with one stagna-
tion point and boundary angles at 2π/6, π and 2π.
Landfill parameters include a suction level of 5 inWC,
a landfill diameter of 5 m, a generation rate of 500
scfm and permeabilities of 1e−07m2, 1e−08m2 and
1e− 06m2.

(c) Example of a satisfactory run with one stagna-
tion point and boundary angles at π/2, 7π/6 and
2π. Landfill parameters include a suction level of 25
inWC, a landfill diameter of 5 m, a generation rate of
500 scfm and permeabilities of 1e−06m2, 1e−08m2

and 1e− 07m2.

(d) Example of a satisfactory run with one stagna-
tion point and boundary angles at 2π/3, 4π/3 and
2π. Landfill parameters include a suction level of 50
inWC, a landfill diameter of 5 m, a generation rate of
5000 scfm and permeabilities of 1e−06m2, 1e−07m2

and 1e− 08m2.

Figure 25: Examples of satisfactory runs for landfills with three sectors containing one stag-
nation point.

Figure 26 shows four examples of satisfactory runs with two stagnation points. Similar to

what was observed with the one stagnation point fields, due to the nature of the layout geome-

try and permeability arrangements, a wide range of stagnation point constellations ensues. In
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Subfigure 26a the two stagnation points are located in the two sectors with the lower perme-

abilities. These sectors are also both substantially larger than the third sector, thereby adding

additional resistance to the overall system. In contrast, Subfigure 26b shows an example where

the stagnation points are located in the two of three sectors with higher permeabilities, whereas

the two of three sectors with the lower permeabilities are the smaller sectors. This explains

why the stagnation points are not located in the sector with the lowest permeability. Subfigure

26c shows a flow field very similar to that of Subfigure 26a, where the stagnation points are

located in the two sectors with lower permeabilities, but in Subfigure 26c the difference of size

is less significant. Finally, Subfigure 26d shows an example where the stagnation points are

located in the two sectors with the highest and lowest permeabilities, and just as in Subfigure

26c, all sectors are of similar size. The change in resistance between the sectors is thus mainly

due to the jump in permeability.
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(a) Example of a satisfactory run with two stagnation
points and boundary angles at π/6, π and 2π. Land-
fill parameters include a suction level of 5 inWC, a
landfill diameter of 25 m, a generation rate of 5000
scfm and permeabilities of 1e−07m2, 1e−06m2 and
1e− 08m2.

(b) Example of a satisfactory run with two stagna-
tion points and boundary angles at π/3, 2π/3 and
2π. Landfill parameters include a suction level of 5
inWC, a landfill diameter of 5 m, a generation rate of
5000 scfm and permeabilities of 1e−07m2, 1e−08m2

and 1e− 09m2.

(c) Example of a satisfactory run with two stagna-
tion points and boundary angles at π/3, 7π/6 and
2π. Landfill parameters include a suction level of 25
inWC, a landfill diameter of 25 m, a generation rate of
500 scfm and permeabilities of 1e−08m2, 1e−07m2

and 1e− 09m2.

(d) Example of a satisfactory run with two stagna-
tion points and boundary angles at π/2, 7π/6 and
2π. Landfill parameters include a suction level of 5
inWC, a landfill diameter of 50 m, a generation rate of
500 scfm and permeabilities of 1e−06m2, 1e−08m2

and 1e− 07m2.

Figure 26: Examples of satisfactory runs for landfills with three sectors containing two stag-
nation points.

For three sector configurations the classification of borderline runs differed from either of

the two sector tests. As mentioned previously, due to the complexity of integrating a three

sector flow field, provided that the code was able to generate an image, it was at a minimum

deemed borderline. Therefore, runs which had features causing them to previously have been

classified as unsatisfactory, such as intersecting pathlines or major irregularities in pathline

density, are now being classified as borderline. Figure 27 shows two examples of landfill con-

figurations with significant gaps in coverage. In some examples the gaps are caused by the jump

in permeability. In other words, a strong pathline curvature and hence clustering are induced

in a small area of the domain, leaving a void in another part, but all lines reach the perimeter.

This issue technically could be resolved by increasing the number of pathlines, however this

approach would result in pathlines clustering in other regions of the image to an extent that is
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counter-productive to the purpose of understanding the flow field. In other examples the gaps

stem simply from the integration times being too short. Again, this issue could be resolved by

increasing the integration time if one was willing to wait for exceptionally long integrations to

complete. However, landfill examples that run into this issue are predominantly dysfunctional,

and so the wait time is simply not worth the image that would eventually be generated.

(a) Example of a borderline run with one stagna-
tion point and boundary angles at π/3, 7π/6 and 2π.
Landfill parameters include a suction level of 5 inWC,
a landfill diameter of 25 m, a generation rate of 50
scfm and permeabilities of 1e−07m2, 1e−08m2 and
1e− 09m2.

(b) Example of a borderline run with two stagnation
points and boundary angles at π/3, 5π/6 and 2π.
Landfill parameters include a suction level of 5 inWC,
a landfill diameter of 50 m, a generation rate of 50
scfm and permeabilities of 1e−08m2, 1e−09m2 and
1e− 07m2.

Figure 27: Example of borderline runs which include moderate gaps within the figure.

Figure 28 shows two examples where the integration accuracy was insufficient, resulting

in crossing pathlines. This problem could be resolved by increasing the accuracy of the inte-

gration, however, this reintroduces the same cost-benefit calculation between a short wait time

and a flawless image.

(a) Example of a borderline run with one stagna-
tion point and boundary angles at π/2, 7π/6 and 2π.
Landfill parameters include a suction level of 5 inWC,
a landfill diameter of 5 m, a generation rate of 500
scfm and permeabilities of 1e−06m2, 1e−05m2 and
1e− 07m2.

(b) Example of a borderline run with two stagnation
points and boundary angles at π/6, π and 2π. Land-
fill parameters include a suction level of 25 inWC,
a landfill diameter of 5 m, a generation rate of 500
scfm and permeabilities of 1e−09m2, 1e−07m2 and
1e− 08m2.

Figure 28: Example of borderline runs which exhibit integration failures in the form of over-
lapping lines.



50

Any configuration which failed to integrate was classified as unsatisfactory. However, just

as with the borderline runs, if one was to wait long enough, it would be possible to integrate

these configurations. In such cases the images would likely exhibit one or more of the issues

shown in Figures 28 and 27. For this reason, no such figures are included. Nonetheless, it is

likely that these runs would result in a flow field representing a landfill functioning so poorly,

that they are simply not worth the computational effort.

In summary, a unique characteristic of the three sector configurations occurs when the

permeabilities shift between sectors. As depicted in Figures 29 and 30, as the different per-

meabilities are assigned to sectors of different sizes, the number and location of stagnation

points change as well as the nature of the pathlines. In Figure 29 there is a larger discrepancy

between the sizes of the largest and smallest sectors. Therefore, when the permeability values

shift between sectors, the change in overall resistance acting on the gas is so significant that

the number of stagnation points differs between the visuals. In Figure 30 all three sectors are

of the same size. Therefore, when the permeability values shift between sectors, the number of

stagnation points remains constant. In this case, the feature that is changing is the location of

the stagnation point.
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(a) k1 = 1e− 06m2, k2 = 1e− 07m2, k3 = 1e− 08m2 (b) k1 = 1e− 06m2, k2 = 1e− 08m2, k3 = 1e− 07m2

(c) k1 = 1e− 07m2, k2 = 1e− 06m2, k3 = 1e− 08m2 (d) k1 = 1e− 07m2, k2 = 1e− 08m2, k3 = 1e− 06m2

(e) k1 = 1e− 08m2, k2 = 1e− 06m2, k3 = 1e− 07m2 (f) k1 = 1e− 08m2, k2 = 1e− 07m2, k3 = 1e− 06m2

Figure 29: Effect of permeability rotation on number and location of stagnation points. Land-
fill parameters include a suction level of 5 inWC, a landfill diameter of 5 m, a generation rate
of 50 scfm, permeabilities of 1e− 06m2, 1e− 07m2 and 1e− 08m2 and boundary angles of π/3,
5π/6, and 2π.
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(a) k1 = 1e− 06m2, k2 = 1e− 07m2, k3 = 1e− 08m2 (b) k1 = 1e− 06m2, k2 = 1e− 08m2, k3 = 1e− 07m2

(c) k1 = 1e− 07m2, k2 = 1e− 06m2, k3 = 1e− 08m2 (d) k1 = 1e− 07m2, k2 = 1e− 08m2, k3 = 1e− 06m2

(e) k1 = 1e− 08m2, k2 = 1e− 06m2, k3 = 1e− 07m2 (f) k1 = 1e− 08m2, k2 = 1e− 07m2, k3 = 1e− 06m2

Figure 30: Comparison of how rotation of permeabilities affect the number and location of
stagnation points. Landfill parameters include a suction level of 50 inWC, a landfill diameter
of 5 m, a generation rate of 5000 scfm, permeabilities of 1e− 06m2, 1e− 07m2 and 1e− 08m2

and boundary angles of 2π/3, 4π/3, and 2π.
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5 Conclusion

In summary, the objective of this project was to develop a code that could be used by solid

waste management industry professionals to understand what landfill parameters allow for an

effective collection system. This goal is not to be confused with a comprehensive attempt to

map all conceivable – effective or otherwise – landfill configurations.

In Chapters 2 – 4 together, 8,343 different landfill configurations were tested. These

spanned a wide range of operational values, resulting in a variety of flow field features and

generating images that were classified as satisfactory, borderline, or unsatisfactory. These clas-

sifications were an effective way to qualitatively evaluate the efficiency of the code. In this

situation a run labelled as unsatisfactory should not be perceived as an undesirable result. In

reality, all unsatisfactory and borderline runs correspond to landfill designs that are dysfunc-

tional enough that the practitioners designing a landfill would abandon that design, making

production of a satisfactory image unnecessary. The runs classified as satisfactory constitute

the group that would be useful to professionals designing landfills, as they encompass the ma-

jority of reasonable landfill configurations.

Beyond the physicality of the input, the success of a flow field integration and thence the

quality of the produced visual depends on judicious choices of initial points, integration accu-

racy, and integration length. The tests run in this project were oriented towards understanding

and optimizing these choices.

The qualitative analysis determining run success was able to support the understanding

of landfill functionality. First, as the well suction increases, the gas flow towards the well

becomes more direct in the sense that the pathlines are less curved. By contrast, the lower

the well suction, the more likely the presence of stagnation points, which indicates gas escape

from the domain. Such a landfill design is therefore not effective. Second, as the landfill

radius increases, the higher the chance of stagnation points being present. This can be partially

counteracted with an increase in suction, however, based on the values that were observed,

this approach will only work to a certain extent and is dependent on the other variables. The

presence of a stagnation point sufficiently far from the well is inevitable, although these do not
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always fall within the physical domain of interest. Third, as the generation rate increases, an

increase in well suction is required for the landfill to be effective. Finally, as the permeability

of one or more sector decreases, the fluid’s ability to move through the solid matrix is also

decreased, again resulting in a less effective landfill.

The thousands of visuals examined in this project indicate that the behaviour of the landfill

gas flow field is not easy to predict using basic intuition and experience with fluid flow. This

problem explains the frequent difficulties encountered by industry professionals when predict-

ing the system response to any engineering changes. In particular, their intuition is often based

on the behaviour of liquid flow, such as that in hydraulic wells, but the flow of gas appears

to be completely different. The most important observation is that the zone of collection is

anything but circular, despite the fact that the well’s purpose is to create radial motion and

accompanying circular geometry. When working with two sectors, such as those demonstrated

in Figure 17, the zone of collection exhibits tapering cusps that are not correlated with the well

geometry and therefore cannot be predicted. The shape of the zone of influence varies even

more dramatically with three sectors. Another three sector feature, which may be perceived

as counter-intuitive, is the unpredictability of the locations of future stagnation points. Despite

the availability of closed form solutions, the location of a given stagnation point is almost im-

possible to infer simply based on the layout and sector permeabilities; extensive calculations

are necessary. Finally, another key feature observed was the interplay of sector size and perme-

ability, and the fact that the stagnation points will often, but not always, appear in the sectors

with the lower permeabilities.

The code is capable of handling the majority of cases to be encountered in practice, namely

two sectors of any angles as well as three sectors. It is expected that engineers and operators

represent their system in this qualitative way. The high uncertainties in the parameter values of

the waste composition, and the time-dependent level of degradation, render any finer division

into smaller subdomains meaningless. The code is implemented in an open source, freely

available software. This accessibility is crucial in an industry that is significantly underfunded

and not in a position to maintain advanced simulation software or hire professionals trained in

its operation.



55

References

Bear J (1972) Dynamics of Fluids in Porous Media. Dover

Boham M (2023) Classification of Run Success Data. URL https://tru.arcabc.ca/

islandora/object/tru%3A6181

Charbeneau R, Street R (1979) Modelling groundwater flow fields containing point singulari-

ties: streamlines, travel times and breakthrough curves. Water Resources Research 15:1445 –

1450

Eaton J, Bateman D, Hauberg S, Wehbring R (2018) Free your numbers. GNU Octave, https:

//www.gnu.org/software/octave/index

Kuhne A, Schack-Kirchner H, Hildebrand E (2012) Gas diffusivity in soils compared to ideal

isotropic porous media. Journal of Plant Nutrition and Soil Science 175:34 – 45

Li Y, Cleall P, Ma X, Zhan T, Chen Y (2012) Gas pressure model for layered municipal solid

waste landfills. American Society of Civil Engineers 138:752 – 760

Nec Y (2021) Singularities in weakly compressible flow through a porous medium. Fluid Dy-

namics Research 53:045507

Nec Y, Huculak G (2020) Exact solutions to steady radial flow in a porous medium with vari-

able permeability. Physics of Fluids 32:077108

Negara A, Salama A, Sun S, Elgassier M, Wu YS (2015) Numerical simulation of natural gas

flow in anisotropic shale reservoirs. DOI 10.2118/177481-MS

Sahu CK, Flynn MR (2015) Filling box flows in porous media. J Fluid Mech 782:455–478

Speetjens MFM, Wispelaere HNL, van Steenhoven AA (2011) Multi-functional Lagrangian

flow structures in three-dimensional AC electro-osmotic micro-flows. Fluid Dynamics Re-

search 43:035503



56

Wang Q, Gu X, Tang S, Mohammad A, Singh DN, Xie H, Chen Y, Zuo X, Sun Z (2022) Gas

transport in landfill cover system: A critical appraisal. Journal of Environmental Manage-

ment 321

Wikipedia (2023) Permeability (earth sciences). URL https://en.wikipedia.org/wiki/

Permeability_(Earth_sciences)

Young A (1989) Mathematical modeling of landfill gas extraction. Journal of Environmental

Engineering 115(6):1073–1087



57

A Code for Semicircular Sectors (Type I)

A.1 Input Processing

Viscosity of a fluid is temperature dependent. For a mixture of gases it is also dependent of

the composition. This function calculates viscosity based on temperature and molar fractions

and was retained from a previous project (Nec and Huculak, 2020).

function mu_mix=visco(T,x)

% base values for Sutherland’s formula

flag=’s’;

if flag==’s’ % Sutherland’s formula

To_CH4=273.15; s_CH4=197.8; muo_CH4=12.01*10^(-6);

To_CO2=293.15; s_CO2=240; muo_CO2=14.8*10^(-6);

%To_CO2=273.15; s_CO2=222.2; muo_CO2=13.7*10^(-6);

To_O2=292.25; s_O2=127; muo_O2=20.18*10^(-6);

To_N2=300.55; s_N2=111; muo_N2=17.81*10^(-6);

mu_CH4=muo_CH4*(T/To_CH4)^1.5*(To_CH4+s_CH4)/(T+s_CH4); % Pa s

mu_CO2=muo_CO2*(T/To_CO2)^1.5*(To_CO2+s_CO2)/(T+s_CO2);

mu_O2=muo_O2*(T/To_O2)^1.5*(To_O2+s_O2)/(T+s_O2);

mu_N2=muo_N2*(T/To_N2)^1.5*(To_N2+s_N2)/(T+s_N2);

elseif flag==’e’ % exponential formula
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% make sure To=293.15K not altered in the main mfile

muo_CH4=13.4*10^(-6); e_CH4=0.87;

muo_CO2=14.8*10^(-6); e_CO2=0.79;

muo_O2=20.0*10^(-6); e_O2=0.69;

muo_N2=17.6*10^(-6); e_N2=0.67;

mu_CH4=muo_CH4*(T/To)^e_CH4;

mu_CO2=muo_CO2*(T/To)^e_CO2;

mu_O2=muo_O2*(T/To)^e_O2;

mu_N2=muo_N2*(T/To)^e_N2;

end

a=3/8; % empirical constant from Thomas A. Davidson’s paper - 3/8 or 1/3

% a=3/8 appears to work negligibly better

%a=0; % works as a flag to have a molar fraction weighted computation

const_read;

mu=[mu_CH4 mu_CO2 mu_O2 mu_N2];

fl=0;

Ymix=sum(sqrt(Mw).*x,2);

if a>0

for i=1:length(Mw)
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for j=1:length(Mw)

fl=fl+x(i)*x(j)*Mw(i)^((a+1)/2)*Mw(j)^((a+1)/2)/...

(sqrt(mu(i)*mu(j))*(Mw(i)+Mw(j))^a);

end

end

fl=2^a*fl/Ymix^2;

mu_mix=1/fl;

elseif a==0

mu_mix=sum(Mw.*mu.*x,2)./sum(Mw.*x,2);

end

A.2 Universal Constants

This code file defines necessary constants used throughout.

K=273.15;

g=9.8067;

ps=101325; ps2=ps^2; % atmospheric pressure in pascals

Ts=K+15; To=K+20; % standard temperatures

L=0.0065;

Ro=8.3145; % universal, gas constant = Ro/M

i2m_q=0.3048^3/60; %imperial to metric conversion factors

i2m_p=ps/406.8;

i2m_q=0.3048^3/60;



60

i2m_l=0.3048;

i2m_d=0.0254;

i2m_p_atm=1000/0.2953;

kg2lb=1/0.4536;

M_CH4=0.016044; %molar weights

M_CO2=0.04401;

M_O2=0.0319988;

M_N2=0.0280134;

M_H2O=0.01801528;

Mw=[M_CH4 M_CO2 M_O2 M_N2];

x_air=[0 0 0.22 0.78]; %molar composition of air

mw_air=sum(x_air.*Mw);

R_air=Ro/mw_air;

A.3 Input Parameters

Geometric and physical input parameters; retained from a previous project (Nec and Hucu-

lak, 2020).

% boundary conditions

bc_flag=1;

elev=0;

p_bar=ps;

p_atm=p_bar*(1-L*elev/Ts)^(g/(R_air*L));

pB=p_atm-0*i2m_p; %px
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p_out=p_atm-p_out*i2m_p; %pp

d=0.5*0.3048;

dh=3/8*0.0254;

nh=2; n=28;

h=[d/2 1 h3 3]’;

h=cumsum(h);

% permeability: sectors counting from below the first ray for pN

%k=[1e-07 1e-06];

%k=[1e-08 1e-06]; %figure 4 permeability

%k=[1e-07 1e-06 5e-08 1e-08]; %figure 7

% generation rate m^3/hr, same counting as for k

%C_init=500;

T=15;

x_lfg=[0.5 0.4 0.01];

x_lfg=[x_lfg 1-sum(x_lfg,2)];

R=Ro./sum(x_lfg.*Mw,2);

dl=nh*(dh/2)^2/d;

T=T+K;

mu=visco(T,x_lfg);

C=C_init*ps/(3600*R*To*pi*(h(3)^2-h(1)^2)*dl*n); % no gravel lamina

muRTC=mu*R*T*C;

pX=p_atm;

p_outr=p_out/pX;

pBr=pB/pX;

pX2=pX^2;
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bc_ix=2; % sector # to impose bc

if bc_flag

a20=pBr^2-p_outr^2+muRTC/(2*k(bc_ix)*pX2)*(h(3)^2-h(1)^2);

a20=a20/log(h(3)/h(1));

else

a20=muRTC*h(3)^2/(k(bc_ix)*pX2);

end

a10=p_outr^2+muRTC*h(1)^2/(2*k(bc_ix)*pX2)-a20*log(h(1));

A.4 Integration Halts of Semicircular Sectors

This function defines events where the integration is halted for two equal sectors.

function [val,term,dir]=p2sle(t,rth,r_cutoff,term,dir,x_sp,y_sp)

r=rth(1);

th=rth(2);

x=r*cos(th);

y=r*sin(th);

r_rel=sqrt((x-x_sp)^2+(y-y_sp)^2);

val=r_rel-r_cutoff;

A.5 Velocity Field of Semicircular Sectors

This function defines the flow field for the configuration of two equal sectors and top sector

radial.
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function rthp=p2slf(t,rth,th0,int_sign,prm)

const_read

p_out=prm(1);

h3=prm(2);

C_init=prm(3);

k=prm(4:5);

input_read

r=rth(1); th=rth(2);

cth=cos(th); sth=sin(th);

c2th=cos(2*th); s2th=sin(2*th);

K=k/(mu*R*T);

if th0==0

if th>0

p=a10+a20*log(r)-r^2*C/(2*K(2)*pX2);

u=a20/r-r*C/(K(2)*pX2);

v=0;

else

p=a10+a20*log(r)+r^2/(2*pX2)*...

((c2th-1)*C/K(1)-c2th*C/K(2));

u=a20/r+r/pX2*((c2th-1)*C/K(1)-c2th*C/K(2));

v=-r^2/pX2*(C/K(1)-C/K(2))*s2th;

end

else

if th>0
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b=(C/K(2)-C/K(1))/(1-K(2)/K(1));

p=a10+a20*log(r)+r^2/(2*pX2)*(b*c2th/cos(2*th0)-C/K(2));

u=a20/r+r/pX2*(b*c2th/cos(2*th0)-C/K(2));

else

b=(C/K(2)-C/K(1))/(K(1)/K(2)-1);

p=a10+a20*log(r)+r^2/(2*pX2)*(b*c2th/cos(2*th0)-C/K(1));

u=a20/r+r/pX2*(b*c2th/cos(2*th0)-C/K(1));

end

v=-r^2/pX2*b*s2th/cos(2*th0);

end

p=sqrt(p)*pX;

if th>0

u=-k(2)/mu*u/(2*p)*pX2;

v=-k(2)/mu*v/(2*p*r)*pX2;

else

u=-k(1)/mu*u/(2*p)*pX2;

v=-k(1)/mu*v/(2*p*r)*pX2;

end

rthp=int_sign*[u v/r]’; % r is conversion to polar

A.6 Pathline Seeding of Semicircular Sectors

This file defines the starting points of the pathlines being integrated for a configuration with

two equal sectors.

const_read

input_read
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th0=0;

nth=100;

%well top

r_well = h(3)/20

th_well = 0:pi/20:pi/2;

xunit_well = r_well * cos(th_well);

yunit_well = r_well * sin(th_well);

th_inwell=atan2(yunit_well, xunit_well);

r_inwell=sqrt(xunit_well.^2 + yunit_well.^2);

[x_well,y_well]=fun_int(1500,r_inwell,th_inwell,-1,th0,h(3),1,1,0,0,prm); % top

%[x_well,y_well]=fun_int(150,r_inwell,th_inwell,-1,th0,h(3),0,1,0,0,prm);

xy_wellt=[x_well y_well];

if flag

save([’run_wellt_’ file_str ’.txt’],’xy_wellt’,’-ascii’);

else

plot(x_well, y_well, ’k’, -x_well, y_well, ’k’);

hold on

h_dott=plot(x_well(end,:), y_well(end,:), ’.k’, -x_well(end,:), y_well(end,:), ’.k’); %creates dot at the end of the pathlines

end

%well bottom

r_well = h(3)/20

th_well = 3*pi/2:pi/20:2*pi;
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th_well=th_well(1:end-1);

xunit_well = r_well * cos(th_well);

yunit_well = r_well * sin(th_well);

th_inwell=atan2(yunit_well, xunit_well);

r_inwell=sqrt(xunit_well.^2 + yunit_well.^2);

[x_well,y_well]=fun_int(1500,r_inwell,th_inwell,-1,th0,h(3),1,1,0,0,prm); % bottom

%[x_well,y_well]=fun_int(150,r_inwell,th_inwell,-1,th0,h(3),0,1,0,0,prm);

th_lfend=atan2(y_well(end,2), x_well(end,2))+2*pi;

xy_wellb=[x_well y_well];

if flag

save([’run_wellb_’ file_str ’.txt’],’xy_wellb’,’-ascii’);

else

plot(x_well, y_well, ’k’, -x_well, y_well, ’k’);

hold on

h_dotb=plot(x_well(end,:), y_well(end,:), ’.k’, -x_well(end,:), y_well(end,:), ’.k’); %creates dot at the end of the pathlines

end

th_sp=[0 3*pi/2 ];

%r2_sp=-a20/(muRTC*((1/k(2))-(2/k(1)))); %two equal sectors FIX

r2_sp=-a20./(muRTC*((1/k(1)-1/k(2))*cos(2*th_sp)-1/k(1)))



67

%r2_sp=(k(1)/(2*muRTC))*a20; %two unequal sectors

ix_sp=find(r2_sp>h(1)^2/pX2 & r2_sp<(h(3)*1.001)^2/pX2)

r2_sp=r2_sp(ix_sp);

th_sp=th_sp(ix_sp);

r_sp=sqrt(r2_sp)*pX;

x_sp=r_sp.*cos(th_sp);

y_sp=r_sp.*sin(th_sp);

%stagnation point top

X_stpt=[];

Y_stpt=[];

X_stpb=[];

Y_stpb=[];

for i=1:length(ix_sp)

if abs(x_sp(i))<10^(-12)

th_circle = 0:pi/15:pi/2;

else

th_circle = 0:pi/15:pi;

end

r_circle = h(3)/7.5

xunit = r_circle * cos(th_circle) + x_sp(i);
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yunit = r_circle * sin(th_circle) + y_sp(i);

th_in=atan2(yunit, xunit);

r_in=sqrt(xunit.^2 + yunit.^2);

ix_in=find(r_in>r_well);

th_in=th_in(ix_in);

r_in=r_in(ix_in);

[x_stpt,y_stpt]=fun_int(1000,r_in,th_in,-1,th0,r_circle*1.01,1,1,x_sp(i),y_sp(i),prm); % top

%[x_stpt,y_stpt]=fun_int(40,r_in,th_in,-1,th0,r_circle*1.01,0,1,x_sp(i),y_sp(i),prm);

X_stpt=[X_stpt x_stpt];

Y_stpt=[Y_stpt y_stpt];

%stagnation point bottom

if abs(x_sp(i))<10^(-12)

th_circle = 3*pi/2:pi/15:2*pi;

else

th_circle = pi:pi/15:2*pi;

end

%th_circle = 3*pi/2:pi/15:2*pi;

th_circle=th_circle(2:end);

r_circle = h(3)/7.5

xunit = r_circle * cos(th_circle) + x_sp(i);

yunit = r_circle * sin(th_circle) + y_sp(i);
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th_in=atan2(yunit, xunit);

r_in=sqrt(xunit.^2 + yunit.^2);

ix_in=find(r_in>r_well);

th_in=th_in(ix_in);

r_in=r_in(ix_in);

[x_stpb,y_stpb]=fun_int(1000,r_in,th_in,-1,th0,r_circle*1.01,1,1,x_sp(i),y_sp(i),prm); % bottom

%[x_stpb,y_stpb]=fun_int(40,r_in,th_in,-1,th0,r_circle*1.01,0,1,x_sp(i),y_sp(i),prm);

X_stpb=[X_stpb x_stpb];

Y_stpb=[Y_stpb y_stpb];

end

if ~isempty(ix_sp)

xy_stpt=[X_stpt Y_stpt];

if flag

save([’run_stpt_’ file_str ’.txt’],’xy_stpt’,’-ascii’);

else

plot(X_stpt, Y_stpt, ’k’, -X_stpt, Y_stpt, ’k’);

hold on

%h_dotpt=plot(X_stpt(end,:), Y_stpt(end,:), ’.k’, -X_stpt(end,:), Y_stpt(end,:), ’.k’); %creates dot at the end of the pathlines

end

xy_stpb=[X_stpb Y_stpb];

if flag

save([’run_stpb_’ file_str ’.txt’],’xy_stpb’,’-ascii’);
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else

plot(X_stpb, Y_stpb, ’k’, -X_stpb, Y_stpb, ’k’);

hold on

%h_dotpb=plot(X_stpt(end,:), Y_stpt(end,:), ’.k’, -X_stpt(end,:), Y_stpt(end,:), ’.k’); %creates dot at the end of the pathlines

end

%landfill

th_lf = 3*pi/2:pi/30:th_lfend;

th_lf=th_lf(1:end-1);

r_lf = h(3)

xunit_lf = r_lf * cos(th_lf);

yunit_lf = r_lf * sin(th_lf);

th_inlf=atan2(yunit_lf, xunit_lf);

r_inlf=sqrt(xunit_lf.^2 + yunit_lf.^2);

[x_lf,y_lf]=fun_int(3000,r_inlf,th_inlf,-1,th0,h(3)*1.001,1,1,0,0,prm);

%[x_lf,y_lf]=fun_int(30,r_inlf,th_inlf,-1,th0,h(3)*1.001,0,1,0,0,prm);

xy_lf=[x_lf y_lf];

if flag

save([’run_lf_’ file_str ’.txt’],’xy_lf’,’-ascii’);

else

plot(x_lf, y_lf, ’k’, -x_lf, y_lf, ’k’);

hold on

h_dotlf=plot(x_lf(end,:), y_lf(end,:), ’.k’, -x_lf(end,:), y_lf(end,:), ’.k’); %creates dot at the end of the pathlines
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end

end

plot( cos(th0)*[r_well h(3)], sin(th0)*[r_well h(3)], ’g’ )

plot( cos(pi)*[r_well h(3)], sin(pi)*[r_well h(3)], ’g’ )

axis equal

A.7 Integration: Preliminaries for Semicircular Sectors

This function collates integrated pathlines.

function [x,y]=fun_int(t_span,r_in,th_in,int_sign,th0,r_cutoff,term,dir,x_sp,y_sp,prm)

x=[];

y=[];

n=50;

for i=1:length(r_in)

rth_in=[r_in(i) th_in(i)];

[t,rth]=newSL([],rth_in,th0,r_cutoff,t_span, int_sign,term,dir,x_sp,y_sp,prm);

t1=linspace(t(1),t(end),n)’;

x1=rth(:,1).*cos(rth(:,2));

y1=rth(:,1).*sin(rth(:,2));

x=[x interp1(t,x1,t1)];

y=[y interp1(t,y1,t1)];

end
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%last update 05/05/2021

A.8 Integration of Semicircular Sectors

This function calls ode45, Octave’s main integration facility.

function [t_out,rth_out]=newSL(t_in,rth_in,th0,r_cutoff,dlt,int_sign,term,dir,x_sp,y_sp,prm)

if isempty(t_in)

tspan=[0 dlt];

rth_init=rth_in;

rth_in=[];

else

tspan=[t_in(end) t_in(end)+dlt];

rth_init=rth_in(end,:);

end

if term==1

%opt=odeset(’events’,@(t,rth) p2sle(t,rth,r_cutoff,term,dir,x_sp,y_sp));

opt=odeset(’events’,@(t,rth) p2sle(t,rth,r_cutoff,term,dir,x_sp,y_sp),’AbsTol’,1e-07,’RelTol’,1e-04);

else

opt=odeset(’events’, []);

end

[t_add,rth_add,te,rthe,ie]=ode45(@(t,rth) p2slf(t,rth,th0,int_sign,prm),tspan,rth_init,opt);
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t_out=[t_in;t_add];

rth_out=[rth_in;rth_add];

A.9 Main Running File of Semicircular Sectors

Main running file.

clear all

close all

warning off

flag=0;

Input=load(’input.txt’);

n=size(Input,1);

for i=1:n

try

i

tic

prm=Input(i,:);

p_out=prm(1);

h3=prm(2);

C_init=prm(3);

k=prm(4:5);

file_str=[num2str(p_out) ’_’ num2str(h3) ’_’ num2str(C_init) ’_’ num2str(-log10(k(1))) ’_’ num2str(-log10(k(2)))];

figure(1)

p2sl
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toc

catch

display([’config ’ num2str(prm) ’ skipped’])

continue

end

end

%p2sl_surf(th0,prm,2)

A.10 Plotting Semicircular Sectors

This file plots visuals from saved integration files.

clear all

close all

warning off

Input=load(’input.txt’);

n=size(Input,1);

for i=1:n

try

i

tic

prm=Input(i,:);

p_out=prm(1);

h3=prm(2);
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C_init=prm(3);

k=prm(4:5);

file_str=[num2str(p_out) ’_’ num2str(h3) ’_’ num2str(C_init) ’_’ num2str(-log10(k(1))) ’_’ num2str(-log10(k(2)))];

p2sl

toc

catch

display([’config ’ num2str(prm) ’ skipped’])

continue

end

end

%figure(2) %change number for new window

Input=load(’input.txt’);

n=size(Input,1);

frac=0.01;

File_str=’’;

for i=1:n

figure(i)

prm=Input(i,:);

p_out=prm(1);

h3=prm(2);

C_init=prm(3);

k=prm(4:5);

file_str=[’_’ num2str(p_out) ’_’ num2str(h3) ’_’ num2str(C_init) ’_’ num2str(-log10(k(1))) ’_’ num2str(-log10(k(2)))];

File_str=strvcat(File_str, file_str);
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set(gcf,’name’,file_str)

eval([’L=ls(’ file_str ’*’’)’]);

m=size(L,1);

for j=1:m

xy=dlmread(deblank(L(j,:)));

n_xy=size(xy,2)/2;

L_sl=(xy(1,1:n_xy)-xy(end,1:n_xy)).^2 + (xy(1,n_xy+1:end)-xy(end,n_xy+1:end)).^2;

L_sl=sqrt(L_sl);

L_slmin=min(L_sl);

L_slmax=max(L_sl);

if L_slmin/L_slmax<2*frac

ix_sl=find(L_sl>L_slmin+frac*(L_slmax-L_slmin));

else

ix_sl=1:n_xy;

end

%plot(xy(:,1:n_xy),xy(:,n_xy+1:end))

plot(xy(:,ix_sl),xy(:,n_xy+ix_sl),’k’,-xy(:,ix_sl),xy(:,n_xy+ix_sl),’k’)

hold on

end

axis off

end

hold on
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B Code for Semicircular Sectors (Type II) and Sec-

tors of Two Sectors of Unequal Angles

B.1 Integration Halts of Two Sectors of Unequal Angles

This function defines events where the integration is halted for two unequal sectors.

function [val,term,dir]=p2sle(t,rth,r_cutoff,term,dir,x_sp,y_sp)

r=rth(1);

th=rth(2);

x=r*cos(th);

y=r*sin(th);

r_rel=sqrt((x-x_sp)^2+(y-y_sp)^2);

val=r_rel-r_cutoff;

term=repmat(term,length(val),1);

dir=repmat(dir,length(val),1);

B.2 Velocity Field of Two Sectors of Unequal Angles

This function defines the flow field for the configuration of two unequal sectors.

function rthp=p2slf(t,rth,thc,int_sign,prm)

const_read

p_out=prm(1);
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h3=prm(2);

C_init=prm(3);

k=prm(4:5);

input_read

r=rth(1); th=rth(2);

cth=cos(th); sth=sin(th);

c2th=cos(2*th); s2th=sin(2*th);

while th<thc(1)

th=th+2*pi;

end

while th>thc(end)

th=th-2*pi;

end

if ~(th>=thc(1) & th<=thc(end))

rth

display(’cannot delimit th in (th0, th0+2pi)’)

return

end

for i=1:length(thc)

if abs(th-thc(i))<1e-12

ix=i;

break

end
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end

for i=1:(length(thc)-1)

if (th>thc(i) & th<thc(i+1))

ix=i;

break

end

end

K=k/(mu*R*T);

if 1==0

%if thc(1)==0

if ix==1

p=a10+a20*log(r)-r^2*C/(2*K(2)*pX2);

u=a20/r-r*C/(K(2)*pX2);

v=0;

elseif ix==2

p=a10+a20*log(r)+r^2/(2*pX2)*...

((c2th-1)*C/K(1)-c2th*C/K(2));

u=a20/r+r/pX2*((c2th-1)*C/K(1)-c2th*C/K(2));

v=-r^2/pX2*(C/K(1)-C/K(2))*s2th;

end

end

%else

if ix==1

p=a10+a20*log(r)+C*r^2/(2*pX2*K(2))*(c2th/cos(2*thc(1))-1);

u=a20/r+C*r/(pX2*K(2))*(c2th/cos(2*thc(1))-1);

v=-C*r^2/(pX2*K(2))*s2th/cos(2*thc(1));

else

p=a10+a20*log(r)+C*r^2/(2*pX2*K(1))*(c2th/cos(2*thc(1))-1);
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u=a20/r+C*r/(pX2*K(1))*(c2th/cos(2*thc(1))-1);

v=-C*r^2/(pX2*K(1))*s2th/cos(2*thc(1));

end

%end

p=sqrt(p)*pX;

if ix==1

u=-k(2)/mu*u/(2*p)*pX2;

v=-k(2)/mu*v/(2*p*r)*pX2;

else

u=-k(1)/mu*u/(2*p)*pX2;

v=-k(1)/mu*v/(2*p*r)*pX2;

end

rthp=int_sign*[u v/r]’;

B.3 Pathline Seeding of Two Sectors of Unequal Angles

This file defines the starting points of the pathlines being integrated for a configuration with

two unequal sectors.

const_read

input_read

nth=100;

thc=[th0, pi-th0, th0+2*pi];

parcel_ix=-(1:5);

R_init=cell(5,1);

Th_init=cell(5,1);

x_int=cell (5,1);

y_int=cell (5,1);



81

parcel_ix(1)=-parcel_ix(1);

r_well = h(3)/20

%th_well = 0:pi/20:pi/2; %integration from 0 to pi/2

%th_well = pi/2:pi/20:3*pi/2; %integration from th0 to pi/2

th_well=[linspace(0.51*pi,0.995*pi,11) linspace(1.005*pi,1.49*pi,11)];

xunit_well = r_well * cos(th_well);

yunit_well = r_well * sin(th_well);

th_inwell=th_well;

r_inwell=r_well*ones(1,length(th_inwell));

R_init{1}=r_inwell;

Th_init{1}=th_inwell;

r_circle = h(3)/7.5

t_span=[1500 1000 3000 3000 3000];

r_cutoff=[h(3) r_circle*1.01 h(3)*1.003 h(3)*1.003 h(3)*1.003];

r_cutoff=[r_cutoff; 1.5*h(3)*ones(1,length(r_cutoff))];

term=[1 1 1 1 1];

dir=[1 1 1 1 1];

x_ref=cell(1,5);

y_ref=cell(1,5);

x_ref([1 3:5])=0;

y_ref([1 3:5])=0;

[x_well,y_well]=fun_int(1500,r_inwell,th_inwell,-1,thc,r_cutoff(:,1),term(1),dir(1),x_ref{1},y_ref{1},prm); % well
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x_int{1}=x_well;

y_int{1}=y_well;

th_lfend_t=atan2(y_well(end,11), x_well(end,11));

th_lfend_t=th_lfend_t+2*pi*(th_lfend_t<0);

th_lfend_b=atan2(y_well(end,13), x_well(end,13));

th_lfend_b=th_lfend_b+2*pi*(th_lfend_b<0);

th_sp=[0 pi/2 3*pi/2 ]; %if you swap the order of th_sp change the order of k in line 59

k_sp=[k(1)*(th0>0)+k(2)*(th0<0) k(2) k(1)]; %[k(1) k(2) k(1)] matches the order of stagnation point angles [0 pi/2 3*pi/2 ]

for i=1:length(th_sp)

if(th0==0 & th_sp(i)==0)

% horizontal points for two equal sectors with purely radial top

%r2_sp(i)=-a20./(muRTC*((1/k(1)-1/k(2))*cos(2*th_sp(i))-1/k(1)));

% horizontal points for two equal sectors symmetric top-bottom

r2_sp(i)=Inf;

else

% everything else (two unequal and two equal vertical)

r2_sp(i)=a20*k_sp(i)./(muRTC*(1-cos(2*th_sp(i))/cos(2*th0)));

end

end

ix_sp=find(r2_sp>h(1)^2/pX2 & r2_sp<(h(3)*1.001)^2/pX2)

r2_sp=r2_sp(ix_sp);

th_sp=th_sp(ix_sp);

r_sp=sqrt(r2_sp)*pX;

x_sp=r_sp.*cos(th_sp);

y_sp=r_sp.*sin(th_sp);
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x_ref{2}=x_sp;

y_ref{2}=y_sp;

Th_init{2,1}=pi/30:pi/15:(2-1/30)*pi;

Th_init{2,2}=pi/2:pi/15:3*pi/2;

Th_init{2,3}=pi/2:pi/15:3*pi/2;

l_sp=length(x_sp);

if l_sp>0

parcel_ix(2)=-parcel_ix(2);

end

for i=1:l_sp

xunit = r_circle * cos(Th_init{2,ix_sp(i)}) + x_sp(i);

yunit = r_circle * sin(Th_init{2,ix_sp(i)}) + y_sp(i);

th_in=atan2(yunit, xunit);

r_in=sqrt(xunit.^2 + yunit.^2);

ix_in=find(r_in>r_well);

th_in=th_in(ix_in);

r_in=r_in(ix_in);

R_init{2,ix_sp(i)}=r_in;

Th_init{2,ix_sp(i)}=th_in;

end

if (length(ix_sp)==1 && ix_sp(1)==3) || (length(ix_sp)==2 && ix_sp(2)==3) || (length(ix_sp)==3)

parcel_ix(3)=-parcel_ix(3);

end

%th_lf = th_lfend_b:pi/30:3*pi/2;
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th_lf=linspace(th_lfend_b, 1.49*pi, 16);

%th_lf=th_lf(1:end-1);

r_lf = h(3)

xunit_lf = r_lf * cos(th_lf);

yunit_lf = r_lf * sin(th_lf);

th_inlf=atan2(yunit_lf, xunit_lf);

r_inlf=sqrt(xunit_lf.^2 + yunit_lf.^2);

R_init{3}=r_inlf;

Th_init{3}=th_inlf;

if (length(ix_sp)==2 && ix_sp(1)==2 && ix_sp(2)==3) || (length(ix_sp)==3)

parcel_ix(4)=-parcel_ix(4);

end

th_lf = 0.51*pi:pi/30:th_lfend_t;

%th_lf=th_lf(1:end-1);

r_lf = h(3)

xunit_lf = r_lf * cos(th_lf);

yunit_lf = r_lf * sin(th_lf);

th_inlf=atan2(yunit_lf, xunit_lf);

r_inlf=sqrt(xunit_lf.^2 + yunit_lf.^2);

R_init{4}=r_inlf;

Th_init{4}=th_inlf;

if length(ix_sp)==1 && ix_sp(1)==1
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parcel_ix(5)=-parcel_ix(5);

end

th_lf = th_lfend_t:pi/30:th_lfend_b;

th_lf=th_lf(1:end-1);

r_lf = h(3)

xunit_lf = r_lf * cos(th_lf);

yunit_lf = r_lf * sin(th_lf);

th_inlf=atan2(yunit_lf, xunit_lf);

r_inlf=sqrt(xunit_lf.^2 + yunit_lf.^2);

R_init{5}=r_inlf;

Th_init{5}=th_inlf;

p_ix=find(parcel_ix>0);

for i=p_ix

for j=1:(1*(i~=2)+l_sp*(i==2))

if i~=2

jx=j;

elseif ~isempty(ix_sp)

jx=ix_sp(j);

end

if i>1

[x_int{i,j},y_int{i,j}]=fun_int(t_span(i),R_init{i,jx},Th_init{i,jx},-1,thc, r_cutoff(:,i),term(i),dir(i),x_ref{i}(j),y_ref{i}(j),prm);

end

xy=[x_int{i,j} y_int{i,j}];
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if flag

save([’run_parcel’ num2str(i) ’_’ file_str ’.txt’],’xy’,’-ascii’);

else

plot(x_int{i,j}, y_int{i,j}, ’k’, -x_int{i,j}, y_int{i,j}, ’k’);

hold on

x_dot=x_int{i,j}(end,:);

y_dot=y_int{i,j}(end,:);

r_dot=sqrt(x_dot.^2+y_dot.^2);

ix_dot=find(r_dot>0.9*h(3));

x_dot=x_dot(ix_dot);

y_dot=y_dot(ix_dot);

h_dot=plot(x_dot, y_dot, ’.k’, -x_dot, y_dot, ’.k’); %creates dot at the end of the pathlines

end

end

end

plot( cos(thc(1))*[r_well h(3)], sin(thc(1))*[r_well h(3)], ’g’ )

plot( cos(thc(2))*[r_well h(3)], sin(thc(2))*[r_well h(3)], ’g’ )

axis equal
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B.4 Integration: Preliminaries for Two Sectors of Unequal

Angles

function [x,y]=fun_int(t_span,r_in,th_in,int_sign,thc,r_cutoff,term,dir,x_sp,y_sp,prm)

x=[];

y=[];

n=50;

for i=1:length(r_in)

rth_in=[r_in(i) th_in(i)];

[t,rth]=newSL([],rth_in,thc,r_cutoff,t_span, int_sign,term,dir,x_sp,y_sp,prm);

t1=linspace(t(1),t(end),n)’;

x1=rth(:,1).*cos(rth(:,2));

y1=rth(:,1).*sin(rth(:,2));

x=[x interp1(t,x1,t1)];

y=[y interp1(t,y1,t1)];

end

%last update 05/05/2021

B.5 Integration of Two Sectors of Unequal Angles

This function calls ode45, Octave’s main integration facility.

function [t_out,rth_out]=newSL(t_in,rth_in,thc,r_cutoff,dlt,int_sign,term,dir,x_sp,y_sp,prm)
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if isempty(t_in)

tspan=[0 dlt];

rth_init=rth_in;

rth_in=[];

else

tspan=[t_in(end) t_in(end)+dlt];

rth_init=rth_in(end,:);

end

if term==1

%opt=odeset(’events’,@(t,rth) p2sle(t,rth,r_cutoff,term,dir,x_sp,y_sp));

opt=odeset(’events’,@(t,rth) p2sle(t,rth,r_cutoff,term,dir,x_sp,y_sp),’AbsTol’,1e-09,’RelTol’,1e-06);

else

opt=odeset(’events’, []);

end

[t_add,rth_add,te,rthe,ie]=ode45(@(t,rth) p2slf(t,rth,thc,int_sign,prm),tspan,rth_init,opt);

t_out=[t_in;t_add];

rth_out=[rth_in;rth_add];

B.6 Main Running File of Two Sectors of Unequal Angles

Main running file.

clear all

close all

warning off
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flag=0;

Input=load(’input.txt’);

n=size(Input,1);

nix=1:n;

%nix=sort([1:3:n 2:3:n]);

%nix=sort([1:3:n]);

for i=nix

%try

i

tic

prm=Input(i,:);

p_out=prm(1);

h3=prm(2);

C_init=prm(3);

k=prm(4:5);

if prm(6)==0

th0=0;

else

th0=1/prm(6)*pi;

end

if th0>=0

th_sign=’p’;

else

th_sign=’n’;

end
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file_str=[num2str(p_out) ’_’ num2str(h3) ’_’ num2str(C_init) ’_’ num2str(-log10(k(1))) ’_’ num2str(-log10(k(2))) ’_’ th_sign num2str(abs(prm(6)))];

figure(i)

p2sl

toc

%catch

display([’config ’ num2str(prm) ’ skipped’])

continue

%end

end

%p2sl_surf_sim(th0,prm,2)

B.7 Plotting Two Sectors of Unequal Angles

This file plots visuals from saved integration files.

clear all

close all

warning off

Input=load(’input.txt’);

n=size(Input,1);

for i=1:n

try

i

tic
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prm=Input(i,:);

p_out=prm(1);

h3=prm(2);

C_init=prm(3);

k=prm(4:5);

file_str=[num2str(p_out) ’_’ num2str(h3) ’_’ num2str(C_init) ’_’ num2str(-log10(k(1))) ’_’ num2str(-log10(k(2)))];

p2sl

toc

catch

display([’config ’ num2str(prm) ’ skipped’])

continue

end

end

%figure(2) %change number for new window

Input=load(’input.txt’);

n=size(Input,1);

frac=0.01;

File_str=’’;

for i=1:n

figure(i)

prm=Input(i,:);

p_out=prm(1);

h3=prm(2);

C_init=prm(3);
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k=prm(4:5);

file_str=[’_’ num2str(p_out) ’_’ num2str(h3) ’_’ num2str(C_init) ’_’ num2str(-log10(k(1))) ’_’ num2str(-log10(k(2)))];

File_str=strvcat(File_str, file_str);

set(gcf,’name’,file_str)

eval([’L=ls(’ file_str ’*’’)’]);

m=size(L,1);

for j=1:m

xy=dlmread(deblank(L(j,:)));

n_xy=size(xy,2)/2;

L_sl=(xy(1,1:n_xy)-xy(end,1:n_xy)).^2 + (xy(1,n_xy+1:end)-xy(end,n_xy+1:end)).^2;

L_sl=sqrt(L_sl);

L_slmin=min(L_sl);

L_slmax=max(L_sl);

if L_slmin/L_slmax<2*frac

ix_sl=find(L_sl>L_slmin+frac*(L_slmax-L_slmin));

else

ix_sl=1:n_xy;

end

%plot(xy(:,1:n_xy),xy(:,n_xy+1:end))

plot(xy(:,ix_sl),xy(:,n_xy+ix_sl),’k’,-xy(:,ix_sl),xy(:,n_xy+ix_sl),’k’)

hold on

end

axis off

end

hold on
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C Code for Arbitrary Number of Sectors

C.1 Coefficients in Equation (4.1)

This function defines the linear system that gives the a(s) and b(s) coefficients in Equation

(1.7); retained from a previous project (Nec and Huculak, 2020).

function Cm=Cm_m(thc,m,kr,N)

Cm=zeros(2*N,2*N);

cmth=cos(m*thc);

smth=sin(m*thc);

for i=1:N-1

Cm(2*i-1,2*i+(-1:2))=[smth(i) cmth(i) -smth(i)*kr(i) -cmth(i)*kr(i)];

Cm(2*i,2*i+(-1:2))=[cmth(i) -smth(i) -cmth(i) smth(i)];

end

Cm(end-1,1:2)=-kr(N)*[smth(N) cmth(N)];

Cm(end,1:2)=[-cmth(N) smth(N)];

Cm(end-1,end-1:end)=[smth(N) cmth(N)];

Cm(end,end-1:end)=[cmth(N) -smth(N)];

C.2 Integration Halts of Arbitrary Sectors

This function defines events where the integration is halted for three sectors.

function [val,trm,dir]=psle(t,rth,r_trm,x0,y0,int_sign)

r=rth(1);

th=rth(2);
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x=r*cos(th);

y=r*sin(th);

r_rel=sqrt((x-x0)^2+(y-y0)^2);

val=[r_rel-r_trm; imag(rth)];

lv=length(val);

trm=ones(lv,1);

dir=int_sign*trm;

dir(end-1:end)=[0 0]’;

C.3 Velocity Field of Arbitrary Sectors

This function defines the flow field for the configuration with three sectors.

function rthp=pslf(t,rth,thc,int_sign,k,muRTC,mu,pX,acs0)

r=rth(1); th=rth(2);

th=th_dlm(th,thc(1),thc(end),2*pi);

if ~(th>=thc(1) & th<=thc(end))

[thc(1) th thc(end)]/pi

display(’Cannot delimit th in (0, 2\pi)’)

end

ix=[];

for i=1:length(thc)

if abs(th-thc(i))<1e-12

ix=i;

break

end



95

end

for i=1:(length(thc)-1)

if (th>thc(i) && th<thc(i+1))

ix=i+1;

break

end

end

N=length(k);

if ix==N+1

ix=1;

end

a10=acs0(1); a20=acs0(2);

acs=acs0(3:end);

a=acs(1:2:end); b=acs(2:2:end);

pX2=pX^2;

c2th=cos(2*th); s2th=sin(2*th);

p=a10+a20*log(r)+muRTC*r^2/(2*pX2*k(ix))*(a(ix)*s2th+b(ix)*c2th-1);

u=a20/r+muRTC*r/(pX2*k(ix))*(a(ix)*s2th+b(ix)*c2th-1);

v=muRTC*r^2/(pX2*k(ix))*(a(ix)*c2th-b(ix)*s2th);

p=sqrt(p)*pX;

u=-k(ix)/mu*u/(2*p)*pX2;

v=-k(ix)/mu*v/(2*p*r)*pX2;

rthp=int_sign*[u v/r]’; % u=dr/dt, v=r d\th/dt

C.4 Pathline Seeding of Arbitrary Sectors

This file defines the starting points of the pathlines being integrated for a configuration with

three sectors.
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global x_int y_int

x_int=[]; y_int=[]; Th_init=[]; R_init=[];

pi12=th_dlm(pi/2,thc(1),thc(end),2*pi);

pi32=th_dlm(3*pi/2,thc(1),thc(end),2*pi);

pi_tol=pi*1e-12;

sp_tol=pi*1e-4;

[th_sp,r_sp]=sploc(thc,k,muRTC,acs0);

ix_sp=find(r_sp>d/(2*pX) & r_sp<h*1.001/pX);

r_sp=r_sp(ix_sp);

th_sp=th_sp(ix_sp);

r_sp=r_sp*pX;

x_sp=r_sp.*cos(th_sp);

y_sp=r_sp.*sin(th_sp);

if N==2

th_sp(find(abs(th_sp-pi12)<pi_tol))=pi12;

th_sp(find(abs(th_sp-pi32)<pi_tol))=pi32;

x_sp=0*x_sp;

end

display(’(x,y) coordinates of s.p.’)

[x_sp y_sp]

l_sp=length(x_sp);

r_trm=[h r_circle h r_well;

1.1*h 1.1*r_circle 1.1*h 0.9*r_well];

num_min=3;

dthf=diff(thc)/(2*pi);
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thc_num=round(dthf*num);

ix_num=find(thc_num<num_min);

thc_num(ix_num)=num_min;

th_well=[];

dthc=diff(thc);

for i=1:N

ix_sp=find(th_sp>=thc(i) & th_sp<thc(i+1));

if isempty(ix_sp)

th_tmp=linspace(thc(i),thc(i+1),thc_num(i)+2);

else

th1=thc(i);

th2=th_sp(ix_sp(1))-sp_tol;

dth12=th2-th1;

th_tmp=linspace(th1,th2,round(dth12/dthc(i)*thc_num(i))+1);

for j=2:length(ix_sp)

th1=th_sp(ix_sp(j-1))+sp_tol;

th2=th_sp(ix_sp(j))-sp_tol;

dth12=th2-th1;

th_tmp=[th_tmp linspace(th1,th2,round(dth12/dthc(i)*thc_num(i)))];

end

th1=th_sp(ix_sp(end))+sp_tol;

th2=thc(i+1);

dth12=th2-th1;

th_tmp=[th_tmp linspace(th1,th2,round(dth12/dthc(i)*thc_num(i))+1)];

end

th_well=[th_well th_tmp(2:end-1)];

end

if N==2

th_well=th_well(find(th_well>pi12 & th_well<pi32));
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end

Th_init{1,1}=th_well;

R_init{1,1}=r_well*ones(1,length(Th_init{1,1}));

[x_int{1,1},y_int{1,1}]=fun_int(dlt,R_init{1,1},Th_init{1,1},-1,...

thc,r_trm(:,1),0,0,0,atol,rtol,k,muRTC,mu,pX,acs0);

[m,n]=size(x_int{1,1});

dth=zeros(l_sp,1);

for i=1:l_sp

Th_init{2,i}=th_well;

if N==2

Th_init{2,i}=Th_init{2,i}(find(Th_init{2,i}>pi12 & Th_init{2,i}<pi32));

end

xunit=r_circle*cos(Th_init{2,i})+x_sp(i);

yunit=r_circle*sin(Th_init{2,i})+y_sp(i);

th_in=atan2(yunit,xunit);

r_in=sqrt(xunit.^2+yunit.^2);

ix_in=find(r_in>r_well);

R_init{2,i}=r_in(ix_in);

Th_init{2,i}=th_in(ix_in);

% pick 2 lines issuing from the well closest to s.p angle and

% ending on perimeter (one on each side)

ix_sp_ray=find(sign(th_well-th_sp(i))>0);

if ~isempty(ix_sp_ray)

ix_sp_p=ix_sp_ray(1);

ix_sp_m=ix_sp_ray(1)-1;

if ix_sp_m==0

ix_sp_m=n;
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end

else

ix_sp_p=1;

ix_sp_m=n;

end

th_arc0=atan2(y_int{1,1}(end,ix_sp_m),x_int{1,1}(end,ix_sp_m));

th_arc0=th_dlm(th_arc0,thc(1),thc(end),2*pi);

th_arcf=atan2(y_int{1,1}(end,ix_sp_p),x_int{1,1}(end,ix_sp_p));

th_arcf=th_dlm(th_arcf,thc(1),thc(end),2*pi);

th_arc=[th_arc0 th_arcf];

if N==2

th_arc(2)=pi12*(y_sp(i)>0)+pi32*(y_sp(i)<=0);

end

th_arc=sort(th_arc);

if ~(th_sp(i)-th_arc(1)>=0 && th_arc(2)-th_sp(i)>=0)

th_arc(1)=th_arc(1)+2*pi;

th_arc=sort(th_arc);

end

if ~(th_sp(i)-th_arc(1)>=0 && th_arc(2)-th_sp(i)>=0)

th_sp(i)=th_sp(i)+2*pi;

end

Th_init{3,i}=th_arc;

dth(i)=diff(th_arc);

end

dthf=dth/(2*pi);

thc_num=round(dthf*num);

ix_num=find(thc_num<num_min);

thc_num(ix_num)=num_min;
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for i=1:l_sp

dth1=th_sp(i)-Th_init{3,i}(1);

dth2=Th_init{3,i}(2)-th_sp(i);

% the factor of 2 maintains a density similar to the well parcel

% since half the lines would escape the domain

num1=2*round(abs(dth1/dth(i))*thc_num(i));

num1=num1+num_min*(num1==0);

th_tmp1=linspace(Th_init{3,i}(1),th_sp(i)-sp_tol,num1);

num2=2*round(abs(dth2/dth(i))*thc_num(i));

num2=num2+num_min*(num2==0);

th_tmp2=linspace(th_sp(i)+sp_tol,Th_init{3,i}(2),num2);

th_tmp=[th_tmp1 th_tmp2];

if N==2

th_tmp=th_tmp(find(th_tmp>pi12 & th_tmp<pi32));

else

th_tmp=th_tmp(2:end-1);

end

Th_init{3,i}=th_tmp;

R_init{3,i}=h*ones(1,length(Th_init{3,i}));

end

for j=1:l_sp

[x_int{2,j},y_int{2,j}]=fun_int(dlt,R_init{2,j},Th_init{2,j},-1,...

thc,r_trm(:,2),x_sp(j),y_sp(j),r_circle,atol,rtol,k,muRTC,mu,pX,acs0);

end

for j=1:l_sp

[x_int{3,j},y_int{3,j}]=fun_int(dlt,R_init{3,j},Th_init{3,j},-1,...

thc,r_trm(:,3),0,0,h,atol,rtol,k,muRTC,mu,pX,acs0);
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end

gap_flag=1;

if gap_flag

x_prm=x_int{1,1}(end,:);

y_prm=y_int{1,1}(end,:);

for j=1:l_sp

x_prm=[x_prm x_int{3,j}(1,:) x_int{3,j}(end,:)];

y_prm=[y_prm y_int{3,j}(1,:) y_int{3,j}(end,:)];

end

th_prm=atan2(y_prm,x_prm);

th_prm_dlm=0*th_prm;

for i=1:length(th_prm)

th_prm_dlm(i)=th_dlm(th_prm(i),thc(1),thc(end),2*pi);

end

th_prm=sort(th_prm_dlm);

th_prm=[th_prm th_prm(1)+2*pi];

dth_prm=[diff(th_prm)];

dth_mean=mean(dth_prm);

ix_prm=find(dth_prm>3*dth_mean);

lix_prm=length(ix_prm);

for i=1:lix_prm

num_dth=round((th_prm(ix_prm(i)+1)-th_prm(ix_prm(i)))/dth_mean)+2;

if num_dth>2

Th_init{4,i}=linspace(th_prm(ix_prm(i)),th_prm(ix_prm(i)+1),num_dth);

Th_init{4,i}=Th_init{4,i}(2:end-1);

R_init{4,i}=Th_init{4,i}*0+h;

[x_int{4,i},y_int{4,i}]=fun_int(dlt,R_init{4,i},Th_init{4,i},1,...

thc,r_trm(:,4),0,0,h,atol,rtol,k,muRTC,mu,pX,acs0);
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end

end

else

lix_prm=0;

end

% post-mortem halt & extrapolation

for i=3:4

for j=1:(l_sp*(i<4)+lix_prm*(i==4))

[mp,np]=size(x_int{i,j});

for n=1:np

[x_int{i,j}(:,n),y_int{i,j}(:,n)]=...

exterp_sl(x_int{i,j}(:,n),y_int{i,j}(:,n),h);

end

[ixi,ixj]=find(isnan(x_int{i,j}));

x_int{i,j}(:,ixj)=[];

y_int{i,j}(:,ixj)=[];

end

end

% remove lines shorter than ell

ell=0.01*h;

for i=2:(3+(lix_prm>0))

for j=1:(l_sp*(i<4)+lix_prm*(i==4))

r=(x_int{i,j}(end,:)-x_int{i,j}(1,:)).^2+...

(y_int{i,j}(end,:)-y_int{i,j}(1,:)).^2;

r=sqrt(r);

ix=find(r>ell);

x_int{i,j}=x_int{i,j}(:,ix);
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y_int{i,j}=y_int{i,j}(:,ix);

end

end

% streamline intersection check

[mp,np]=size(x_int);

X_int=[]; Y_int=[];

for i=1:mp

for j=1:np

X_int=[X_int x_int{i,j}];

Y_int=[Y_int y_int{i,j}];

end

end

[mp,np]=size(X_int);

stop=0;

for i=1:np

for j=(i+1):np

cl=(X_int(1,i)>=X_int(1,j));

xl=X_int(1,i)*cl+X_int(1,j)*(~cl);

cr=(X_int(end,i)<=X_int(end,j));

xr=X_int(end,i)*cr+X_int(end,j)*(~cr);

if xl>xr, continue; end

if xl==xr

else

xlr=linspace(xl,xr,mp);

yi=interp1(X_int(:,i),Y_int(:,i),xlr);

yj=interp1(X_int(:,j),Y_int(:,j),xlr);

dy=yi-yj;

if dy(1)*dy(end)<0
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report_str=’Notice: streamlines might intersect.’

stop=1;

break

end

end

end

if stop, break; end

end

C.5 Function

This function calls ode45, Octave’s main integration facility.

function [x,y]=fun_int(dlt,r_in,th_in,int_sign,thc,r_trm,x0,y0,r0,...

atol,rtol,k,muRTC,mu,pX,acs0)

x=[];

y=[];

n=150;

dlt=[0 dlt];

dlt0=[0 0.01];

for i=1:length(r_in)

rth_init=[r_in(i) th_in(i)];

opt=odeset(’events’,@(t,rth) ...

psle(t,rth,r_trm,x0,y0,-int_sign),’AbsTol’,atol,’RelTol’,rtol);

if r0>0

[t,rth,te,rthe,ie]=ode45(@(t,rth) ...
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pslf(t,rth,thc,-1,k,muRTC,mu,pX,acs0),dlt0,rth_init,opt);

x_tmp=rth(:,1).*cos(rth(:,2));

y_tmp=rth(:,1).*sin(rth(:,2));

r_tmp=sqrt((x_tmp(2)-x0)^2+(y_tmp(2)-y0)^2);

if r_tmp/r0>1

if int_sign==-1

continue

end

end

end

[t,rth,te,rthe,ie]=ode45(@(t,rth) ...

pslf(t,rth,thc,int_sign,k,muRTC,mu,pX,acs0),dlt,rth_init,opt);

t1=linspace(t(1),t(end),n)’;

x1=rth(:,1).*cos(rth(:,2));

y1=rth(:,1).*sin(rth(:,2));

if int_sign==-1

x=[x interp1(t,x1,t1)];

y=[y interp1(t,y1,t1)];

else

x=[x flipud(interp1(t,x1,t1))];

y=[y flipud(interp1(t,y1,t1))];

end

end

C.6 Main Running Files of Arbitrary Sectors

Main running file.
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clear all

close all

warning off

flag=2;

%flag=0 would integrate and plot, flag=1 would integrate and save, flag=2 will retrieve a saved solution and plot

filepath=’RunFiles/’;

Input=load(’input.txt’);

n=size(Input,1);

%nix=1:n;

nix=sort([1:3:n 2:3:n]);

%nix=sort([1:3:n]);

ix_k=perms(1:3);

for i_fig=nix

%try

i_fig

tic

prm=Input(i_fig,:);

p_out0=prm(1);

h=prm(2);

C_init=prm(3);

k0=prm(4:6);

thc0=prm(7:8);

k0_str=[num2str(-log10(k0(1))) ’_’ num2str(-log10(k0(2))) ’_’ num2str(-log10(k0(3)))];
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for j_fig=1:6 %change numbers to plot desired figure (ex j=2:2)

k=k0(ix_k(j_fig,:));

prC_str=[num2str(p_out0) ’_’ num2str(h) ’_’ num2str(C_init)];

k_str=[num2str(-log10(k(1))) ’_’ num2str(-log10(k(2))) ’_’ num2str(-log10(k(3)))];

th_str=[num2str(prm(7)) ’_’ num2str(prm(8))];

file_str=[prC_str ’_’ k_str ’_’ th_str ’_j’ num2str(j_fig) ’.mat’];

folder_str=[filepath th_str ’/’ k0_str ’/’ k_str ’/’];

prm(4:6)=k;

const_read

input_read

num=45;

dlt=3000;

atol=1e-12;

rtol=1e-10;

r_circle=h/7.5;

r_well=h/20;

if flag==0

psl

psl_plot

elseif flag==1

psl

save(file_str,’thc’,’N’,’h’,’r_well’,’x_int’,’y_int’)

mkdir(folder_str);

system([’mv ’ file_str ’ ’ folder_str]);

elseif flag==2

load([folder_str file_str])
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psl_plot

end

end

toc

%catch

display([’config ’ num2str(prm) ’ skipped’])

continue

%end

end

%p2sl_surf_sim(th0,prm,2)

C.7 Post-Integration Fixes

This function attempts to extrapolate pathlines in the case of halt failure.

function [x,y]=exterp_sl(x,y,r0)

m=length(x);

r=sqrt(x.^2+y.^2)/r0;

ix=find(r>1);

if isempty(ix)

return

end



109

ell=1e-3;

ix=find(r<1-ell);

lix=length(ix);

if lix<2

x=x*NaN;

y=y*NaN;

return

end

x=x(ix);

y=y(ix);

m1=ix(1)-1;

m2=m-ix(end);

if m1>0

dl=linspace(ell,1.5*r0,2*m1)’; %(ell:0.01*r0:3*r0)’;

ldl=length(dl);

dx=x(1)-x(2);

dy=y(1)-y(2);

th_end=atan2(dy,dx);

x_ex=x(1)+dl*cos(th_end);

y_ex=y(1)+dl*sin(th_end);

r_ex=sqrt(x_ex.^2+y_ex.^2)/r0;

if r_ex(end)<1

x_ex=x_ex(1:m1);

y_ex=y_ex(1:m1);

else

i1=interp1(r_ex,1:ldl,1);

ix=find(r_ex<1);

x_ex=[x_ex(ix); interp1(1:ldl,x_ex,i1)];

y_ex=[y_ex(ix); interp1(1:ldl,y_ex,i1)];
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x_exi=linspace(x_ex(1),x_ex(end),m1)’;

y_ex=interp1(x_ex,y_ex,x_exi);

x_ex=x_exi;

end

x=[x_ex; x];

y=[y_ex; y];

end

if m2>0

dl=linspace(ell,1.5*r0,2*m2)’;

ldl=length(dl);

dx=x(end)-x(end-1);

dy=y(end)-y(end-1);

th_end=atan2(dy,dx);

x_ex=x(end)+dl*cos(th_end);

y_ex=y(end)+dl*sin(th_end);

r_ex=sqrt(x_ex.^2+y_ex.^2)/r0;

if r_ex(end)<1

x_ex=x_ex(end-m2+1:end);

y_ex=y_ex(end-m2+1:end);

else

i2=interp1(r_ex,1:ldl,1);

ix=find(r_ex<1);

x_ex=[x_ex(ix); interp1(1:ldl,x_ex,i2)];

y_ex=[y_ex(ix); interp1(1:ldl,y_ex,i2)];

x_exi=linspace(x_ex(1),x_ex(end),m2)’;

y_ex=interp1(x_ex,y_ex,x_exi);

x_ex=x_exi;

end

x=[x; x_ex];
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y=[y; y_ex];

end

C.8 Plotting Arbitrary Sectors

This file plots visuals from saved integration files.

figure(i_fig)

set(i_fig,’position’,[552 100 700 714])

hax(i_fig,j_fig)=subplot(3,2,j_fig);

well_clr=[0.2 0.75 0.5];

sp_clr=[0 0.45 0.74];

arc_clr=[0.63 0.16 0.25];

for i=1:N

h_th=plot(hax(i_fig,j_fig), cos(thc(i))*[r_well h],sin(thc(i))*[r_well h],’k’);

hold on

end

th=linspace(0,2,500)*pi;

plot(hax(i_fig,j_fig), h*cos(th),h*sin(th),’k’)

[mp,np]=size(x_int);

X_int=[]; Y_int=[];

for i=1:mp

for j=1:np

X_int=[X_int x_int{i,j}];

Y_int=[Y_int y_int{i,j}];
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end

end

R_int=sqrt(X_int([1 end],:).^2+Y_int([1 end],:).^2);

R_int=sort(R_int);

h_tol=0.1;

ix_well=find(abs(R_int(1,:)-r_well)/h<h_tol & abs(R_int(2,:)/h-1)<h_tol);

ix_arc=find(abs(R_int(1,:)/h-1)<h_tol & abs(R_int(2,:)/h-1)<h_tol);

if N>2

h_sl=plot(hax(i_fig,j_fig), X_int,Y_int);

h_sl0=plot(hax(i_fig,j_fig), X_int(end,ix_arc),Y_int(end,ix_arc),’.’);

else

h_sl=plot(hax(i_fig,j_fig), X_int,Y_int,-X_int,Y_int);

h_sl0=plot(hax(i_fig,j_fig), X_int(end,ix_arc),Y_int(end,ix_arc),’.’,...

-X_int(end,ix_arc),Y_int(end,ix_arc),’.’);

end

set(h_sl,’color’,sp_clr)

set(h_sl(ix_well),’color’,well_clr)

set(h_sl(ix_arc),’color’,arc_clr)

set(h_sl0,’color’,arc_clr,’markersize’,6) %size of dot

set(h_sl, ’linewidth’, 0.5)

i0=round(0.8*size(X_int,1));

lix_arc=length(ix_arc);

if lix_arc>0

dx=diff(X_int(i0-(0:1),ix_arc));

dy=diff(Y_int(i0-(0:1),ix_arc));

th_arrow=-atan2(dy,dx);

cth=cos(th_arrow);
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sth=sin(th_arrow);

wx=0.4; wy=0.2;

arrow=[1 0 1 wx 1 wx 1;

0 0 0 -wy 0 wy 0];

for i=1:length(th_arrow)

A=[cth(i) sth(i); -sth(i) cth(i)];

a=0.05*h*A*arrow+[X_int(i0,ix_arc(i)); Y_int(i0,ix_arc(i))];

h_arr(i)=plot(hax(i_fig,j_fig), a(1,:),a(2,:),’k’);

end

set(h_arr,’color’,arc_clr)

end

axis equal

title(hax(i_fig,j_fig), num2str(k))

set(hax(i_fig,j_fig),’parent’,i_fig)

drawnow

C.9 Stagnation Points

This function locates stagnation points in the case of three or more sectors.

function [th_sp_keep,r_sp_keep]=sploc(thc,k,C,acs0)

a20=acs0(2);

a=acs0(3:2:end);

b=acs0(4:2:end);
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th_sp_keep=[]; r_sp_keep=[];

N=length(k);

for i=1:N

i1=(i-1)*(i>1)+N*(i==1);

i2=i*(i>1)+(N+1)*(i==1);

th_sp=th_dlm(atan2(a(i),b(i))/2,thc(i1),thc(i2),pi/2);

r_sp=a(i)*sin(2*th_sp)+b(i)*cos(2*th_sp)-1;

r_sp=-a20*k(i)./(C*r_sp);

ix=find(~isnan(th_sp) & r_sp>0);

th_sp_keep=[th_sp_keep th_sp(ix)];

r_sp_keep=[r_sp_keep sqrt(r_sp(ix))];

end

th_sp_keep=th_sp_keep(:);

r_sp_keep=r_sp_keep(:);

C.10 Delimiting the Azimuthal Angle

This function rewinds the azimuthal angle to find the correct position in the circle.

function th=th_dlm(th,th1,th2,skip)

if th<=th1

i=ceil((th1-th)/skip);

j=floor((th2-th)/skip);

th=th+(i:j)*skip;

elseif th>=th2

i=ceil((th-th2)/skip);

j=floor((th-th1)/skip);
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th=th-(i:j)*skip;

else

i=floor((th-th1)/skip);

j=floor((th2-th)/skip);

th=th+(-i:j)*skip;

end

if length(th)>1

tol=1e-15;

n=(th(end)-th(1))/(2*pi);

if (abs(rem(n,1))<tol || abs(rem(n,1)-1)<tol)

th=th(1:end-1);

end

end


