The Interplanetary Superhighway

Chaotic transport through the solar system

Richard Taylor

rtaylor@tru.ca

TRU

The N-Body Problem

N masses interact via mutual gravitational attraction.

The N-Body Problem

N masses interact via mutual gravitational attraction.
Given the initial configuration (positions \& velocities) can we...
$\bullet-$

- predict the evolution for all time?

The N-Body Problem

N masses interact via mutual gravitational attraction.
Given the initial configuration (positions \& velocities) can we...

- -
- predict the evolution for all time?
- characterize long-term behavior?

The N-Body Problem

N masses interact via mutual gravitational attraction.
Given the initial configuration (positions \& velocities) can we...

- Kepler (~ 1600) - empirical "laws" of planetary motion

Some History...

- Kepler (~ 1600) - empirical "laws" of planetary motion
- Newton (~1700) - solved 2-body problem analytically; planets move on conic sections

Some History...

- Kepler (~ 1600) - empirical "laws" of planetary motion
- Newton (~ 1700) - solved 2-body problem analytically; planets move on conic sections
- Poincaré (~ 1900) - 3-body problem is non-integrable

- Kepler (~ 1600) - empirical "laws" of planetary motion
- Newton (~1700) - solved 2-body problem analytically; planets move on conic sections
- Poincaré (~ 1900) - 3-body problem is non-integrable
- ca. 2000 - basic problems (e.g. stability) are still open

So. You want to go to Mars...

How do you get there?

So. You want to go to Mars...
How do you get there?
Conventional transport is based on the Hohmann transfer:

- 2-body solutions (conic sections) are pieced together

So. You want to go to Mars...
How do you get there?
Conventional transport is based on the Hohmann transfer:

- 2-body solutions (conic sections) are pieced together
- Most efficient of all possible 2-body trajectories

So. You want to go to Mars...
How do you get there?
Conventional transport is based on the Hohmann transfer:

- 2-body solutions (conic sections) are pieced together
- Most efficient of all possible 2-body trajectories
- Still... basically a "brute force" approach

So. You want to go to Mars...
How do you get there?
Conventional transport is based on the Hohmann transfer:

- 2-body solutions (conic sections) are pieced together
- Most efficient of all possible 2-body trajectories
- Still... basically a "brute force" approach
- Expensive: $\$ 1$ million to take 1 lb to the moon

So. You want to go to Mars...
How do you get there?
Conventional transport is based on the Hohmann transfer:

- 2-body solutions (conic sections) are pieced together
- Most efficient of all possible 2-body trajectories
- Still... basically a "brute force" approach
- Expensive: $\$ 1$ million to take 1 lb to the moon
- Doesn't take advantage of N-body dynamics

N-Body Problem: Equations of Motion

$$
\mathbf{r}_{i}^{\prime \prime}=\sum_{1 \leq j \leq N, j \neq i} G m_{j} \frac{\mathbf{r}_{j}-\mathbf{r}_{i}}{\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|^{3}}
$$

where $\mathbf{r}_{i} \in \mathbb{R}^{3}=$ position of mass $m_{i}(i=1, \ldots, N)$.

N-Body Problem: Equations of Motion

$$
\mathbf{r}_{i}^{\prime \prime}=\sum_{1 \leq j \leq N, j \neq i} G m_{j} \frac{\mathbf{r}_{j}-\mathbf{r}_{i}}{\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|^{3}}
$$

where $\mathbf{r}_{i} \in \mathbb{R}^{3}=$ position of mass $m_{i}(i=1, \ldots, N)$.
Transform to a system of first-order equations:

$$
\mathbf{x}^{\prime}=f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{6 N}
$$

N-Body Problem: Equations of Motion

$$
\mathbf{r}_{i}^{\prime \prime}=\sum_{1 \leq j \leq N, j \neq i} G m_{j} \frac{\mathbf{r}_{j}-\mathbf{r}_{i}}{\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|^{3}}
$$

where $\mathbf{r}_{i} \in \mathbb{R}^{3}=$ position of mass $m_{i}(i=1, \ldots, N)$.
Transform to a system of first-order equations:

$$
\mathbf{x}^{\prime}=f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{6 N}
$$

Phase space is 6 N -dimensional: 3 position +3 velocity coordinates for each of N objects.

Lots of dimensions. Lots of parameters. hrrmmm....

Restricted 3-Body Problem

Planar Circular Restricted 3-Body Problem $=$ PCR3BP

 Simplifying assumptions:- all objects move in a single plane

Restricted 3-Body Problem

Planar Circular Restricted 3-Body Problem $=$ PCR3BP

Simplifying assumptions:

- all objects move in a single plane
- one object (•) has negligible mass

Restricted 3-Body Problem

Planar Circular Restricted 3-Body Problem $=$ PCR3BP

Simplifying assumptions:

- all objects move in a single plane
- one object (•) has negligible mass
- the other two have circular orbits

Restricted 3-Body Problem

Planar Circular Restricted 3-Body Problem $=$ PCR3BP

Simplifying assumptions:

- all objects move in a single plane
- one object (•) has negligible mass
- the other two have circular orbits

PCR3BP: Rotating Coordinate System

- coord. system rotates with circular orbit $(\omega=1)$

PCR3BP: Rotating Coordinate System

- coord. system rotates with circular orbit $(\omega=1)$
- masses $\mu, 1-\mu$ normalized so total mass $=1$

PCR3BP: Rotating Coordinate System

- coord. system rotates with circular orbit $(\omega=1)$
- masses $\mu, 1-\mu$ normalized so total mass $=1$
- origin is at common center of mass

PCR3BP: Rotating Coordinate System

- coord. system rotates with circular orbit $(\omega=1)$
- masses $\mu, 1-\mu$ normalized so total mass $=1$
- origin is at common center of mass

<animation>

PCR3BP: Equations of Motion

$$
\left\{\begin{array}{l}
x^{\prime \prime}=\Omega_{x}+2 y^{\prime} \\
y^{\prime \prime}=\Omega_{y}-2 x^{\prime}
\end{array} \quad \text { where } \Omega(x, y)=\frac{x^{2}+y^{2}}{2}+\frac{1-\mu}{r_{1}}+\frac{\mu}{r_{2}}\right.
$$

PCR3BP: Equations of Motion

$$
\left\{\begin{array}{l}
x^{\prime \prime}=\Omega_{x}+2 y^{\prime} \\
y^{\prime \prime}=\Omega_{y}-2 x^{\prime}
\end{array} \quad \text { where } \Omega(x, y)=\frac{x^{2}+y^{2}}{2}+\frac{1-\mu}{r_{1}}+\frac{\mu}{r_{2}}\right.
$$

Visualizing Solutions of the 3-Body Problem

$$
\mathbf{x}^{\prime}=f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{4}
$$

Any solution specifies a curve $\{\mathbf{x}(t): t \geq 0\} \subset \mathbb{R}^{4}$. Hard to visualize.

Visualizing Solutions of the 3-Body Problem

$$
\mathbf{x}^{\prime}=f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{4}
$$

Any solution specifies a curve $\{\mathbf{x}(t): t \geq 0\} \subset \mathbb{R}^{4}$. Hard to visualize.

But... energy $J(\mathrm{x})$ is conserved \Longrightarrow a given solution is restricted to a particular 3-manifold of constant energy $J(\mathbf{x})=C$. Restricting our attention to orbits on this manifold, the problem is reduced to 3 dimensions.

Visualizing Solutions of the 3-Body Problem

$$
\mathbf{x}^{\prime}=f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{4}
$$

Any solution specifies a curve $\{\mathbf{x}(t): t \geq 0\} \subset \mathbb{R}^{4}$. Hard to visualize.

But... energy $J(\mathrm{x})$ is conserved \Longrightarrow a given solution is restricted to a particular 3-manifold of constant energy $J(\mathbf{x})=C$. Restricting our attention to orbits on this manifold, the problem is reduced to 3 dimensions.

To visualize solutions in \mathbb{R}^{4}, choose a convenient projection of this manifold into \mathbb{R}^{3} :

$$
P:\left(x, y, x^{\prime}, y^{\prime}\right) \mapsto\left(x, y, x^{\prime}\right)
$$

Visualizing Solutions of the 3-Body Problem

$$
\mathbf{x}^{\prime}=f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{4}
$$

Any solution specifies a curve $\{\mathbf{x}(t): t \geq 0\} \subset \mathbb{R}^{4}$. Hard to visualize.

But... energy $J(\mathrm{x})$ is conserved \Longrightarrow a given solution is restricted to a particular 3-manifold of constant energy $J(\mathbf{x})=C$. Restricting our attention to orbits on this manifold, the problem is reduced to 3 dimensions.

To visualize solutions in \mathbb{R}^{4}, choose a convenient projection of this manifold into \mathbb{R}^{3} :

$$
P:\left(x, y, x^{\prime}, y^{\prime}\right) \mapsto\left(x, y, x^{\prime}\right)
$$

Special Case $\mu=0$

Back to the 2-body problem. Kepler orbit gives a precessing ellipse with two rotational frequencies.

<animation>

Invariant Tori

In physical space the orbit is a precessing ellipse. The orbit is completely parametrized by two angles.

Invariant Tori

In physical space the orbit is a precessing ellipse. The orbit is completely parametrized by two angles.

In the phase space \mathbb{R}^{4}, these angles parametrize a curve $\mathbf{x}(t)$ that lies on a torus $T^{2} \subset \mathbb{R}^{4}$.

Invariant Tori

In physical space the orbit is a precessing ellipse. The orbit is completely parametrized by two angles.

In the phase space \mathbb{R}^{4}, these angles parametrize a curve $\mathbf{x}(t)$ that lies on a torus $T^{2} \subset \mathbb{R}^{4}$.

Different initial conditions give a curve $\mathbf{x}(t)$ on a different torus. In this way we get a family of nested invariant tori that foliate the 3 -manifold of constant energy.

Poincaré Section $(\mu=0)$

Resonance

If $\frac{\omega_{1}}{\omega_{2}}$ is irrational then the torus is covered with a dense orbit (quasiperiodicity).

Resonance

If $\frac{\omega_{1}}{\omega_{2}}$ is irrational then the torus is covered with a dense orbit (quasiperiodicity).

If $\frac{\omega_{1}}{\omega_{2}}=\frac{m}{n}$ is a rational number the orbit is periodic: the spacecraft completes m revolutions just as the planet completes n revolutions (resonance).

Perturbed Case $0<\mu \ll 1$

Theorem (Kolmogorov-Arnold-Moser). For all sufficiently small μ the perturbed system $\mathbf{x}^{\prime}=f(\mathbf{x})$ has a set of invariant tori, each of which is covered with a dense orbit. This set has positive Lebesgue measure. Only the invariant tori sufficiently far from resonance are preserved.

Perturbed Case $0<\mu \ll 1$

Theorem (Kolmogorov-Arnold-Moser). For all sufficiently small μ the perturbed system $\mathbf{x}^{\prime}=f(\mathbf{x})$ has a set of invariant tori, each of which is covered with a dense orbit. This set has positive Lebesgue measure. Only the invariant tori sufficiently far from resonance are preserved.

Orbits Near Resonance

We know orbits far from resonance are stuck on invariant tori. What about the orbits near resonance?

<animation>

Homoclinic Chaos

Theorem (Smale-Birkhoff). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a diffeomorphism such that p is a hyperbolic fixed point and there exists a point $q \neq p$ of transversal intersection between the stable and unstable manifolds of p. Then there is a hyperbolic invariant set $\Lambda \subset \mathbb{R}^{n}$ on which f is topologically equivalent to a subshift of finite type.
$\Lambda \subset \mathbf{R}^{4}$ is a set on and near which dynamics are "chaotic". Some consequences...

- On Λ there exist periodic orbits of arbitrarily high period

Homoclinic Chaos

Theorem (Smale-Birkhoff). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a diffeomorphism such that p is a hyperbolic fixed point and there exists a point $q \neq p$ of transversal intersection between the stable and unstable manifolds of p. Then there is a hyperbolic invariant set $\Lambda \subset \mathbb{R}^{n}$ on which f is topologically equivalent to a subshift of finite type.
$\Lambda \subset \mathbf{R}^{4}$ is a set on and near which dynamics are "chaotic". Some consequences...

- On Λ there exist periodic orbits of arbitrarily high period
- On Λ there is an uncountable set of non-periodic orbits

Homoclinic Chaos

Theorem (Smale-Birkhoff). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a diffeomorphism such that p is a hyperbolic fixed point and there exists a point $q \neq p$ of transversal intersection between the stable and unstable manifolds of p. Then there is a hyperbolic invariant set $\Lambda \subset \mathbb{R}^{n}$ on which f is topologically equivalent to a subshift of finite type.
$\Lambda \subset \mathbf{R}^{4}$ is a set on and near which dynamics are "chaotic". Some consequences...

- On Λ there exist periodic orbits of arbitrarily high period
- On Λ there is an uncountable set of non-periodic orbits
- The dynamics on Λ have sensitive dependence on initial conditions

Homoclinic Chaos

Theorem (Smale-Birkhoff). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a diffeomorphism such that p is a hyperbolic fixed point and there exists a point $q \neq p$ of transversal intersection between the stable and unstable manifolds of p. Then there is a hyperbolic invariant set $\Lambda \subset \mathbb{R}^{n}$ on which f is topologically equivalent to a subshift of finite type.
$\Lambda \subset \mathbf{R}^{4}$ is a set on and near which dynamics are "chaotic". Some consequences...

- On Λ there exist periodic orbits of arbitrarily high period
- On Λ there is an uncountable set of non-periodic orbits
- The dynamics on Λ have sensitive dependence on initial conditions
- Λ is a Cantor set (uncountable, measure-zero) - a fractal

Low-Energy Escape from Earth

Contour Plots of Potential Energy $\Omega(x, y)=\frac{x^{2}+y^{2}}{2}+\frac{1-\mu}{r_{1}}+\frac{\mu}{r_{2}}$

- = "forbidden region"

Insufficient energy for escape

Low-Energy Escape from Earth

Contour Plots of Potential Energy $\Omega(x, y)=\frac{x^{2}+y^{2}}{2}+\frac{1-\mu}{r_{1}}+\frac{\mu}{r_{2}}$

- = "forbidden region"

Sufficient energy for escape

Chaos and Low-Energy Escape from Earth

So... to escape Earth with near minimal energy, you must pass through the "bottleneck" region, and hence exit on a chaotic trajectory.

Sufficient energy for escape

Transport on low-energy trajectories

- Half the energy requirements of a Hohmann transfer

Transport on low-energy trajectories

- Half the energy requirements of a Hohmann transfer
- Trajectories are chaotic

Transport on low-energy trajectories

- Half the energy requirements of a Hohmann transfer
- Trajectories are chaotic
- Tiny steering requirements

Transport on low-energy trajectories

- Half the energy requirements of a Hohmann transfer
- Trajectories are chaotic
- Tiny steering requirements
- Can design complex itineraries

Transport on low-energy trajectories

- Half the energy requirements of a Hohmann transfer
- Trajectories are chaotic
- Tiny steering requirements
- Can design complex itineraries
- Transport is slow

Transport on low-energy trajectories

- Half the energy requirements of a Hohmann transfer
- Trajectories are chaotic
- Tiny steering requirements
- Can design complex itineraries
- Transport is slow

Other applications

- Predicting chemical reaction rates (3-body problem models an electron shared between atoms)

