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The N -Body Problem

N masses interact via mutual gravitational attraction.

Given the initial configuration (positions & velocities) can we...

• predict the evolution for all time?
• characterize long-term behavior?
• determine stability?
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Some History...

• Kepler (∼ 1600) – empirical “laws” of planetary motion

• Newton (∼1700) – solved 2-body problem analytically;
planets move on conic sections

• Poincaré (∼ 1900) – 3-body problem is non-integrable
• ca. 2000 – basic problems (e.g. stability) are still open
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So. You want to go to Mars...

How do you get there?

Conventional transport is based on the Hohmann transfer :

• 2-body solutions (conic sections) are pieced together
• Most efficient of all possible 2-body trajectories
• Still... basically a “brute force” approach
• Expensive: $1 million to take 1 lb to the moon
• Doesn’t take advantage of N -body dynamics
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N -Body Problem: Equations of Motion

r
′′
i =

∑

1≤j≤N,j 6=i

Gmj

rj − ri

|rj − ri|3

where ri ∈ IR3 = position of mass mi (i = 1, . . . , N ).

Transform to a system of first-order equations:

x
′ = f(x), x ∈ IR6N

Phase space is 6N -dimensional: 3 position + 3 velocity
coordinates for each of N objects.

Lots of dimensions. Lots of parameters. hrrmmm....

Math Seminar, April 12, 2006 – p. 5



N -Body Problem: Equations of Motion

r
′′
i =

∑

1≤j≤N,j 6=i

Gmj

rj − ri

|rj − ri|3

where ri ∈ IR3 = position of mass mi (i = 1, . . . , N ).

Transform to a system of first-order equations:

x
′ = f(x), x ∈ IR6N

Phase space is 6N -dimensional: 3 position + 3 velocity
coordinates for each of N objects.

Lots of dimensions. Lots of parameters. hrrmmm....

Math Seminar, April 12, 2006 – p. 5



N -Body Problem: Equations of Motion

r
′′
i =

∑

1≤j≤N,j 6=i

Gmj

rj − ri

|rj − ri|3

where ri ∈ IR3 = position of mass mi (i = 1, . . . , N ).

Transform to a system of first-order equations:

x
′ = f(x), x ∈ IR6N

Phase space is 6N -dimensional: 3 position + 3 velocity
coordinates for each of N objects.

Lots of dimensions. Lots of parameters. hrrmmm....

Math Seminar, April 12, 2006 – p. 5



Restricted 3-Body Problem

Planar Circular Restricted 3-Body Problem = PCR3BP

Simplifying assumptions:
• all objects move in a single plane

• one object (•) has negligible mass
• the other two have circular orbits

<animation>

Math Seminar, April 12, 2006 – p. 6



Restricted 3-Body Problem

Planar Circular Restricted 3-Body Problem = PCR3BP

Simplifying assumptions:
• all objects move in a single plane
• one object (•) has negligible mass

• the other two have circular orbits

<animation>

Math Seminar, April 12, 2006 – p. 6



Restricted 3-Body Problem

Planar Circular Restricted 3-Body Problem = PCR3BP

Simplifying assumptions:
• all objects move in a single plane
• one object (•) has negligible mass
• the other two have circular orbits

<animation>

Math Seminar, April 12, 2006 – p. 6



Restricted 3-Body Problem

Planar Circular Restricted 3-Body Problem = PCR3BP

Simplifying assumptions:
• all objects move in a single plane
• one object (•) has negligible mass
• the other two have circular orbits

<animation>

Math Seminar, April 12, 2006 – p. 6



PCR3BP: Rotating Coordinate System

• coord. system rotates with circular orbit (ω = 1)

• masses µ, 1 − µ normalized so total mass = 1
• origin is at common center of mass

x
−µ 1−µ

y

<animation>
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PCR3BP: Equations of Motion

{

x′′ = Ωx + 2y′

y′′ = Ωy − 2x′
where Ω(x, y) =

x2 + y2

2
+

1 − µ

r1

+
µ

r2

x
−µ 1−µ

y

r1 r2

=⇒ x
′ = f(x), x = (x, y, x′, y′) ∈ IR4
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Visualizing Solutions of the 3-Body Problem

x
′ = f(x), x ∈ IR4

Any solution specifies a curve {x(t) : t ≥ 0} ⊂ IR4. Hard to
visualize.

But... energy J(x) is conserved =⇒ a given solution is
restricted to a particular 3-manifold of constant energy
J(x) = C. Restricting our attention to orbits on this manifold, the
problem is reduced to 3 dimensions.

To visualize solutions in IR4, choose a convenient projection of
this manifold into IR3:

P : (x, y, x′, y′) 7→ (x, y, x′)

<plot>
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Special Case µ = 0

Back to the 2-body problem. Kepler orbit gives a precessing
ellipse with two rotational frequencies.

x
1−1

ω1

2
y ω  = 1

<animation>
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Invariant Tori

In physical space the orbit is a pre-
cessing ellipse. The orbit is com-
pletely parametrized by two angles. x

1−1

ω1

2
y ω  = 1

In the phase space IR4, these angles parametrize a curve x(t)

that lies on a torus T 2 ⊂ IR4.

Different initial conditions give a curve x(t) on a different torus.
In this way we get a family of nested invariant tori that foliate the
3-manifold of constant energy.

<plot>
<simulation>
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Poincaré Section (µ = 0)
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Resonance

If ω1

ω2

is irrational then the torus is
covered with a dense orbit (quasi-
periodicity ). –1
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If ω1

ω2

= m
n

is a rational number the
orbit is periodic: the spacecraft com-
pletes m revolutions just as the planet
completes n revolutions (resonance).
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Perturbed Case 0 < µ ¿ 1

Theorem (Kolmogorov-Arnold-Moser). For all sufficiently small µ the
perturbed system x

′ = f(x) has a set of invariant tori, each of which is
covered with a dense orbit. This set has positive Lebesgue measure.

Only the invariant tori sufficiently far from resonance are
preserved.
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Orbits Near Resonance

We know orbits far from resonance are stuck on invariant tori.
What about the orbits near resonance?

<animation>
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Homoclinic Chaos

Theorem (Smale-Birkhoff). Let f : IRn → IRn be a diffeomorphism such
that p is a hyperbolic fixed point and there exists a point q 6= p of transversal
intersection between the stable and unstable manifolds of p. Then there is a
hyperbolic invariant set Λ ⊂ IRn on which f is topologically equivalent to a
subshift of finite type.

Λ ⊂ IR4 is a set on and near which dynamics are “chaotic".
Some consequences...

• On Λ there exist periodic orbits of arbitrarily high period

• On Λ there is an uncountable set of non-periodic orbits
• The dynamics on Λ have sensitive dependence on initial

conditions
• Λ is a Cantor set (uncountable, measure-zero) — a fractal
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Low-Energy Escape from Earth

Contour Plots of Potential Energy Ω(x, y) = x2+y2

2
+ 1−µ

r1

+ µ
r2

= “forbidden region”
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Chaos and Low-Energy Escape from Earth

So... to escape Earth with near minimal energy, you must pass
through the “bottleneck" region, and hence exit on a chaotic
trajectory.
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Transport on low-energy trajectories

• Half the energy requirements of a Hohmann transfer

• Trajectories are chaotic
• Tiny steering requirements
• Can design complex itineraries
• Transport is slow

Other applications
• Predicting chemical reaction rates (3-body problem models

an electron shared between atoms)
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