The Interplanetary Superhighway Chaotic transport through the solar system

Richard Taylor

rtaylor@tru.ca

TRU

The $N\operatorname{-Body}$ Problem

N masses interact via mutual gravitational attraction.

The $N\operatorname{\!-Body}$ Problem

N masses interact via mutual gravitational attraction. Given the initial configuration (positions & velocities) can we...

• predict the evolution for all time?

The N-Body Problem

N masses interact via mutual gravitational attraction. Given the initial configuration (positions & velocities) can we...

- predict the evolution for all time?
- characterize long-term behavior?

The N-Body Problem

N masses interact via mutual gravitational attraction. Given the initial configuration (positions & velocities) can we...

- predict the evolution for all time?
- characterize long-term behavior?
- determine stability?

• Kepler (\sim 1600) – empirical "laws" of planetary motion

- Kepler (\sim 1600) empirical "laws" of planetary motion
- Newton (~1700) solved 2-body problem analytically; planets move on conic sections

- Kepler (\sim 1600) empirical "laws" of planetary motion
- Newton (~1700) solved 2-body problem analytically; planets move on conic sections
- Poincaré (\sim 1900) 3-body problem is non-integrable

- Kepler (\sim 1600) empirical "laws" of planetary motion
- Newton (~1700) solved 2-body problem analytically; planets move on conic sections
- Poincaré (\sim 1900) 3-body problem is non-integrable
- ca. 2000 basic problems (e.g. stability) are still open

How do you get there?

How do you get there?

Conventional transport is based on the Hohmann transfer:

• 2-body solutions (conic sections) are pieced together

How do you get there?

- 2-body solutions (conic sections) are pieced together
- Most efficient of all possible 2-body trajectories

How do you get there?

- 2-body solutions (conic sections) are pieced together
- Most efficient of all possible 2-body trajectories
- Still... basically a "brute force" approach

How do you get there?

- 2-body solutions (conic sections) are pieced together
- Most efficient of all possible 2-body trajectories
- Still... basically a "brute force" approach
- Expensive: **\$1** million to take **1** lb to the moon

How do you get there?

- 2-body solutions (conic sections) are pieced together
- Most efficient of all possible 2-body trajectories
- Still... basically a "brute force" approach
- Expensive: **\$1** million to take **1** lb to the moon
- Doesn't take advantage of *N*-body dynamics

N-Body Problem: Equations of Motion

$$\mathbf{r}_i'' = \sum_{1 \le j \le N, j \ne i} Gm_j \frac{\mathbf{r}_j - \mathbf{r}_i}{|\mathbf{r}_j - \mathbf{r}_i|^3}$$

where $\mathbf{r}_i \in \mathbb{R}^3$ = position of mass m_i (i = 1, ..., N).

N-Body Problem: Equations of Motion

$$\mathbf{r}_i'' = \sum_{1 \le j \le N, j \ne i} Gm_j \frac{\mathbf{r}_j - \mathbf{r}_i}{|\mathbf{r}_j - \mathbf{r}_i|^3}$$

where $\mathbf{r}_i \in \mathbb{R}^3$ = position of mass m_i (i = 1, ..., N).

Transform to a system of first-order equations:

$$\mathbf{x}' = f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{6N}$$

N-Body Problem: Equations of Motion

$$\mathbf{r}_i'' = \sum_{1 \le j \le N, j \ne i} Gm_j \frac{\mathbf{r}_j - \mathbf{r}_i}{|\mathbf{r}_j - \mathbf{r}_i|^3}$$

where $\mathbf{r}_i \in \mathbb{R}^3$ = position of mass m_i (i = 1, ..., N).

Transform to a system of first-order equations:

$$\mathbf{x}' = f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{6N}$$

Phase space is 6N-dimensional: 3 position + 3 velocity coordinates for each of N objects.

Lots of dimensions. Lots of parameters. hrrmmm....

Planar Circular Restricted 3-Body Problem = PCR3BP Simplifying assumptions:

• all objects move in a single plane

Planar Circular Restricted 3-Body Problem = PCR3BP Simplifying assumptions:

- all objects move in a single plane
- one object (•) has negligible mass

Planar Circular Restricted 3-Body Problem = PCR3BP Simplifying assumptions:

- all objects move in a single plane
- one object (•) has negligible mass
- the other two have circular orbits

Planar Circular Restricted 3-Body Problem = PCR3BP Simplifying assumptions:

- all objects move in a single plane
- one object (•) has negligible mass
- the other two have circular orbits

<animation>

• coord. system rotates with circular orbit ($\omega = 1$)

- coord. system rotates with circular orbit ($\omega = 1$)
- masses μ , 1μ normalized so total mass = 1

- coord. system rotates with circular orbit ($\omega = 1$)
- masses μ , 1μ normalized so total mass = 1
- origin is at common center of mass

- coord. system rotates with circular orbit ($\omega = 1$)
- masses μ , 1μ normalized so total mass = 1
- origin is at common center of mass

PCR3BP: Equations of Motion

PCR3BP: Equations of Motion

$$\mathbf{x}' = f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^4$$

Any solution specifies a curve $\{\mathbf{x}(t) : t \ge 0\} \subset \mathbb{R}^4$. Hard to visualize.

$$\mathbf{x}' = f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^4$$

Any solution specifies a curve $\{\mathbf{x}(t) : t \ge 0\} \subset \mathbb{R}^4$. Hard to visualize.

But... energy $J(\mathbf{x})$ is conserved \implies a given solution is restricted to a particular 3-manifold of constant energy $J(\mathbf{x}) = C$. Restricting our attention to orbits on this manifold, the problem is reduced to 3 dimensions.

$$\mathbf{x}' = f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^4$$

Any solution specifies a curve $\{\mathbf{x}(t) : t \ge 0\} \subset \mathbb{R}^4$. Hard to visualize.

But... energy $J(\mathbf{x})$ is conserved \implies a given solution is restricted to a particular 3-manifold of constant energy $J(\mathbf{x}) = C$. Restricting our attention to orbits on this manifold, the problem is reduced to 3 dimensions.

To visualize solutions in \mathbb{R}^4 , choose a convenient projection of this manifold into \mathbb{R}^3 :

$$P: (x, y, x', y') \mapsto (x, y, x')$$

$$\mathbf{x}' = f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^4$$

Any solution specifies a curve $\{\mathbf{x}(t) : t \ge 0\} \subset \mathbb{R}^4$. Hard to visualize.

But... energy $J(\mathbf{x})$ is conserved \implies a given solution is restricted to a particular 3-manifold of constant energy $J(\mathbf{x}) = C$. Restricting our attention to orbits on this manifold, the problem is reduced to 3 dimensions.

To visualize solutions in \mathbb{R}^4 , choose a convenient projection of this manifold into \mathbb{R}^3 :

$$P: (x, y, x', y') \mapsto (x, y, x')$$

<plot>

Special Case $\mu=0$

Back to the 2-body problem. Kepler orbit gives a precessing ellipse with two rotational frequencies.

In physical space the orbit is a precessing ellipse. The orbit is completely parametrized by two angles.

In physical space the orbit is a precessing ellipse. The orbit is completely parametrized by two angles.

In the phase space \mathbb{R}^4 , these angles parametrize a curve $\mathbf{x}(t)$ that lies on a torus $T^2 \subset \mathbb{R}^4$.

In physical space the orbit is a precessing ellipse. The orbit is completely parametrized by two angles.

In the phase space \mathbb{R}^4 , these angles parametrize a curve $\mathbf{x}(t)$ that lies on a torus $T^2 \subset \mathbb{R}^4$.

Different initial conditions give a curve $\mathbf{x}(t)$ on a different torus. In this way we get a family of nested invariant tori that foliate the 3-manifold of constant energy.

Poincaré Section ($\mu = 0$)

Resonance

If $\frac{\omega_1}{\omega_2}$ is irrational then the torus is covered with a dense orbit (*quasiperiodicity*).

Resonance

If $\frac{\omega_1}{\omega_2}$ is irrational then the torus is covered with a dense orbit (*quasiperiodicity*).

If $\frac{\omega_1}{\omega_2} = \frac{m}{n}$ is a rational number the orbit is periodic: the spacecraft completes *m* revolutions just as the planet completes *n* revolutions (*resonance*).

Perturbed Case $0 < \mu \ll 1$

Theorem (Kolmogorov-Arnold-Moser). For all sufficiently small μ the perturbed system $\mathbf{x}' = f(\mathbf{x})$ has a set of invariant tori, each of which is covered with a dense orbit. This set has positive Lebesgue measure. Only the invariant tori sufficiently far from resonance are preserved.

Perturbed Case $0 < \mu \ll 1$

Theorem (Kolmogorov-Arnold-Moser). For all sufficiently small μ the perturbed system $\mathbf{x}' = f(\mathbf{x})$ has a set of invariant tori, each of which is covered with a dense orbit. This set has positive Lebesgue measure. Only the invariant tori sufficiently far from resonance are preserved.

Orbits Near Resonance

We know orbits far from resonance are stuck on invariant tori. What about the orbits near resonance?

<animation>

Theorem (Smale-Birkhoff). Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism such that p is a hyperbolic fixed point and there exists a point $q \neq p$ of transversal intersection between the stable and unstable manifolds of p. Then there is a hyperbolic invariant set $\Lambda \subset \mathbb{R}^n$ on which f is topologically equivalent to a subshift of finite type.

 $\Lambda \subset \mathbb{R}^4$ is a set on and near which dynamics are "chaotic". Some consequences...

• On Λ there exist periodic orbits of arbitrarily high period

Theorem (Smale-Birkhoff). Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism such that p is a hyperbolic fixed point and there exists a point $q \neq p$ of transversal intersection between the stable and unstable manifolds of p. Then there is a hyperbolic invariant set $\Lambda \subset \mathbb{R}^n$ on which f is topologically equivalent to a subshift of finite type.

 $\Lambda \subset \mathbb{R}^4$ is a set on and near which dynamics are "chaotic". Some consequences...

- On Λ there exist periodic orbits of arbitrarily high period
- On Λ there is an uncountable set of non-periodic orbits

Theorem (Smale-Birkhoff). Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism such that p is a hyperbolic fixed point and there exists a point $q \neq p$ of transversal intersection between the stable and unstable manifolds of p. Then there is a hyperbolic invariant set $\Lambda \subset \mathbb{R}^n$ on which f is topologically equivalent to a subshift of finite type.

 $\Lambda \subset {\rm I\!R}^4$ is a set on and near which dynamics are "chaotic". Some consequences...

- On Λ there exist periodic orbits of arbitrarily high period
- On Λ there is an uncountable set of non-periodic orbits
- The dynamics on Λ have sensitive dependence on initial conditions

Theorem (Smale-Birkhoff). Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism such that p is a hyperbolic fixed point and there exists a point $q \neq p$ of transversal intersection between the stable and unstable manifolds of p. Then there is a hyperbolic invariant set $\Lambda \subset \mathbb{R}^n$ on which f is topologically equivalent to a subshift of finite type.

 $\Lambda \subset {\rm I\!R}^4$ is a set on and near which dynamics are "chaotic". Some consequences...

- On Λ there exist periodic orbits of arbitrarily high period
- On Λ there is an uncountable set of non-periodic orbits
- The dynamics on Λ have sensitive dependence on initial conditions
- Λ is a Cantor set (uncountable, measure-zero) a fractal

Low-Energy Escape from Earth

Contour Plots of Potential Energy $\Omega(x,y) = \frac{x^2+y^2}{2} + \frac{1-\mu}{r_1} + \frac{\mu}{r_2}$

= "forbidden region"

Insufficient energy for escape

Low-Energy Escape from Earth

Contour Plots of Potential Energy $\Omega(x, y) = \frac{x^2 + y^2}{2} + \frac{1 - \mu}{r_1} + \frac{\mu}{r_2}$

= "forbidden region"

Sufficient energy for escape

Chaos and Low-Energy Escape from Earth

So... to escape Earth with near minimal energy, you must pass through the "bottleneck" region, and hence exit on a chaotic trajectory.

Sufficient energy for escape

• Half the energy requirements of a Hohmann transfer

- Half the energy requirements of a Hohmann transfer
- Trajectories are chaotic

- Half the energy requirements of a Hohmann transfer
- Trajectories are chaotic
- Tiny steering requirements

- Half the energy requirements of a Hohmann transfer
- Trajectories are chaotic
- Tiny steering requirements
- Can design complex itineraries

- Half the energy requirements of a Hohmann transfer
- Trajectories are chaotic
- Tiny steering requirements
- Can design complex itineraries
- Transport is *slow*

- Half the energy requirements of a Hohmann transfer
- Trajectories are chaotic
- Tiny steering requirements
- Can design complex itineraries
- Transport is *slow*

Other applications

• Predicting chemical reaction rates (3-body problem models an electron shared between atoms)