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Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit
transient chaos. They play a key role in mediating transport processes involving scattering and
chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction)
of transient chaos in a “logistic” delay differential equation. We adapt an existing method (stagger-
and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis
of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in
particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set,
and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle

generated by horseshoe-type dynamics.
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I. INTRODUCTION

Many physical systems exhibit transient chaos; that is
they behave in an erratic, unpredictable way for some
time, but eventually settle down to rest or periodic mo-
tion. Rolling dice, tossing coins and other means of gen-
erating random outcomes are familiar examples. A simi-
lar phenomenon is observed in experiments on fluids [1].
Mathematical models also can exhibit long chaotic tran-
sients, e.g. the Hénon map [2, 3], coupled Van der Pol os-
cillators [4] and the kicked double rotor [5]. Despite the
diversity of these examples, they are thought to share in
common a universal dynamical mechanism, which is the
existence in phase space of an unstable, fractal invariant
set on which the dynamics are chaotic [2, 6]. Such a set
has been called a chaotic saddle (owing to its saddle-type
instability) or strange repeller.

A chaotic saddle generates transient chaotic dynamics
by the following mechanism. Phase space orbits origi-
nating exactly on the saddle remain chaotic for all time,
but due to the saddle’s instability these orbits are not ex-
perimentally observable. Rather, a typical phase space
trajectory enters a neighborhood of the saddle via its sta-
ble manifold, and thereafter shadows the saddle for some
time during which it exhibits the erratic motion associ-
ated with the chaotic dynamics on the saddle. After this
chaotic transient period the trajectory exits the saddle
along its unstable manifold, eventually to be captured
by an attracting set (typically a fixed point or periodic
orbit, but possibly a chaotic attractor).
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Because the dynamics on unstable sets cannot be ob-
served directly, it is often asserted that such sets have lit-
tle relevance to experimental observations. However, in
transient chaos it is precisely the transient behavior that
is of interest. Indeed, Kantz and Grassberger [2] have
argued that, owing to the mechanism described above, a
unified understanding of chaotic transients relies on an
analysis of the dynamics on the unstable chaotic set.

A fairly complete analysis is possible for systems that
exhibit horseshoe-type dynamics [7], such as the cele-
brated homo- or hetero-clinic chaos that occurs due to
the transversal intersection of stable and unstable mani-
folds of an equilibrium point or periodic orbit [8]. In this
situation the saddle is known to be a product of Cantor
sets, and the dynamics on it are conjugate to a subshift of
finite type (a generalization of the Smale horseshoe [9]),
yielding a symbolic coding of the dynamics on the saddle.

However, it is often difficult to obtain such rigorous
results for realistic models, so that there is an active lit-
erature on the numerical detection and approximation of
chaotic saddles. Here the essential problem is to con-
struct a numerical trajectory that lies very near the sad-
dle for an arbitrarily long time, the idea being that such
a trajectory will shadow a true trajectory on the sad-
dle. This is accomplished by repeatedly making small
(i.e. at the limit of numerical precision) perturbations
of a numerical trajectory, so that it remains indefinitely
within a small neighborhood of the saddle. Variations
on this theme, differing only in the method of choos-
ing suitable perturbations, include the “straddle-orbit
method” [4], “stagger-step method” [5], the “PIM triple
procedure” [3], and most recently a gradient search algo-
rithm due to Bollt [10]. All have fairly severe limitations.
The straddle-orbit and PIM triple methods apply only if
the unstable manifold of the saddle is one-dimensional.
The other methods suffer from the exponential growth of



phase space volume with dimension, which greatly hin-
ders the search for successful perturbations if the system
dimension is greater than about four. The construction
of a general-purpose algorithm for approximating chaotic
saddles remains an open problem.

In this paper we consider the problem of approximating
chaotic saddles for delay differential equations (DDE’s).
DDE’s arise in models of phenomena in which the rate
of change of the system state depends explicitly on the
state at some past time, as for example in the case of de-
layed feedback. Neural systems [11], respiration regula-
tion [12], agricultural commodity markets [13], nonlinear
optics [14], neutrophil populations in the blood [12, 15],
and metal cutting [16] are just a few systems in which
delayed feedback leads naturally to models expressed in
terms of delay differential equations.

DDE’s are also interesting because they serve as pro-
totypical dynamical systems of infinite dimension, for
which both numerical and analytical methods are in-
termediate in complexity between ordinary and partial
differential equations. DDE’s therefore provide a natural
ground for developing numerical methods for the analysis
of transient chaos in infinite dimensional systems, much
as Farmer [17] has suggested in the context of chaotic
attractors.

For simplicity we consider only autonomous, evolution-
ary delay equations with a single fixed delay time, T,
modeling a process z(t) € R satisfying

dx(t)
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for some f : R*> — R. Most of the ideas presented here
have obvious generalizations to more general autonomous
DDE’s, e.g. with higher dimension, multiple delays, time
varying or distributed delays, and higher derivatives.

Aside from unpublished work referenced in [2], to date
there has been no account of transient chaos in delay
differential equations. However, there is substantial ev-
idence that transient chaos does occur in some DDE'’s.
The present study was motivated by the observations
in [18, 19] of fractal basins of attraction (a hallmark
of transient chaos [6]) in delay equations'. Transverse
homoclinic orbits (hence horseshoe dynamics) have also
been proved to occur in some DDE’s [20-22], and there
is numerical evidence [23] for transverse homoclinic or-
bits in the Mackey-Glass equation [15]. These results
have been presented in discussions of attracting chaos,
whereas transient chaos in DDE’s has not specifically
been investigated. In particular, no attempt has been
made to identify and construct a chaotic saddle.

In the present work we investigate fractal basins of
attraction and transient chaos for DDE’s, taking a par-

! In the DDE studied in [18] fractal basins are present even in
the absence of a delay. Our focus here is on systems where the
dynamical instability is caused by the delay.

ticular “logistic” DDE as an example. We develop an
implementation of the stagger-step method applicable to
DDE’s of the form (1), and use it to construct and visu-
alize the chaotic saddle for our example.

Since the saddle is embedded in an infinite dimensional
phase space, it is difficult to visualize. We explore vari-
ous approaches to visualizing the saddle by using projec-
tions onto R? and IR®, and Poincaré section techniques
to achieve further reductions in dimension. While being
the first such investigation for DDE’s in particular, the
present work is also novel for giving the first numerical
construction of a chaotic saddle for a dynamical system
of infinite dimension. This work paves the way for a sim-
ilar approach to other infinite-dimensional systems, for
instance systems modeled by evolutionary PDE’s.

II. BACKGROUND ON DELAY
DIFFERENTIAL EQUATIONS

We consider one-dimensional autonomous delay differ-
ential equations of the form (1) with z(¢) € R, t > 0.
Properties of such DDE’s and their solutions can be
found e.g. in [24, 25]. Here we summarize the most es-
sential facts relevant to our work.

Without loss of generality we can take the delay time
T to be 1, achieved by an appropriate re-scaling of the
time ¢ in equation (1). Thus the DDE’s we consider have
the form

Z'(t) = f(z(t),z(t — 1)). (2)

For equation (2) to define a unique solution z(t), say
for all t > 0, initial data must be furnished in the form of
values z(t) for all —1 <t < 0. Otherwise, the right-hand
side will fail to be defined for some ¢ € [0,1]. In order
that equation (2) prescribes a well-defined evolutionary
process, we assume f is such? that for any continuous
initial function ¢ : [—1,0] — IR there is a unique solution
x(t) satisfying (2) for all ¢ > 0, together with the initial
condition

z(t) = ¢(t),

The DDE (2) can be regarded as a dynamical system
on the infinite-dimensional phase space C' = C[—1, 0], the
space of continuous functions on the interval [—1,0]. To
see how this can be so (see for example [25, 26]), consider
that a solution z(t) is uniquely determined for all t > 0
only if initial data are given for all ¢ € [—1,0], in the
manner of equation (3). More generally the continuation
of a solution for ¢ > T is uniquely determined by its
history on the interval [T — 1,T]. Let the function

te[-1,0]. (3)

xi(s) =xz(t+s), se€[-1,0] (4)

2eg f € C!and |f(u,v)| < N(t)max{|u|,|v|} for some positive
continuous function N (¢t) [24].
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FIG. 1: Action of the evolution operator S; for a DDE. A
given initial function ¢ = xo € C generates a solution x(t)
of the initial value problem (2)—(3), which in turn defines the
phase point z; € C at time t. S; is the operator on C takes
xo to x¢.

represent the segment of a given solution z(t) on the delay
interval [t—1,t]. Since z; uniquely determines zy for any
0 <t <, we can take x4 to be the phase point, at time
t, for the corresponding dynamical system. By virtue of
continuity of solutions of (2), x; € C for all t > 0 so we
take the phase space to be C.

For each t > 0let S; : C'— C be the evolution operator
that takes xg to ;. That is,

Si(xo0) = x4 (5)

where z,(s) = z(t + s) and z(t) is the solution of (2)-
(3) corresponding to the initial function ¢ = zy € C.
Since the DDE is autonomous, it is invariant under time
translation, so that S; has the semigroup property [25]:
Sp is the identity transformation, and Sy = S; 0 Sy for
all t, ¥ > 0. Thus the family of transformations {S; : ¢ >
0} determine a continuous-time dynamical system on C.

Figure 1 illustrates the relationship of the evolution op-
erator Sy to a given solution z(¢) of the DDE. The action
of S¢ on a function xg € C has a simple geometric in-
terpretation: it consists of continuing the initial function
¢ = g as a solution x(t) of the DDE, restricting the re-
sulting function to the interval [t — 1,¢], then translating
this function to time 0.

For a given initial function ¢ € C' we can recast the
DDE problem (2)—(3) as an abstract initial value problem
in C as follows,

t>0

{xt = S¢(x0), (6)

l‘oZ(b.

This initial value problem determines a trajectory {z; :
t >0} C C. Any given DDE solution is thus identified
with a particular trajectory in C. For example, a periodic
solution of the DDE corresponds to a periodic orbit, i.e.
a trajectory that lies on an invariant closed curve in C.
This identification of DDE solutions with phase space
objects allows one to study the DDE dynamics using the
tools and concepts of dynamical systems theory.

FIG. 2: The asymptotically stable periodic solution for the
logistic DDE (7) with A = 6.16. The period is approximately
3.38.

III. BASINS OF ATTRACTION

For illustrative purposes we consider the “logistic” de-
lay differential equation

2 (t) = —z(t) + da(t — 1) [1 — z(t — 1)] (7)

where ) is a real parameter. For A near 6.16 we find that
there is just one asymptotically stable periodic solution,
whose graph is shown in Fig. 2. In numerical experi-
ments, every solution of (7) exhibits one of two possible
asymptotic behaviors: it either is eventually asymptotic
to the periodic solution, or else eventually diverges to
—o00. These two asymptotic behaviors correspond to two
attractors in the phase space C for the dynamical sys-
tem S; — one an attracting periodic orbit I' C C, the
other an attractor “at infinity”. The set of initial func-
tions ¢ € C such that S;(¢) — T" constitutes the periodic
solution’s basin of attraction, 5(T").

Suppose z(t) is an asymptotically stable periodic solu-
tion for the DDE (2). Let I' C C be the corresponding
periodic orbit for the dynamical system S;. The basin of
attraction for I' is the set of initial functions ¢ € C such
that the orbit {S¢(¢) : t > 0} converges to T, i.e.,

BT)={peC:8S:(p) >T ast — oo}. (8)

Since the basin of attraction is a subset of the infinite-
dimensional space C, it is difficult to visualize. By graph-
ing its intersection with some two-dimensional subset of
C we can gain some insight into the geometry of this set
(a similar technique is used in [19]).

Figure 3 shows a sequence of images, at increasing lev-
els of magnification, of the basins of attraction for the
logistic DDE (7). For each point (A, B) on a 2048 x 2048
uniform grid, we compute a numerical solution generated
by the initial function

¢o(t) = A+sin(Bt), tel0,1]. (9)
If this solution is eventually asymptotic to the periodic
solution shown in Fig. 2, then the function ¢ lies in the
basin of attraction 3(I"), and we plot a pixel at the corre-
sponding point (A, B). Otherwise, the solution diverges
to —oo, and ¢ does not lie in B(T"). In this way we obtain
an image in which the set of black pixels approximate
the basin of attraction for the periodic solution I'. More
precisely, the image represents part of the intersection



of 3(T') with the 2-dimensional subset® of C' consisting of
functions ¢ of the form (9) parametrized by (4, B) € R?.

The basins of attraction shown in Fig. 3 have a self-
similar fractal structure; their boundaries appear to be
the product of a curve and a Cantor set. This structure is
typical of basins of attraction for dynamical systems that
exhibit transient chaos and possess an invariant unstable
set on which the dynamics are chaotic [4, 7, 27]. Phase
points on the basin boundaries lie on unstable invariant
sets in C, including unstable periodic orbits, chaotic sad-
dles, and their stable manifolds. The fractal structure
of the boundaries therefore reflects the fractal structure
of the supposed chaotic saddle. We conjecture that the
dynamical system S; does possess such a saddle; in the
following sections we seek to construct and visualize the
saddle and analyze the dynamics on it.

From the intricate structure of the basins shown in
Fig. 3 it is apparent that the DDE (7) must exhibit a
form of sensitivity to initial conditions (final state de-
pendence [27]) at least for initial functions near the basin
boundary. Initial phase points near the boundary are ex-
pected to shadow the saddle’s stable manifold, and to
exhibit the associated chaotic dynamics for some time
before converging to one or the other of the two attrac-
tors.

Indeed, solutions of equation (7) with long chaotic
transients are readily found. Figure 4 shows numeri-
cal solutions corresponding to two near-identical initial
functions, ¢; and ¢o, differing by one part per million.
Both exhibit a transient chaotic period during which the
solution behaves erratically, followed eventually by con-
vergence to the attracting periodic solution. The solu-
tions diverge rapidly for ¢ > 30 and remain uncorrelated
during the chaotic phase of their evolution. Note that
this sensitivity to initial conditions occurs only during
the transient phase, as both solutions eventually exhibit
the same asymptotic behavior of convergence to the at-
tracting periodic orbit.

IV. APPROXIMATING THE SADDLE
A. Discretizing the Delay Equation

Analytical tools for studying DDE’s are few, and in
practice one must usually resort to numerical simulations.
Thus, while it is useful to view a DDE as a dynamical
system S; on the infinite-dimensional phase space C, by
discretizing the delay equation one effectively introduces
a finite-dimensional dynamical system that approximates
S;. It is to this approximate system that we apply the

3 The form of the initial functions ¢ given by equation (9) is some-
what arbitrary. Any two-parameter family of functions in C
would do, provided this family intersects 8(T').

stagger-step method in order to approximate chaotic sad-
dles for DDE’s.

Any fixed time-step integration method furnishes ap-
proximate solution values z,, = x(nh) at times t = nh
(n=0,1,2,...) on a uniform grid, where h is the time
step. We choose h = 1/M so that the delay interval
[—1,0] is discretized into an integer number M of equal
subintervals. For ease of notation fix N = M + 1. Then
at time step n the vector

S Tp—1,Ty) € RY (10)

= (s

provides a discretized representation of the phase point
function z¢(s) € C. In the literature on numerical so-
lution of DDE’s, u” is the “history queue” at time step
n.

The basic integration time step that takes u™ to u™**
implicitly defines a map G : RY — RY, such that
u"t! = G(u"). (By contrast, recall that for a scalar
ordinary differential equation one time step is effected
by an analogous transformation G : R — R.) This map
approximates the action of the time-h evolution operator
Sk (c.f. equation (5)). Thus we regard G as a discrete-
time dynamical system on R that approximates the
corresponding discrete-time system Sy on C.

A single integration time step makes only an incremen-
tal change to u™ on the order of the time step h, so that
it is convenient to define F = G to be the dynamical
system on RY that carries out N integration time steps.
Thus F' approximates the action of the time-one map S
taking the function x;(s) to x;v1(s).

In our implementation we use a fifth-order Runge-
Kutta time step to integrate from =z, to x,y1, with
N = 250 and therefore a time step h = 0.004. Piecewise
cubic polynomial interpolation is used for evaluation of
x(t — 1) at times that do not coincide with the uniform
grid.

B. Applying the Stagger-Step Method

We use the stagger-step method [5] to find arbitrarily
long chaotic solutions z(t) and thereby construct the sup-
posed chaotic saddle, for the numerical dynamical system
F on RY that approximates the time-one solution map
for the logistic DDE (7). The details of the implemen-
tation are as follows. Throughout, we take the norm on
RY to be the max-norm ||u|| = max; |us|, both for the
sake of computational efficiency and because it gives a
natural approximation of the sup-norm on the function
space C.

The stagger-step method requires that one define a
suitable restraining region R C RY that contains no
attractor for F'. To this end we take R to be the ball
{u e RY : |lu|| < 30}, from which are deleted all points
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FIG. 3: Basins of attraction for the logistic DDE (7). From left to right, each image shows an enlargement of the boxed region
in the previous image. For initial functions of the form ¢(t) = A +sin(Bt), t € [0, 1], a pixel is plotted at the point (A, B) if
the corresponding solution is asymptotic to the periodic solution shown in Fig. 2. White pixels correspond to initial functions

that generate solutions diverging to —oo.
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FIG. 4: Numerical solutions of the logistic DDE (7), illustrating chaotic transients and sensitive dependence on initial conditions.
Solutions 1 and x2 correspond respectively to near-identical initial functions ¢1(¢t) =t and ¢2 = ¢1 + 107 on [0,1].

within a distance e = 1072 of the attracting periodic*
orbit I' that corresponds to the asymptotically stable pe-
riodic solution shown in Fig. 2. Thus R excludes both
the attractor I' and the attractor at infinity.
For each u € R define the transient lifetime
T(u) =min{n >0: F"(u) ¢ R}. (11)
We set T'(u) = oo if F™(u) € R for all n > 0; thus the set
of phase points u such that 7'(u) = oo constitute an in-
variant set that contains the chaotic saddle. For example,
the second solution in Fig. 4 has a transient lifetime of
about 110. The stagger-step method is motivated by the
intuitive idea (justified in [3]) that where T'(u) is large,
u should be close to the saddle. For R as defined in the
preceding paragraph, we calculate T'(u) as the number
of iterations of F' required to take u™ = F™(u) either
outside a ball of radius 30 or to within € of the attracting
periodic solution.
For a given 0 < § < 1 and T}, > 1 (we take § = 10710
and T, = 90) the goal of the stagger-step method is to
find a §-pseudo-trajectory for F'; that is, a trajectory

4 The attracting set for the discrete-time system F ~ S; will be
quasi-periodic if the corresponding DDE solutions has irrational
period.

{u" : n > 0} such that
|7 (u™) —u" | <5,

with T'(u™) > T, for all n.
iterating as follows:

n+1 __ F(un)
u + —{F(un+rn)

This is accomplished by

3 n

it T(u ) > T, (12)
otherwise,

where r” € RY is a randomly chosen stagger, with
[lr™|| < &, such that T'(u™ 4+ r"™) > T.. The direction
of r, is chosen randomly with uniform distribution on
an N-sphere. Following the suggestion of [5], the search
for a successful stagger is made more efficient by ran-
domly choosing the magnitude ||r,| from an exponen-
tial distribution, such that log;, ||r,|| is distributed uni-
formly on the interval (—15,—10). Staggers r,, are sam-
pled from this distribution until one is found satisfying
T(u" +r") > T..

Using this algorithm we are able to find stagger-step
trajectories {u” € RY : n > 0} that lie entirely within
the restraining region R for arbitrarily long times. We
find that every such trajectory appears to be aperiodic,
and we suppose therefore that u” is eventually very near
the chaotic saddle after some transient number of it-
erations during which u” approaches the saddle along
its stable manifold. Furthermore, different runs of the



stagger-step algorithm, with different starting conditions
and different sequences of random staggers, all generate
saddle trajectories that appear to have the same geom-
etry and statistics as reported in the following section,
suggesting that there is a unique chaotic saddle on which
the dynamics are ergodic.

By the relationship (10), corresponding to any stagger-
step trajectory is a time series {x,, } which agrees, within
precision §, with a numerical solution of the DDE. By
construction such a solution exhibits an arbitrarily long
chaotic transient. Indeed, time series constructed in
this way are qualitatively very similar to those shown in
Fig. 4, except that convergence to the periodic solution
or to the attractor at infinity is deferred indefinitely.

V. VISUALIZING THE SADDLE

Phase space objects for delay equations, being subsets
of the infinite-dimensional phase space C, pose significant
challenges for visualization. Despite discretization, which
approximates the DDE by a finite-dimensional dynamical
system on RY, this difficulty remains because of the large
dimension N (250 in our implementation).

One technique that has been used for visualizing phase-
space objects for DDE’s is to plot in two dimensions the
curve described by the point (x(t),z(t — 1)) for a given
solution x(¢t). This construction can be interpreted as a
projection, from C onto IR?, of the corresponding phase
space orbit {x;} C C, according to the mapping

zy € C i (24(0), 34(—1)) € R (13)

Figure 5 shows such a projection of a stagger-step tra-
jectory constructed, as described in the preceding sec-
tion, for the logistic DDE (7). This trajectory appears
to be aperiodic, consistent with our supposition that the
stagger-step trajectory approximates a true trajectory on
a chaotic invariant set.

Sensitive dependence on initial conditions, e.g. as il-
lustrated in Fig. 4, provides further evidence for chaotic
dynamics of saddle trajectories. The Lyapunov spec-
trum on a saddle trajectory can be used to quantify
the degree of sensitive dependence. Using standard tech-
niques [17, 28, 29] applied to orbits of the time-one map
F near the saddle, we estimate the five greatest base-2
Lyapunov exponents to be 0.53, 0.00, —1.06, —1.56 and
—2.01 (independent runs of the stagger-step algorithm,
differing in their initial conditions and the sequence of
random staggers, reproduce these exponents to the num-
ber of decimal places given). That is, two near-identical
phase points originating near the saddle will typically
diverge exponentially as 2°-°3™ during their transient pe-
riod. We see that the saddle has just one unstable direc-
tion along which trajectories diverge exponentially. (The
zero exponent corresponds to the direction tangent to the
flow S;.) Note, however, that the positive Lyapunov ex-
ponent is based on a trajectory on the unstable saddle
set, and signifies exponential divergence only for phase

1.0
1

x(t—1)

0.0

FIG. 5: Projection of a trajectory on the chaotic saddle onto
IR?. We plot the trajectory of the point (2(t),z(t —1)) where
z(t) is a chaotic solution constructed by the stagger-step al-
gorithm.

space trajectories near the saddle. After a transient pe-
riod, initially divergent trajectories may in fact converge
on the same attracting period orbit, as in Fig. 4.

The correlation dimension [30] is frequently used to
quantify the geometry of complex phase space objects.
Using standard time-delay embedding techniques [31] ap-
plied to a long chaotic time series {x,,} constructed from
a saddle trajectory, we estimate the correlation dimen-
sion of the chaotic saddle to be 2.2 + 0.1. Thus the sad-
dle appears to be a fractal invariant set, of dimension
intermediate between 2 and 3, on which the dynamics
are chaotic.

As the saddle’s dimension is greater than 2 it is not
surprising that its projection shown in Fig. 5 fails to be
one-to-one. However, we can hope to obtain a better
representation by projecting the saddle into R?® and using
Poincaré section methods to effect a further reduction in
dimension. Figure 6 shows a saddle trajectory plotted in
R? under the projection

2 € C = (24(0),24(—0.5),2,(—1)) € R?

(14)
=(x(t),z(t — 0.5),z(t — 1)).

Also shown are a series of cross-sections (slices perpendic-
ular to the x(t)-axis) through the resulting 3-dimensional
set, which show more clearly the geometric structure of
the saddle. At each cross-section we plot the points of in-
tersection of the saddle trajectory with a plane z(t) = z*.
This procedure constructs a Poincaré section through the
saddle set, with “surface of section”

Y ={x; € C:x:(0) ="}, (15)



which is then projected onto R® under the map pre-
scribed by equation (14).

The Poincaré section with surface of section z* =1 is
shown in detail, at two levels of magnification, in Fig. 7.
In these images it appears that the projection in equa-
tion (14) is one-to-one almost everywhere on the saddle.
That is, with the exclusion of points where the projection
fails to be one-to-one, the projection results in a faith-
ful reconstruction or embedding [31] of the saddle in R®.
Figure 7 is qualitatively very similar to chaotic saddles
for the systems investigated in [2—4, 10], and suggests
that the saddle has the fractal structure of a product of
Cantor sets, as would be the case with horseshoe-type
dynamics [4, 7].

VI. CONCLUSIONS

Here, for the first time, we have investigated transient
chaos in delay differential equations, and we have given
the first numerical construction of a chaotic invariant set
for the corresponding infinite-dimensional dynamical sys-
tem. Using the logistic DDE (7) as an example, we have
shown the existence of fractal basins of attraction and
solutions exhibiting long chaotic transients. These phe-
nomena suggest the existence of a chaotic invariant set
in the infinite-dimensional phase space C[—1, 0].

Using the stagger-step method we are able to construct
arbitrarily long aperiodic trajectories that appear to lie
on an unstable invariant set of fractal dimension (i.e. a
chaotic saddle or strange repeller). Although the saddle
itself arises in an infinite-dimensional phase space, it ap-
pears to be a set of relatively low dimension, having e.g.
a correlation dimension of about 2.2. By a combination
of projection and Poincaré section techniques we are able
to visualize a two-dimensional cross-section through this
set, and thereby confirm that the saddle has a Cantor-
like fractal structure that is consistent with the presence
of horseshoe-type dynamics.

There are a number of competing approaches to the ap-
proximation of chaotic saddles. The stagger-step method
appeared a priori to be the best choice here, because of
the high-dimensionality of our problem and because other
methods are applicable only if the saddle has just one un-
stable dimension. However, for the logistic DDE we have
used for illustration, the saddle does indeed turn out to
have just one unstable dimension. Therefore other tech-
niques for approximating the saddle should be effective,
and as these are expected to be more efficient this is a
promising direction for further investigation.

The work presented here is also novel in that it gives
the first application of numerical methods for the con-
struction of a chaotic saddle to an infinite-dimensional
dynamical system. Previous authors have cited the
“curse of dimensionality” as a challenge inherent in ap-
proximating saddles systems in more then a few dimen-
sions. To our knowledge the investigation in [10] of a
9-dimensional system of ordinary differential equations
has, until now, been the most ambitious in this regard.
Our successful construction of a chaotic saddle in infinite
dimensions represents a major step forward. In particu-
lar, the ideas presented here should be generalizable in a
straightforward way not only to more general DDE’s, but
also to evolutionary partial differential equations model-
ing physical systems of interest, for example in turbulence
of fluids. Extending our numerical approach to evolu-
tionary PDE’s is an obvious and potentially rich area for
further investigation.
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