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1 Introduction

When loudspeakers interact with room boundaries and other acoustically reflective surfaces, the
delay between direct and reflected sound waves affects not only the perceived timbre, but also the
degree to which believable phantom stereo images are created. If reflected sound waves arrive too
soon after the direct sound, they generate spurious directional cues that can spoil the stereo-imaging
illusion.

The precedence effect offers a remedy for the effect of room reflections on stereo imaging: to the
extent that the reflected sound is a sufficiently delayed copy of the direct sound, with similar spectral
and temporal content, the auditory system will take directional cues only from the direct sound [1,
ch. 6]. To make this work we need loudspeakers with frequency-independent polar response (i.e.
“constant directivity”) and we need to place them far enough from reflecting surfaces.

There is some uncertainty about the minimum delay needed for precedence to take full effect,
since it is both signal- and level-dependent. An early experiment by Haas [2, 3] suggests 1ms
is just sufficient. Later work [4, 5] found that delays of about 10ms give the highest reflection
level threshold for barely detectable image shifts. Figure 6.16 of Toole [1] would suggest that in a
“typical” room, a delay of at least 5ms will put reflection levels below the threshold where they
can be perceived as a second image. Linkwitz [6] recommends at least 6ms delay, and this appears
to be a sensible target.

To delay the arrival of the reflected sound at the listening position by 6ms relative to the direct
sound, the path length for the reflected sound must be at least (343m/s) × (6ms) ≈ 2.1m longer
than the direct path from loudspeaker to listener. This path length difference can be achieved
only if the room is sufficiently large. One wonders: for a given arrangement of loudspeakers and
listener, what is the smallest rectangular room where a 6ms delay in first-reflection arrivals can be
achieved?

2 Lateral First-Reflection Geometry

Consider a loudspeaker and listener as in Figure 1, which illustrates the geometry of a first-order
lateral reflection from a wall. The listener is at A, with the loudspeaker at B. Point C is the
image of the loudspeaker in the wall. The reflected sound path BOA has the same length as the
hypotenuse AC, so we have

direct path length = AB = r

reflected path length = AC =
√

(2x− u)2 + v2.

Here u, v are the components of the loudspeaker-listener displacement measured perpendicular and
parallel to the reflecting wall, respectively; x is the distance from the listener to the reflecting wall.
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Figure 1: Direct and reflected sound paths from a loudspeaker (green circle) to a listener (green
triangle). Point C is the reflected image of the loudspeaker in the wall. The hypotenuse AC gives
the reflected path length BOA.

A little simplification gives

AC =
√

4x2 − 4ux+ u2 + v2

=
√

4x2 − 4ux+ r2.

The difference in path lengths determines the difference in arrival times at the listening position.
Thus, with c denoting the speed of sound in air, the arrival time difference T is given by

T =
AC −AB

c
=⇒ cT =

√

4x2 − 4ux+ r2 − r (1)

=⇒ 4x2 − 4ux+ r2 = (r + cT )2

=⇒ x2 − ux− 1
4

(

2rct+ c2T 2
)

= 0.

The quadratic formula then gives

x = 1
2

(

u+
√

u2 + 2rcT + c2T 2
)

(2)

as the distance the listener must be from the wall, to achieve a given arrival time delay T . (The
other, spurious root gives x < 0.)

3 Equilateral Placement: An Example

Consider the typical arrangement shown in Figure 2, where the listener and a stereo pair of loud-
speakers form an equilateral triangle that shares an axis of symmetry with the room. In the
following example we take the stereo separation r to be 8 ft ≈ 2.44m. For reflections from both the
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Figure 2: Typical symmetric equilateral arrangement of a listener (green triangle) and stereo pair
of loudspeakers (green circles) in a rectangular room.

left and right side walls we have (see Figure 1)

u = r cos(60◦) = 1
2r ≈ 1.22m

and (with c = 343m/s) equation (2) gives x ≈ 2.59m as the distance from listener to side wall to
achieve a delay of T = 6ms. Thus

2x ≈ 5.19m ≈ 17.0 ft

is the minimum room width for 6ms delay of side wall reflections. This is somewhat greater than
the 4.5m minimum that Linkwitz gives in [6]. The distance from the loudspeaker to the side wall
is x− u ≈ 1.4m ≈ 4.5 ft.

For the reflection off the front wall we have

u = r sin(60◦) =

√
3

2
r ≈ 2.11m

in equation (2), giving x ≈ 3.22m as the distance from listener to front wall to achieve 6ms delay.
For the rear wall reflection the quantities are the same, except the loudspeaker and listener locations
in Figure 1 are reversed and the minimum distance from listener to rear wall is x − u ≈ 1.11m.
Thus the minimum room depth for 6ms delay of both front and rear wall reflections is

x+ (x− u) = 2x− u ≈ 4.33m ≈ 14.2 ft,

quite a bit less than 6m minimum that Linkwitz suggests. By symmetry the loudspeakers also are
at x− u ≈ 1.1m ≈ 3.6 ft from the front wall.

Figure 3 illustrates this smallest room for which a 6ms reflection delay can be achieved with 8 ft
equilateral placement, together with the necessary placement of the listener and loudspeakers with
respect to the room. Superimposed on the room is a contour plot of the first reflection delay time
(minimum of all four delays from equation (1)) as a function of loudspeaker placement, for the fixed
listening position shown. Loudspeakers must be placed in the shaded region to achieve at least
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Figure 3: The smallest rectangular room with an 8 ft≈2.44m equilateral arrangement of a listener
(triangle) and loudspeakers (circles) that delays the arrival of the first lateral sound reflection by
6ms. Black contours indicate, as a function of loudspeaker placement, the delay in arrival of the
first reflection at the indicated listening position. Loudspeakers must be placed in the shaded region
to achieve at least 6ms delay. The 6ms contours for reflections from individual walls are shown in
red.

6ms delay. Also shown, for each of the four walls, is the contour giving loudspeaker placements
that delay a particular wall reflection by exactly 6ms. This situation is highly constrained: moving
either loudspeaker closer to a room boundary will cause one of the reflections to arrive with less
than 6ms delay. In the configuration shown all four room reflections arrive at the listener at the
same time, which is perhaps undesirable. In a larger room it would be possible to stagger the
reflection arrivals.

4 Equilateral Placement: General Case

Increasing the stereo separation r increases the minimum room dimensions needed to achieve a
given first lateral reflection delay. Carrying out the preceding analysis in general, equation (2)
gives the minimum room width

W = 2x = 1
2r +

√

1
4r

2 + 2rcT + c2T 2 (u = 1
2r), (3)

and depth

D = 2x− u =
√

3
4r

2 + 2rcT + c2T 2 (u =
√
3
2 r), (4)
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(a) Side Wall Reflections

1

2

3

4

st
er
eo

se
p
a
ra
ti
o
n
r
[m

]

2 4 6 8 10 12
delay T [ms]

7m

6m

5m4m

3m

2m

(b) Front/Rear Wall Reflections

Figure 4: For loudspeakers and listener forming an equilateral triangle of side length r: (a) Contour
plot of the minimum room width, W , for which it is possible to delay side wall reflections by an
amount T (equation (3)). (b) Contour plot of the minimum room depth, D, for which it is possible
to delay both front- and rear-wall reflections by T (equation (4)). The dots correspond to the
particular case r = 8 ft, T = 6ms analyzed in Section 3.

for which it is possible to achieve a given reflection delay T from the front/rear and side walls,
respectively, for a given stereo separation r in an equilateral arrangement. Figure 4 shows contour
plots of these functions: each curve gives the relationship between stereo separation, r, and the
maximum achievable first reflection delay, T , for a room of a given width or depth.

In Figure 4(a), for example, we see that in a 4m-wide room the stereo separation must be
reduced to about 1m to achieve 6ms delay for reflections from the side walls. For a room 4m deep,
Figure 4(b) shows that for a stereo separation of about 2m the front- and rear-wall reflections can
be delayed by up to 6ms, provided the loudspeaker-listener triangle is properly placed with respect
to front and rear walls.

Note that while the listening position is always symmetric with respect to the side walls, this is
not the case for the front-to-rear position. The front- and rear-wall reflections are simultaneously
maximally delayed when both reflections have the same delay. This occurs when the speaker-to-
front-wall and listener-to-back-wall distances are equal. Consequently, when the stereo separation
is comparable to the room dimensions (which is typically the case in small rooms) the listening
position must move closer to the rear of the room to maximize both front- and rear-wall reflection
delays simultaneously.

For any given room, equation (2) can be used to find the distance from speaker to front wall
that will achieve a given delay for front wall reflections:

front wall distance = x− u =

(

√

3
4r

2 + 2rcT + c2T 2 −
√
3

2
r

)

/2 (u =
√
3
2 r). (5)

This expression also gives the distance from listener to rear wall to achieve a rear-wall reflection
delay of T . Similarly, achieving a side-wall reflection delay of T requires that the distance from
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Figure 5: For loudspeakers and listener forming an equilateral triangle of side length r: (a) Distance
from speaker to side wall needed to achieve a given side wall reflection delay (equation (6)). (b)
Distance from speaker to front wall (or listener to rear wall) to achieve a given reflection delay for
these walls (equation (5)).

loudspeaker to side wall be

side wall distance = x− u =

(

√

1
4r

2 + 2rcT + c2T 2 −
1

2
r

)

/2 (u = 1
2r). (6)

Figure 2 show graphs of relationships (5)–(6). The required wall distance depends only weakly
on r, particularly for the front- and rear-wall reflections: speaker- and listener-to-wall distances
of about 1.1m ≈ 3.6 ft will achieve 6ms delay for these reflections, essentially independent of the
stereo separation.

5 Optimal Toe-In Angle for a Dipole

5.1 Minimizing Lateral Reflection Levels

A directional loudspeaker (e.g. dipole radiator) offers the possibility to orient the loudspeaker to
selectively attenuate lateral room reflections, thus taking advantage of the level dependence of the
precedence effect. This can be especially helpful in small rooms with too little space to obtain the
desired 6ms reflection delay.

Figure 6 shows two scenarios for the front- and nearest side-wall reflections with loudspeakers
arranged in an 8 ft equilateral triangle (the loudspeaker is 1.1m and and 1.4m from the front and
side walls, respectively), with the polar response of an ideal dipole superimposed. In Figure 6(a)
the dipole axis is oriented directly toward the listener, as would typically be the case. The side
wall reflection is severely attenuated, since it is radiated very near the dipole null (at about 88◦

off-axis, the attenuation is −20 log10(cos 88
◦) ≈ 29 dB). The front wall reflection is also attenuated,

but much less so (about 3 dB).

By rotating the dipole within this configuration one can vary the levels of the two first reflections,
increasing one as the other decreases. It would seem, in the case of similar delays for the two

6



si
d
e
w
a
ll

front wall

listener

(a)

si
d
e
w
a
ll

front wall

listener

(b)

Figure 6: Reflection paths for first-order front- and side-wall reflections, with the polar response
for an ideal dipole radiator superimposed (red). In (a) the dipole axis is oriented directly toward
the listener, resulting in strong attenuation of the side wall reflection but much less attenuation of
the front wall reflection. In (b) the dipole axis has been toed in to achieve equal radiated levels for
the front- and side-wall reflections.

reflections, that the optimal toe-in angle should attenuate the reflections equally: any other angle
will cause one of the reflections to increase in level. Neglecting the difference in attenuation (on the
order of 1 dB) due to the difference between the reflection path lengths, this will occur when the
dipole axis bisects the angle between the two rays that are reflected to the listener, as illustrated
in Figure 6(b). Here the loudspeaker has been toed in by 21◦, so that both reflections are radiated
at 67◦ off-axis and therefore at equal levels of −20 log10(cos 67

◦) ≈ 8 dB below the direct sound. In
practice such an arrangement is easy to achieve: mirrors on the walls at the two reflection points
will show symmetric views of the loudspeaker.

Here we derive a formula for the toe-in angle that places side- and front-wall reflections at equal
angles relative to the dipole axis, thereby attenuating these reflections equally. Figure 7 illustrates
the geometry. The red line segment indicates the dipole axis, which has been toed in by an angle
φ relative to the listener. The listener is at (xl, yl) and the loudspeaker at (xs, ys) relative to the
origin at corner. By extending rays from the loudspeaker through the reflection points R1 and R2

to the images of the listener in the walls, we obtain

θ1 = tan−1 yl − ys
xl + xs

, θ2 = tan−1 xl − xs
yl + ys

. (7)

In order that the dipole axis bisects the angle between these rays, we require

β =
1

2
(θ1 + θ2 + 90◦). (8)

The dipole orientation α relative to the room is then given by

α = β − θ1, (9)
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Figure 7: Geometry of front- and side-wall reflection paths resulting in both reflections being
radiated at the same angle β from the dipole axis (red), which is toed in by an angle φ relative to
the listener.

which after substituting from equation (7) and simplifying yields

α = 45◦ +
1

2
(θ2 − θ1)

= 45◦ +
1

2
tan−1 xl − xs

yl + ys
−

1

2
tan−1 yl − ys

xl + xs

= 45◦ +
1

2
tan−1 y

2
s − y2l − x2s + x2l
2(xsys + xlyl)

. (10)

The toe-in angle φ relative to the listener is then

φ = tan−1

(

yl − ys
xl − xs

)

− α

= tan−1 yl − ys
xl − xs

−
1

2
tan−1 y

2
s − y2l − x2s + x2l
2(xsys + xlyl)

− 45◦. (11)

Equation (11) gives the desired toe-in angle φ as a rather complicated function of the loud-
speaker and listener positions. For illustration, consider a fixed listener at xl = 2.6m, yl = 3.2m.
Figure 8(a) shows the corresponding toe-in angle as a function of loudspeaker placement, calculated
by equation (11). Within the range of typical placements the optimal toe-in angle varies between
about 10◦ and 30◦. It appears to be a function mostly of the orientation of listener and loudspeaker,
and largely independent of their separation.

With the dipole axis toed in as described above, the ratio of reflected to direct sound level can
be determined as a function of loudspeaker placement. The reflected and direct sounds are radiated
at off-axis angles β and φ, respectively (Figure 7), hence for an ideal dipole the ratio of reflected
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Figure 8: For a fixed listener position (green triangle) at xl = 2.6m, yl = 3.2m: (a) Toe-in angle φ
(see Figure 7) resulting in equal radiated levels for front- and side-wall first reflections, as a function
of loudspeaker placement. (b) Ratio, at the listening position, of front- or side-wall reflected sound
level (whichever is higher) to direct sound, for an ideal dipole toed in according to (a). For reference
the dashed line indicates loudspeaker placements for an equilateral arrangement of a stereo pair
along the front wall; the dot indicates placement for 8 ft stereo separation.
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to direct sound level will be
reflected radiation

direct radiation
=

cosβ

cosφ
(12)

at the source, with β and φ given by equations (8) and (11). Because sound levels decrease as the
reciprocal of path length, there will be a further attenuation factor of

(

reflection attenuation

direct attenuation

)

front

=

√

(xl − xs)2 + (yl − ys)2

(xl − xs)2 + (yl + ys)2
(13)

for the front wall reflection and

(

reflection attenuation

direct attenuation

)

side

=

√

(xl − xs)2 + (yl − ys)2

(xl + xs)2 + (yl − ys)2
(14)

for the side wall reflection, relative to the direct sound.

Figure 8(b) shows, as a function of loudspeaker placement, the net ratio of reflected to direct
sound as calculated from equations (12)–(14), for the same room geometry and dipole toe-in as in
Figure 8(a). Interestingly, typical loudspeaker placements fall near the saddle point, so that the
reflected-to-direct ratio is largely insensitive to placement. For placement nearer to the listener
the ratio is dominated by the decrease in direct sound level at 6 dB per doubling of distance,
as expected. More surprising is that the direct- to reflected-sound ratio increases rapidly as the
loudspeaker is placed nearer to the corner of the room. This is because corner placement puts both
reflection paths in the dipole null (achieved in this instance with a toe-in angle of φ ≈ 12◦).

In smaller or more constrained rooms, where the loudspeakers must be placed closer to either
the front or side walls, one can selectively suppress the first reflection from the closest wall by
adjusting the toe-in angle. In this case it is unclear what criterion should be used to determine the
optimal toe-in angle. A determination would require accurate data on how the precedence effect
depends on both level and delay, for delays in the range of 1-10ms.

5.2 Minimizing Inter-Channel Level Difference for Off-Center Listeners

When a listener is placed off-center with respect to a stereo pair of loudspeakers, the sound level due
to the closer loudspeaker will be higher. If the resulting level difference between speakers is great
enough, the phantom stereo image will be perceived to collapse into the nearest loudspeaker. This
phenomenon limits the size of the “sweet spot” in which the stereo illusion is stable. By toeing-in
a dipole stereo pair one can reduce the inter-channel level difference for off-center listeners, thus
widening the sweet spot: as the listener moves laterally away from one loudspeaker, the decrease
in sound level due to increased distance is compensated by the increase in level closer to the dipole
axis. A judicious choice of toe-in angle will balance these effects exactly, resulting in a constant
left/right balance as the listener moves across the center position.

Figure 9 illustrates the geometry when a listener (green triangle) is offset a lateral distance x
from the center listening position with respect to a pair of loudspeakers (green circles). The dipole
axis (red line segment) is toed in by an angle φ relative to the center position (black dot). We wish
to determine the toe-in angle φ that minimizes the variation of inter-channel level difference as a
function of x.
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Figure 9: Geometry of the direct sound path when a listener (green triangle) is displaced laterally a
distance x from center with respect to a stereo pair of loudspeakers (green circles), each of which is
toed in by an angle φ relative to center (black dot). The red line segment indicates the loudspeaker
axis.

For a single ideal dipole at the left loudspeaker, the sound level at the listener relative to the
level at center is

Al =
R

r
cos(φ− β)

=
R

r

(

cosφ cosβ + sinφ sinβ
)

. (15)

To express equation (15) as a function of x only, we use the cosine and sine laws respectively to
write

x2 = R2 + r2 − 2Rr cosβ =⇒ cosβ =
R2 + r2 − x2

2Rr

and
sinβ

x
=

sin(π2 + θ)

r
=

cos θ

r
=⇒ sinβ =

x

r
cos θ.

Substituting these expressions into equation (15) yields

Al =
R

r2

(

R2 + r2 − x2

2R
cosφ+ x cos θ sinφ

)

.

Finally, since

r2 = (x+R sin θ)2 + (R cos θ)2

= x2 +R2 + 2xR sin θ,

we obtain (after some simplification)

Al =
(1 + x

R
sin θ) cosφ+ x

R
cos θ sinφ

1 + ( x
R
)2 + 2 x

R
sin θ

. (16)

By symmetry we can exchange x for −x to obtain the level from the right loudspeaker:

Ar =
(1− x

R
sin θ) cosφ− x

R
cos θ sinφ

1 + ( x
R
)2 − 2 x

R
sin θ

. (17)
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Figure 10: Inter-channel level difference as a function of lateral displacement of the listener from
center, for various values of the toe-in angle φ of a stereo pair of ideal dipole radiators in an
equilateral arrangement with stereo separation R = 8 ft ≈ 2.4m. (c.f. Figure 9 and equations (16)–
(17).)

For a typical 8 ft equilateral arrangement (R = 8 ft ≈ 2.4m, θ = 30◦), Figure 10 shows graphs
of the inter-channel level difference Al/Ar as a function of listener offset x, for several values of the
toe-in angle φ. As the toe-in angle increases, the inter-channel level difference decreases at all off-
center listening positions. For a range of toe-in angles between about 15◦ and 30◦ the inter-channel
difference is less than 1 dB across a 2m-wide listening region.

In Figure 10 the maximally flat response at center is achieved when φ = 30◦. Indeed, it is
straightforward to show from equations (16)–(17) that in general the conditions for maximally flat
response at center, viz

dAl

dx

∣

∣

∣

x=0
= 0 =

dAr

dx

∣

∣

∣

x=0
,

are met if and only if φ = θ.

An interesting feature of Figure 10 is that for toe-in angles near 25◦ there are three distinct
“sweet spots” at which left and right levels are exactly matched: the center position and two
positions located symmetrically to either side of center. Using equations (16)–(17) and setting
Al = Ar yields (after some simplification)

x
[

R2(tan θ − tanφ)− x2(tan θ + tanφ)
]

= 0. (18)

Solving for x yields the locations of the three sweet spots,

xequal = 0 or xequal = ±R

√

tan θ − tanφ

tan θ + tanφ
. (19)

The secondary sweet spots exist only when φ < θ.
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Alternatively, solving equation (18) for φ gives

φ = tan−1

(

R2 − x2equal
R2 + x2equal

tan θ

)

(20)

for the toe-in angle φ that places the secondary sweet spots at desired off-center locations. For ex-
ample with R = 8 ft≈ 2.4m, if we wish to place the secondary sweet spots at xequal = ±0.5m (thus
providing sweet spots for a pair of listeners seated 1m apart) equation (20) gives the corresponding
toe-in angle φ ≈ 28◦. Inter-channel timing differences will be compromised at the secondary sweet
spots, but at least level differences will not cause the stereo image to collapse to one side.
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