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Abstract

Systems whose time evolutions are entirely deterministic can nevertheless be studied

probabilistically, i.e. in terms of the evolution of probability distributions rather than

individual trajectories. This approach is central to the dynamics of ensembles (statistical

mechanics) and systems with uncertainty in the initial conditions. It is also the basis

of ergodic theory—the study of probabilistic invariants of dynamical systems—which

provides one framework for understanding chaotic systems whose time evolutions are

erratic and for practical purposes unpredictable.

Delay differential equations (DDEs) are a particular class of deterministic systems,

distinguished by an explicit dependence of the dynamics on past states. DDEs arise

in diverse applications including mathematics, biology and economics. A probabilistic

approach to DDEs is lacking. The main problems we consider in developing such an

approach are (1) to characterize the evolution of probability distributions for DDEs,

i.e. develop an analog of the Perron-Frobenius operator; (2) to characterize invariant

probability distributions for DDEs; and (3) to develop a framework for the application of

ergodic theory to delay equations, with a view to a probabilistic understanding of DDEs

whose time evolutions are chaotic. We develop a variety of approaches to each of these

problems, employing both analytical and numerical methods.

In transient chaos, a system evolves erratically during a transient period that is fol-

lowed by asymptotically regular behavior. Transient chaos in delay equations has not

been reported or investigated before. We find numerical evidence of transient chaos

(fractal basins of attraction and long chaotic transients) in some DDEs, including the

Mackey-Glass equation. Transient chaos in DDEs can be analyzed numerically using a

modification of the “stagger-and-step” algorithm applied to a discretized version of the

DDE.
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I have long discovered that geologists never read each other’s

works, and that the only object in writing a book is a proof of

earnestness, and that you do not form your opinions without

undergoing labor of some kind.

—Charles Darwin [28]
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Preface

As an undergraduate physics student I discovered Ilya Prigogine’s book “The End of

Certainty”, quite serendipitously, on the new arrivals shelf at the UBC library. I signed

the book out and read it through over a very short period, inspired by Prigogine’s

new (to me) idea that deterministic systems—predictable things in the world of Newto-

nian mechanics—could and should be discussed in probabilistic terms. This idea, which

pointed to a way out of the clockwork universe that classical mechanics usually portrays,

resonated with what I had been learning about classical physics, quantum mechanics, and

“chaos theory”. According to Prigogine the mathematical foundation of his ideas was

called ergodic theory. Eager to learn more, I made my first ever visit to the mathematics

library and signed out Lasota and Mackey’s “Probabilistic Properties of Deterministic

Systems”. Unfortunately I found that I lacked the mathematical maturity to read the

book on my own, and I soon gave up.

A few years later I met Michael Mackey at a summer school in Montréal, where he gave

a presentation in which, as an aside, he mentioned that a probabilistic/ergodic approach

to delay differential equations was lacking, and that such a theory might have interesting

applications. At the time I didn’t appreciate the ambitiousness of such a project, but it

was the excuse I needed to tackle these ideas again. The result, after some earnest labor,

is the present document—a representative subset of my present ideas on a probabilistic

approach to delay differential equations.
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Chapter 1

Introduction

1.1 Probabilistic Approach to Deterministic Systems . . . . . . . 2

1.2 Delayed Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Probabilistic Questions for Delay Equations . . . . . . . . . . 10

Today, some of the most profound unanswered scientific questions are related to the

interplay between order and disorder. The physical basis of consciousness and intelligence

(the mind-body problem), the origins of life, the nature of turbulence, and the paradox

between between thermodynamics and deterministic microscopic dynamics, are but a few

examples. These are fundamental problems that have plagued scientists and philosophers

for centuries, and each remains largely unresolved. Each of them involves the spontaneous

creation of order out of disorder, or disorder out of order, and they share among them the

difficulty of explaining how such processes can result from the operation of deterministic

physical laws.

Recent decades have seen a renewal of interest and progress in the understanding of

the nature of order and disorder, beginning with the discovery in 1963 by Lorenz of the

existence of systems that, despite being deterministic, exhibit disordered and essentially

unpredictable behavior. Since then, the study of “deterministic chaos” has brought forth

a rich corpus of experimental and theoretical results, incorporating the insights of re-

searchers in diverse fields spanning mathematics, physics and engineering. This corpus

1



2 CHAPTER 1. INTRODUCTION

comprises what has come to be called “chaos theory”1.

In particular, the mathematical field of dynamical systems (i.e., systems that evolve

in time according to deterministic laws) has contributed much to a unified understanding

of chaotic systems. This general framework reveals that, despite the differences in origins

and physical nature of different deterministic systems, the same underlying mechanisms

operate to generate disorder. One of the central results of this theory is the identification

of a precise notion of what constitutes a “chaotic system”, and the discovery of sufficient

conditions that imply the existence of chaos as such [76].

Given the random character of so-called chaotic evolutions, it is not surprising that

statistical and probabilistic ideas should be useful tools for their analysis. It turns out

that far from being merely descriptive, probabilistic ideas provide fundamental insights

into the behavior of dynamical systems [74, 96]. This observation is the basis of the er-

godic theory of dynamical systems, a theory that had its origins in foundational issues in

statistical mechanics in the late 1800’s. Despite the success of ergodic theory as a math-

ematical endeavor, the physical problems that motivated its development surprisingly

remain unresolved [84, 95, 96].

It may seem, at first, that the application of probabilistic ideas to deterministic sys-

tems is inherently contradictory. Indeed, probability theory is concerned with the study

of inherently random phenomena, which are antithetical to a strictly deterministic con-

ception of physical law. However, experience has shown quite the opposite: probabilistic

ideas provide a new and, in the end, quite natural way to view deterministic phenomena.

The following discussion is intended to give the flavor of this viewpoint. In Chapter 2 we

give a more detailed theoretical presentation.

1.1 Probabilistic Approach to Deterministic Systems

Consider the following, much-studied example of a simple deterministic system whose

evolution exhibits a species of random behavior. For a given a real number x0 (the

“initial state” of the system) between 0 and 1, let x1, x2, x3, etc be defined by repeated

application of the formula

xn+1 = 4xn(1− xn), n = 0, 1, 2, . . . (1.1)

1Abuse and misuse of the term “chaos theory” in the popular literature has led some serious people to
avoid the term. One comprehensive reference [71] manages not to use the term in its entire 800+ pages.
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Once can view this formula as prescribing the evolution of the state of the system, xn, at

discrete times n = 0, 1, 2, . . .. The evolution of this system is deterministic, in that once

the initial state is specified equation (1.1) uniquely determines the sequence of values

{x0, x1, x2, . . .} (i.e., the trajectory of the system) for all time. Thus for example if

x0 = 0.51 we obtain

x1 = .9996, x2 ≈ .0026, x3 ≈ .0064, x4 ≈ .025, x5 ≈ .099, etc.

The qualitative behavior of this system is most easily appreciated graphically, as in

Figure 1.1 which plots xn vs. n for typical trajectories obtained for different choices of

x0. Each of these trajectories is erratic, and random in the sense that no regularity

is apparent. Furthermore, it can be seen by comparing the graphs in Figure 1.1 that

two near-identical initial states eventually yield radically different time evolutions. This

phenomenon, termed “sensitive dependence on initial conditions” [78], imposes strong

limits on the predictability of this system over long periods of time: a small error in the

determination of the initial condition rapidly becomes amplified to the extent that reliable

prediction of the future states of the system eventually becomes impossible. Thus, despite

being entirely deterministic, trajectories of this simple system have some hallmarks of

essentially random phenomena: their behavior is irregular and unpredictable.

The mechanisms underlying the random character of this system are reasonably well

understood (see e.g. [24]), the key notion being sensitivity to initial conditions and its

consequences. However, within this framework it is difficult to approach questions of the

type “what is the asymptotic behavior of a typical trajectory of this system?” Indeed,

the very nature of sensitivity to initial conditions would seem to preclude any notion of

“typical” behavior, since even very similar initial conditions eventually lead to their own

very particular, uncorrelated evolutions.

However, different conclusions are reached if one takes a probabilistic point of view.

Suppose that instead of being precisely determined, the initial state x0 has associated

with it some uncertainty. In particular, suppose we know the initial probability density,

ρ, giving the probabilities of all possible values that x0 can take. Then it makes sense

to ask, “what will be the probability density of x1, the new state after one iteration

of the map (1.1)?”. A precise answer to this question can be found using analytical

methods described in Chapter 2. For an approximate answer, it suffices to simulate a

large ensemble of different initial states x0 distributed according to ρ, evolve these states
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Figure 1.1: Numerical trajectories for the map x 7→ 4x(1 − x). The initial conditions
different only slightly for each trajectory.
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forward under the map (1.1), and approximate the transformed density of the ensemble by

constructing a histogram of the ensemble of values x1. One can then proceed, in the same

fashion, to determine the probability densities of subsequent states x2, x3, etc. Thus, even

if the initial state x0 is not known precisely, it is at least possible to give a probabilistic

description of the system’s evolution in terms of the evolution of a probability density.

The graphs in Figure 1.2 show a particular choice for the probability density ρ of the

initial state x0, together with the subsequent densities of states x1, x2, x3, x4, obtained

by numerical simulation of an ensemble of 106 initial values distributed according to

ρ, iterated forward under the map (1.1). The striking feature of this figure is that the

sequence of densities rapidly approaches an equilibrium or invariant density that does not

change under further iteration. Moreover, the invariant density appears to be unique.

This is supported by Figure 1.3, which shows how a different choice of initial density

evolves toward the same equilibrium density as before.

A different but related statistical approach to this system is to focus on the statistics of

a single trajectory. For a given initial state x0, by iterating xn+1 = 4xn(1−xn) we obtain
an arbitrarily long sequence {xn} like the one illustrated in Figure 1.1. A histogram of this

sequence reveals the long-term frequency with which the trajectory visits various parts

of the interval [0, 1]. Figure 1.4 shows such a histogram, for a trajectory of length 106.

Remarkably, this histogram reproduces the invariant density shown in Figures 1.2 and 1.3,

which arises in a different context. Moreover, the same histogram is obtained for almost

any choice of initial state.2 Thus the invariant density describes the behavior of “typical”

trajectories, i.e. those whose statistics are described by this particular probability density.

A probabilistic or ensemble treatment of dynamical systems provides a point of view

complementary to one given in terms of the evolution of individual trajectories. The

iterated map (1.1) is just one example of a system that behaves erratically on the level of

individual trajectories, but has very regular asymptotic properties when considered at the

level of probability densities. This observation appears to hold for many other systems.

Moreover, it turns out that the converse holds as well: various regularity properties at

the level of probability densities imply various degrees of disorder in the evolution of

individual trajectories. Chapter 2 explores these connections further.

2There are exceptions, such as x0 = 0, that yield trajectories with different (periodic) asymptotic
behavior. These exceptions are very rare: in fact they constitute a set of Lebesgue measure 0 (cf.
Chapter 2).
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Figure 1.2: Simulated evolution of an ensemble density ρ under iterations of the map
x 7→ 4x(1− x).
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1.2 Delayed Dynamics

The aim of the present work is to develop a probabilistic (i.e. ergodic) approach to systems

with delayed dynamics, particularly those systems whose evolution can be described by a

delay differential equation. Delay differential equations (DDEs) arise in the mathematical

description of systems whose time evolution depends explicitly on a past state of the

system, as for example in the case of delayed feedback. Neural systems [3], respiration

regulation [47], agricultural commodity markets [83], nonlinear optics [46], and neutrophil

populations in the blood [47] are but a few systems in which delayed feedback leads

naturally to a description in terms of a delay differential equation.

We will restrict our attention to systems modeled by evolutionary delay equations

that can be expressed in the form

x′(t) = f
(

x(t), x(t− τ)
)

, x(t) ∈ IRn, t ≥ 0. (1.2)

Here the “state” of the system at time t is x(t), whose rate of change depends explicitly,

via the function f , on the past state x(t− τ) where τ is a fixed time delay. More general

delay equations might be considered: multiple time delays, variable time delays, continu-

ously distributed delays, and higher derivatives all arise in applications and lead to more

complicated evolution equations. Nevertheless, equations of the form (1.2) constitute a

sufficiently broad class of systems to be of practical importance, and they will provide
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adequate fodder for the types of problems we wish to consider.

Some delay equations give rise to erratic time evolutions; there are numerous examples

in the literature [4, 5, 7, 42, 54, 61, 118, 121]. In some cases it is possible to describe

precisely the sense in which these systems are chaotic, and to identify generic mechanisms

responsible [4, 5, 7, 121]. These works focus on the application of topological notions of

chaos, but little has been done on interpreting delay equations in an ergodic or measure

theoretic context. We are aware of a handful of published works [4, 19, 41, 79, 80], among

which there is no consistent framework for discussing ergodic notions in the context of

DDEs. One aim of the present work is to develop such a framework.

A probabilistic approach to delay equations in particular is desirable for a variety of

reasons. It has been suggested [30, 88] that brains encode information at the level of

large neuron ensembles, rather than at the level of individual neurons. Statistical peri-

odicity [74], in which the ensemble density cycles periodically rather than settling down

to an invariant density, provides one possible mechanism for representing information

at this level. Statistical periodicity does not (and cannot) arise in ordinary differential

equations, but it does occur in some delay equations [80, 84]. Moreover, since synaptic

and conduction delays introduce explicit delays into the dynamics of neurons, delay equa-

tions arise naturally in models of neuron dynamics [6, 3, 23]. Since the dynamics of large

ensembles can be treated with probabilistic methods, a probabilistic approach to delay

equations (i.e. a statistical mechanics of systems with delayed dynamics) would provide

the mathematical tools for further developing this theory of brain functioning.

Delay equations also serve as relatively simple models for the study of infinite dimen-

sional systems. Much of the complex dynamics that we experience directly is extended

in space as well as in time, for example fluid turbulence and other systems modeled by

partial differential equations (PDEs). These systems are infinite dimensional, in that the

state at any given time cannot be specified precisely by a finite set of data. There is

a rich literature on chaotic dynamics in PDEs, including some rigorous results on the

existence of compact attractors and Li and Yorke type chaos, as well as numerous numer-

ical observations, including methods for estimating Lyapunov exponents and dimensions

for chaotic attractors (see e.g. [22, 45, 50, 57, 82, 115, 123, 126] and references therein).

However, to our knowledge, with the exception of [99, 100, 101] and [22] little has been

said of infinite-dimensional systems within the context of ergodic theory. Delay equations

are also infinite dimensional, but in some respects they are much simpler than PDEs.3

3For example, a delay equation is much easier to solve, since it can often be represented as a sequence
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Thus delay equations are a natural place to begin formulating ergodic concepts applicable

to a broader class of spatially extended systems.

1.3 Probabilistic Questions for Delay Equations

The following chapters explore various problems related to a probabilistic or ergodic-

theoretic treatment of delay differential equations. Questions that arise naturally in this

context, and which we propose to consider, are the following:

• How can the language and concepts of ergodic theory be adapted and applied in

the context of delay equations?

• How can the evolution of a probability distribution or ensemble density for a given

DDE be determined; i.e., can one find an evolution equation for the probability

density?

• How can one determine invariant probability distributions for DDEs?

To some extent these problems can be considered independently, and each is the subject

of one of the chapters that follow.

Chapter 2 presents the elements of ergodic theory needed in our subsequent discussion.

It also serves to illuminate the scope of ergodic concepts that might be considered in the

context of DDEs, and to further motivate the considerations of subsequent chapters.

Chapter 3 examines the fundamental theoretical questions posed by an ergodic ap-

proach to delay equations, and infinite dimensional dynamical systems in general. Al-

ternative representations of a delay equation as a dynamical system are considered, and

the measure-theoretic framework needed for a probabilistic treatment is developed. As

it turns out, even these fundamental questions lead to unresolved ambiguities that are

endemic to infinite dimensional systems.

Chapter 4 explores the practical issue of how the evolution of probability distributions

for delay equations might be determined. In particular it would be nice to have an

evolution equation governing the evolution of a probability density under the action of

a delay equation. Such an equation would be a useful tool, for example, in making

probabilistic predictions for systems governed by DDEs, and for modeling ensembles (such

as neuron populations, cf. page 9) whose microscopic dynamics are governed by DDEs. A

of ordinary differential equations (method of steps), cf. Section 3.2.3.
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number of different approaches to this problem are explored, including analytical methods

and computer algorithms.

Invariant measures, which determine the long-term statistical properties of determinis-

tic systems, are important quantities in statistical mechanics and also play a fundamental

role in ergodic theory. Chapter 5 considers the problem of determining invariant mea-

sures for delay equations. Here the focus is on finding computer algorithms for computing

invariant measures and their densities.

Transient chaos is a phenomenon in which a deterministic system has a chaotic time

evolution for a transient period of time after which it asymptotically becomes regular

(e.g. periodic). Such systems can be described in ergodic theoretic terms, but due to

the instability of the “chaotic set” specialized techniques are required for their numerical

analysis. Chapter 6 illustrates the existence of transient chaos in some delay equations,

and shows how numerical methods can be adapted to their analysis. Until recently, limits

on computational resources made it impractical to numerically investigate transient chaos

in infinite dimensional systems such as DDEs.
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This chapter introduces the basic concepts of the ergodic theory of dynamical systems.

Following a brief review of measure theoretic probability (those familiar with measure

theory might like to skip directly to Section 2.3), we consider the problem of determining

the evolution of a probability measure or density under the evolution of a dynamical

system. This serves to formalize some of the intuitive ideas presented in Chapter 1.

In section 2.4 we then turn to the characterization, using ergodic concepts, of dynamical

systems that exhibit irregular behavior. The general discussion given here sets the context

in which we will consider the problem of an ergodic/probabilistic treatment of delay

differential equations.

2.1 Dynamical Systems Formalism

The essential properties of a deterministic evolutionary system are encapsulated in the

mathematical notion of a semigroup. At any particular time t the state of such a system

is identified with an element xt (the current phase point) of a phase space X. In practice

X is often simply IRn or IR, and the phase point or state x represents the numerical value

of some physical quantity, e.g. a voltage, displacement, population, etc. In some of the

following we will require only that X have a topology, but occasionally we will want X

to be equipped with some further structure.

The term “deterministic” implies that the phase point xt is, for all times t > 0,

uniquely determined by the initial phase point x0. That is, for each t > 0 there is a rule

that determines xt from x0—in other words, a transformation St : X → X that takes the

initial state x0 to the future state xt:

x0 7→ St(x0) = xt. (2.1)

In many systems, the dynamical law that determines St does not change with time

(e.g. autonomous systems evolving under time-invariant physical laws such as Newton’s

laws of motion). Then the result of the time evolution depends only on the initial phase

point and the amount of time elapsed, not on the particular moment identified as the

initial time. The identification of t = 0 as the initial time in equation (2.1) is then

somewhat arbitrary. Consequently, the evolution of an initial phase point x0 to time s+ t

can be accomplished by a sequence of two evolutions, one from time 0 to time s carried

out by the transformation Ss, followed by the evolution from time s to time t carried out
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by the transformation St. This can be expressed by the relation

Ss+t = St ◦ Ss. (2.2)

That is, the family of transformations {St : t ≥ 0} form a semigroup:

Definition 2.1 (semigroup of transformations). Let eitherG = Z+ = {0, 1, 2, . . . } or
G = IR+ = {t ∈ IR : t ≥ 0}. A one-parameter semigroup of transformations {St : t ∈ G}
on X is a family of transformations St : X → X satisfying

1. S0(x) = x ∀x ∈ X,

2. St ◦ St′ = St+t′ ∀t, t′ ∈ G.

Thus the evolution of a deterministic system under a time-invariant dynamical law

can be described by an evolution equation xt = Stx0 where the family of transformations

{St : t ∈ G} forms a semigroup. For discrete-time systems G = Z+; for continuous-time

systems G = IR+.

If the mapping x0 7→ xt is also continuous with respect to both x0 and t, the semigroup

is called a semidynamical system:

Definition 2.2 (semidynamical system). LetX be a Banach space with {St : t ∈ G} a
semigroup of transformations on X. Then {St} is a semidynamical system if the mapping

(x, t) 7→ St(x) (2.3)

from X ×G into X is continuous.

Definition 2.3 (orbit; trajectory). Let {St : t ∈ G} (G = IR+ or Z+) be a semidy-

namical system on X, and let x0 ∈ X. The set

{St(x0) : t ≥ 0} ⊂ X (2.4)

is called the orbit or trajectory originating at x0.

In general, the evolution of a semidynamical system cannot be extended uniquely

to all times in the past. However, if each of the St is one-to-one (hence invertible), the

identification S−t = S−1
t extends the family of transformations to all t < 0, and the initial

phase point does indeed uniquely determine xt for all times in the past. In this case the
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resulting group (rather than semigroup) of transformations {St} is called a dynamical

system. In the present work we will be concerned with systems that in general are

not invertible. Nevertheless, for simplicity’s sake we will frequently abuse notation and

refer to these systems simply as dynamical systems, as the technical distinction between

dynamical and semi-dynamical systems will not play an important role.

2.2 Measure Theoretic Probability

The evolution of a probability distribution under the action of a dynamical system requires

the structures of measure theoretic probability. To this end, the elements of this theory are

reviewed in the following. For a more complete review see e.g. the standard reference [55].

2.2.1 Measure theory

Basically, a measure is a function that assigns a “size” to a subset A ⊂ X. It turns out

that it is not possible, in general, to do this consistently for just any subset of X (see e.g.

[97] for a construction of an “unmeasurable” set). Rather, such an assignment can only

be made consistently for a collection of subsets called a σ-algebra.

Definition 2.4 (σ-algebra, measurable space). Let X be a set. A non-empty collec-

tion A of subsets of X is called a σ-algebra, and the pair (X,A) is called a measurable

space, if each of the following holds.

1. If A ∈ A then X \A ∈ A.

2. If {Ai} ⊂ A is a finite or countable collection then
⋃

iAi ∈ A.

3. If {Ai} ⊂ A is a finite or countable collection then
⋂

iAi ∈ A.

4. If A,B ∈ A then A \B ∈ A.

5. X ∈ A and ∅ ∈ A.

The elements of a σ-algebra are sometimes called measurable sets. In the context of

probability theory they are sometimes called events. Note that the properties above are

not independent, e.g. properties 3–5 follow from others. We include all five here to give

a more thorough and intuitive characterization of σ-algebras.



2.2. MEASURE THEORETIC PROBABILITY 17

Finite σ-algebras are easy to construct. For example {X, ∅} is a trivial σ-algebra.

Given A ⊂ X, the collection {X, ∅, A,X \ A} is a σ-algebra. Although less trivial σ-

algebras are sometimes extremely difficult to characterize explicitly, the existence of a

σ-algebra containing certain sets can be asserted using the following theorem.

Theorem 2.1. Let X be a set and let B be a class of subsets of X. Then there is a unique

smallest σ-algebra, denoted σ(B) (the σ-algebra generated by B), that contains every set

in B. That is,

• B ⊂ σ(B), and

• if A is any σ-algebra such that B ⊂ A, then σ(B) ⊂ A.

Proof. See e.g. [55].

We frequently work with a phase space X that comes already equipped with a topol-

ogy (e.g., a metric space). An important application of the preceding theorem is the

identification of a σ-algebra that is compatible with a given topology:

Definition 2.5 (Borel σ-algebra). Let X be a topological space. The σ-algebra A
generated by the collection of all open subsets of X is called the Borel σ-algebra on X,

and the elements of A are called Borel sets.

The Borel σ-algebra is a natural choice since the sets we typically want to work with—

open and closed sets, as well as their finite and countable unions and intersections—are all

measurable. In the following, whenever a topology is given or implied the corresponding

Borel σ-algebra will be implied also.

Definition 2.6 (measure, measure space). Let (X,A) be a measurable space. A

function µ : A → IR+ is called a measure, and the triple (X,A, µ) is called a measure

space, if each of the following holds.

1. µ(∅) = 0.

2. µ(A) ≥ 0 ∀A ∈ A.

3. If {Ai} ⊂ A is a finite or countable collection of pairwise disjoint sets then

µ
(
⋃

iAi

)

=
∑

i µ(Ai).

4. If A,B ∈ A and B ⊂ A then µ(A \B) = µ(A)− µ(B).
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Note that 4 is not an independent property, but is a useful consequence of the first

three.

In the following, “a measure space X” will be taken to mean “a measure space

(X,A, µ)” wherever this is unlikely to cause confusion.

Definition 2.7 (Borel measure). Given a topological space X, a Borel measure on X

is a measure defined on the Borel σ-algebra generated by the topology on X.

On the real line, the notion of length provides a natural Borel measure µ, defined on

intervals according to

µ
(

[a, b]
)

= b− a. (2.5)

Similarly, in IRn the notion of volume also provides a natural Borel measure, defined on

n-dimensional “rectangles” according to

µ
(

[a1, b1]× · · · × [an, bn]
)

= (b1 − a1) · · · (bn − an). (2.6)

It can be proved [55] that this formula can be uniquely extended to a measure on the

respective Borel σ-algebra of IRn. Lebesgue measure, λ, is the completion of this measure.1

Definition 2.8 (null set). Let (X,A, µ) be a measure space. A set A ⊂ X is called a

null set if it is contained in a set B ∈ A with µ(B) = 0.

Definition 2.9 (almost everywhere). Let (X,A, µ) be a measure space. A property

is said to hold µ-almost everywhere if it holds on the complement of a null set.

2.2.2 Probability measures

With the basic concepts of measure theory outlined above, the elements of probability

theory that we will need can be expressed in measure theoretic terms.

Definition 2.10 (finite and probabilistic measures). Let X be a measure space. If

µ(X) <∞ then µ is said to be finite. If µ(X) = 1 then the finite measure µ is said to be

probabilistic and (X,A, µ) is called a probability space.

1A measure λ is the completion of a Borel measure µ if

• λ is defined on the smallest σ-algebra containing both the Borel sets and all subsets of Borel sets
having Borel measure 0.

• λ agrees with µ wherever µ is defined; in particular, λ(A) = 0 if A ⊆ B and µ(B) = 0.
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Note that any finite measure µ can be normalized to yield a corresponding probability

measure ν according to ν(A) = µ(A)/µ(X).

Depending on context a probability measure has at least two different interpretations,

owing to the similarity in structure between probability and statistics and the fact that

probability measures embody this structure:

Probabilistic interpretation A probability measure µ can represent the “probability

distribution” of a random variable x ∈ X. For a given measurable set A ⊂ X, the

quantity µ(A) represents Prob(x ∈ A). The measurable sets are called events, since

the statement “x ∈ A” asserts the occurrence of a particular event or outcome. The

defining properties of a probability measure can be interpreted in this context as

the axioms of probability theory.

Statistical ensemble interpretation A probability measure µ can represent the dis-

tribution of an idealized, infinite ensemble of points {xi} ⊂ X. The quantity µ(A)

describes the fraction of the xi for which xi ∈ A.

This dual interpretation of probability measures is helpful in solving problems, since

we are free to use whichever interpretation is most convenient in a given context.

In the following we will require the notion of measurable transformation:

Definition 2.11 (measurable transformation). Let (X,A) and (Y,B) be measurable

spaces. A transformation S : X → Y is measurable if

S−1(B) ∈ A ∀B ∈ B, (2.7)

where the pre-image S−1(B) is defined as the set

S−1(B) = {x ∈ X : S(x) ∈ B}. (2.8)

In particular, a transformation S : X → X is measurable if S−1(A) ∈ A ∀A ∈ A. A

functional f : X → IR is measurable if f−1(B) ∈ A for every Borel set B ⊂ IR. Note that

the set S−1(B) is well defined even if S does not have an inverse.

Continuity is a sufficient condition for measurability:

Theorem 2.2. Let X, Y be topological spaces and A, B their respective Borel σ-algebras.

If S : X → Y is continuous then S is measurable.

Proof. See e.g. [55].
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2.2.3 Lebesgue integral

We will require a notion of integration on measure spaces. One such notion that can be

defined on an arbitrary measure space (and requires no other structure) is the Lebesgue

integral. Various developments of the theory of this integral have been given, all somewhat

lengthy. The following, based on the presentation given in [74], gives the basic idea; for

a more complete treatment see e.g. [55].

An intuitive way to approach the Lebesgue integral is to define it first for “simple

functions”. Given a subset A ⊂ X, denote by 1A the “indicator function”

1A(x) =







1 if x ∈ A
0 if x /∈ A.

(2.9)

Definition 2.12 (simple function). Let (X,A, µ) be a measure space, and suppose

the sets Ai ∈ A, i = 1, . . . , n, are pairwise disjoint. Then a functional g : X → IR of the

form

g(x) =
n
∑

i=1

λi1Ai(x), λi ∈ IR (2.10)

is called a simple function.

Definition 2.13. The Lebesgue integral of the simple function (2.10) is defined by

∫

X
g(x) dµ(x) ≡

n
∑

i=1

λiµ(Ai). (2.11)

The definition of Lebesgue integral proceeds by approximating such more general

functions with simple functions. If f : X → IR is a non-negative bounded measurable

function, then f can be approximated by simple functions fn such that {fn(x)} converges
to f(x) uniformly in x [74, p. 20].

Definition 2.14. If f : X → IR is a non-negative bounded measurable function, and

{fn} is a sequence of simple functions converging uniformly to f then

∫

X
f(x) dµ(x) ≡ lim

n→∞

∫

X
fn(x) dµ(x). (2.12)

(This limit exists and is independent of the particular sequence {fn}.)
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The preceding definition can be extended unambiguously to define the integral over

X of an arbitrary measurable functional f : X → IR. If the integral is finite then f is

said to be integrable. For arbitrary A ∈ A we define

∫

A
f(x) dµ(x) ≡

∫

X
1A(x)f(x) dµ(x). (2.13)

Where confusion is unlikely we will sometimes write simply
∫

f dµ to mean
∫

X f(x) dµ(x).

While the Lebesgue integral is more general than the usual Riemann integral, the two

notions of integral agree for any Riemann-integrable function if the integral is taken with

respect to Lebesgue measure [98, p. 323].

Some important properties of the Lebesgue integral, which we give without proof, are

the following.

•
∫

|f | dµ = 0 if and only if f = 0 almost everywhere.

• If
∫

A f dµ =
∫

A g dµ ∀A ∈ A then f = g almost everywhere.

• If f : X → IR is integrable and the finite or countable collection of sets {Ai} ⊂ A
is disjoint with

⋃

iAi = A, then

∑

i

∫

Ai

f dµ =

∫

A
f dµ. (2.14)

Theorem 2.3 (change of variables). Let (X,µ) be a measure space, S : X → Y a

measurable transformation. If f : Y → IR is measurable then µ ◦ S−1 is a measure on Y ,

and for any measurable A ⊂ Y ,

∫

A
f d(µ ◦ S−1) =

∫

S−1(A)
(f ◦ S) dµ. (2.15)

Proof. See e.g. [55].

The Lebesgue integral leads to an important class of normed vector spaces:

Definition 2.15 (Lp space). Let (X,A, µ) be a measure space and p a real number,

1 ≤ p <∞. The set of functionals f : X → IR such that |f |p is integrable, i.e.,

∫

X
|f(x)|p dµ(x) <∞, (2.16)
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is denoted by Lp(X,A, µ), or simply Lp(X) if A and µ are understood. The norm ‖ · ‖
on Lp is defined by

‖f‖ =
[
∫

|f |p dµ
]1/p

. (2.17)

2.2.4 Densities

Densities provide a convenient and intuitive way of prescribing probability measures on

IRn. Indeed, applied probability and statistics is concerned largely with certain specific

types of densities (e.g., the uniform, Gaussian, and Poisson densities, among others).

Densities have the additional advantage that they allow many problems in measure theory

and probability to be solved using calculus.

Suppose (X,A, µ) is a measure space. If f : X → IR is a non-negative integrable

function then

µf (A) =

∫

A
f dµ (2.18)

defines a finite measure on A. For a certain class of measures, this observation can be

reversed:

Definition 2.16 (absolutely continuous measure). Let (X,A, µ) be a measure space.

A measure ν on A is absolutely continuous with respect to µ (written ν ¿ µ) if for every

set A ∈ A for which µ(A) = 0 we have that ν(A) = 0.

Theorem 2.4 (Radon-Nikodym). Let X be a σ-finite measure space2 and let µf be

a finite measure on A with µf ¿ µ. Then there exists a unique, non-negative integrable

functional f ∈ L1(X) such that

µf (A) =

∫

A
f dµ ∀A ∈ A. (2.19)

Proof. See e.g. [44, p. 69].

Absolute continuity with respect to a given measure µ defines an important class of

measures µf that can be expressed in the form (2.19). If µf is a probability measure, the

functional f in equation (2.19) is called the probability density or simply the density of

µf .

2A measure space X is σ-finite if X =
⋃

iAi with µ(Ai) < ∞ [55]. Any measure we might wish to
consider for practical purposes is σ-finite.
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Definition 2.17 (Set of densities). Let (X,A, µ) be a measure space. The space

D(X) = {f ∈ L1(X) : f ≥ 0 and ‖f‖ = 1} (2.20)

is the set of densities on X, and an element f ∈ D(X) is called a density.

On IRn densities are usually given with respect to Lebesgue measure.

2.3 Evolution of Probabilities for Dynamical Systems

2.3.1 Evolution of probability measures

Suppose we have a dynamical system described by a semigroup {St : t ∈ G} (G = IR+

or Z+) of transformations St : X → X, such that x0 7→ St(x0) = xt. Suppose further

that X is equipped with a σ-algebra A, and that a particular measure ν0 on A has the

interpretation that ν0(A) = Prob(x0 ∈ A). One can then ask, what is the probability

measure νt that describes xt, i.e., such that νt(A) = Prob
(

xt ∈ A
)

?

Consider that for arbitrary A ∈ A we have

νt(A) = Prob
(

St

(

x0

)

∈ A
)

= Prob
(

x0 ∈ S−1
t (A)

)

= ν0

(

S−1
t (A)

)

.

(2.21)

Thus the probability measure νt describing xt is given by the formula

νt = ν0 ◦ S−1
t . (2.22)

It is readily verified that this expression does indeed define a probability measure νt on

A. This measure is said to be the image of ν0 under the transformation St and (abusing

notation somewhat) we write Stν0 ≡ ν0 ◦ S−1
t . Note that each of the St must be a

measurable transformation. Since {St} is assumed to be a semidynamical system (cf.

Definition 2.2), the transformation x 7→ St(x) is indeed measurable since it is continuous.

2.3.2 Evolution of densities: Perron-Frobenius operator

If the initial phase point x0 of a dynamical system is described by a probability density

rather than a probability measure, we can ask “what is the probability density that de-
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scribes xt = St

(

x0

)

? For this question to be well-posed, we require that St be nonsingular:

Definition 2.18 (nonsingular transformation). Let (X,A, µ) be a measure space. A

measurable transformation S : X → X is nonsingular (with respect to µ) if for every set

A ∈ A for which µ(A) = 0 we have that µ
(

S−1(A)
)

= 0.

Suppose the density of x0 (with respect to some measure µ) is given by f0, with

corresponding probability measure ν0 (cf. equation (2.18)). If St is nonsingular then from

equation (2.22) we have that

νt ¿ ν0 ¿ µ. (2.23)

Therefore, by Theorem 2.4 (assuming the measure space is σ-finite) there is a unique

element ft ∈ L1(X) such that

νt(A) =

∫

A
ft dµ ∀A ∈ A. (2.24)

Using equation (2.22) we obtain

∫

A
ft dµ =

∫

S−1
t (A)

f0 dµ ∀A ∈ A. (2.25)

In fact, for any given f0 ∈ L1(X), this relationship uniquely determines an element

ft ∈ L1(X) [74, p. 42] and thus defines a mapping Pt : f0 7→ ft.

Definition 2.19 (Perron-Frobenius operator). Let (X,A, µ) be a measure space,

S : X → X a nonsingular transformation. The operator P : L1(X)→ L1(X) defined by

∫

A
(Pf) dµ =

∫

S−1(A)
f dµ ∀A ∈ A (2.26)

is called the Perron-Frobenius operator corresponding to S.

Note that if Pt is the Perron-Frobenius operator corresponding to St then the action

of Pt on a density f0 carries out the evolution of this density under the action of St.

Some important properties of the Perron-Frobenius operator, which can be verified

directly from its definition, are the following [74].

• P : L1(X)→ L1(X) is linear.

• Pf ≥ 0 if f ≥ 0.
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•
∫

(Pf) dµ =
∫

f dµ.

• If P is the Perron-Frobenius operator with respect to S, then P n is the Perron-

Frobenius operator with respect to Sn.

• If {St : t ∈ G} is a semigroup then the corresponding family of Perron-Frobenius

operators {Pt : t ∈ G} is also a semigroup.

From the first three of these properties it follows that P is a Markov operator, i.e. a

linear transformation of L1(X) that maps densities to densities.

Explicit Perron-Frobenius operators

In some cases equation (2.26) can be used to find an explicit representation of the Perron-

Frobenius operator. If S : IR→ IR and A = [a, x] then (2.26) becomes

∫ x

a
(Pf)(s) ds =

∫

S−1([a,x])
f(s) ds. (2.27)

Differentiating then yields

Pf(x) =
d

dx

∫

S−1([a,x])
f(s) ds. (2.28)

Consider for example the dynamical system discussed in Chapter 1, defined by iterates

of

S : x 7→ 4x(1− x). (2.29)

Since

S−1([0, x]) = [0, 1
2 − 1

2

√
1− x] ∪ [12 + 1

2

√
1− x, 1], (2.30)

equation (2.28) becomes

Pf(x) =
d

dx

∫ 1/2−1/2
√

1−x

0
f(s) ds+

d

dx

∫ 1

1/2+1/2
√

1−x
f(s) ds

=
1

4
√
1− x

[

f
(

1
2 − 1

2

√
1− x

)

+ f
(

1
2 + 1

2

√
1− x

)

]

.

(2.31)

Figure 2.1 illustrates the sequence of densities P n(f), n = 0, . . . , 3, obtained by equa-

tion (2.28) for a uniform initial density f = 1 on [0, 1]; cf. Figures 1.2–1.3.
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Figure 2.1: Iterates P n(f) of the Perron-Frobenius operator corresponding to the
quadratic map x 7→ 4x(1− x), for the initial density f = 1. Also shown, for comparison,
is the invariant density f∗(x) (dashed curve – – –) given by equation (2.38).
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Perron-Frobenius operator for flows

Autonomous ordinary differential equations consitute an important class of continuous-

time dynamical systems. If the initial value problem

dx

dt
= F (x), t ≥ 0, F : IRn → IRn

x(0) = x0

(2.32)

has a unique solution for all t > 0 3 for each initial value x0, then the family of solution

maps St : x0 7→ x(t) constitute a differentiable semigroup or flow {St : t ∈ IR+} on IRn.

Suppose u(t) ∈ L1(IRn) is the probability density of the solution variable x at time t.

If the vector field F is smooth and we interpret u(x, t) as a scalar quantity transported

by the flow, then by analogy with the continuity equation for scalar transport in fluid

mechanics, we have the following evolution equation for u,

∂u

∂t
= −∇ · (uF ). (2.33)

(See e.g. [74, p. 210] for a measure-theoretic justification of this evolution equation.) The

semigroup {Pt} of Perron-Frobenius operators corresponding to {St} is then defined by

(Ptf)(x) = u(x, t) (2.34)

where u(x, t) is the solution of (2.33) with initial data u(x, 0) = f(x).

2.4 Ergodic Theory

Ergodic theory can be described as the study of measure theoretic invariants of dynamical

systems. Invariant measures play a fundamental role.

2.4.1 Invariant measures

Chapter 1 gave an example of a discrete-time dynamical system, defined by iterates of

the map

S : x 7→ 4x(1− x). (2.35)

3e.g. it suffices to have F continuous with |F (x)| ≤ α+ β|x| for constants α, β [39].
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Numerical evidence suggests the existence of a unique density that is unchanged by evo-

lution under the action the map (2.35) (cf. Figures 1.2 and 1.3). The concepts introduced

in the previous section provide the following characterization of invariant densities and

the more general notion of invariant measure.

Definition 2.20 (invariant measure). Let (X,A) be a measurable space, {St : t ∈ G}
(G = IR+ or Z+) a dynamical system on X. A measure µ on A is invariant under {St}
if Stµ = µ. That is,

µ
(

S−1
t (A)

)

= µ(A) ∀A ∈ A, ∀t ∈ G. (2.36)

We say that St preserves µ, or that St is µ-preserving.

Absolutely continuous invariant measures can be characterized as fixed points of the

Perron-Frobenius operator:

Definition 2.21 (invariant density). Let (X,A, µ) be a measure space, {St : t ∈ G}
a dynamical system such that each St nonsingular. A probability density f is invariant

under {St} if Ptf = f , where Pt is the Perron-Frobenius operator with respect to St.

That is,
∫

A
f dµ =

∫

S−1
t (A)

f dµ ∀A ∈ A, ∀t ∈ G. (2.37)

For example, with the Perron-Frobenius operator (2.28) corresponding to the map

(2.35), it is straightforward to check that the density

f∗(x) =
1

π
√

x(1− x)
(2.38)

is invariant under iterates of S. The graph of this density is shown in Figure 2.1; it agrees

with the numerically obtained invariant density shown in Figures 1.2 and 1.3.

One immediate consequence of the existence of an invariant measure is the following.

Theorem 2.5 (Poincaré Recurrence). Let {St : t ∈ G} (G = Z+ or IR+) be a µ-

preserving dynamical system on a measure space X. Then ∀A ∈ A and ∀T > 0, the

set

{x ∈ A : Stx /∈ A ∀t > T} (2.39)

has measure 0. In other words, if µ(A) > 0 then under the action of {St}, µ-almost every

initial phase point in A returns to A infinitely often.
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Proof. See e.g. [71], or [84] in the simpler case µ(X) <∞.

This theorem already has interesting consequences for the orbit structure of the dy-

namical system x 7→ 4x(1−x) (typical orbits are shown in Figure 1.1): since the measure

with density (2.38) is invariant, under iteration by S, Lebesgue-almost every x ∈ [0, 1]

returns arbitrarily close to x infinitely often. This imples a certain kind of irregularity,

in fact aperiodicity, thus confirming the intuitive impression of Figure 1.1. However, for

some systems the consequences of the Poincaré Recurrence Theorem are quite vacuous.

For example the identity map preserves Lebesgue measure on [0, 1], but the consequences

of the Poincaré Recurrence Theorem in this case are trivial.

2.4.2 Statistical regularity

From the examples above it seems that, for some systems, existence of an invariant

measure implies strong statistical properties, while for other systems is does not. It

would be nice to have tools for discerning between dynamical systems that exhibit varying

degrees of irregularity and have different statistical properties.

As observed in Chapter 1, an orbit {xn} of the map x 7→ 4x(1 − x) appears to

have a well defined asymptotic distribution, as seen from a histogram of the trajectory

(cf. Figure 1.4). The frequency with which an orbit visits a given histogram bin is

asymptotically regular, despite the irregularity of the orbit itself. A somewhat stronger

notion of statistical regularity requires that an arbitrary continuous function, evaluated

along an orbit of {St}, has a well-defined time average [104]:

Definition 2.22 (statistical regularity). Let {St : t ∈ G} (G = IR+ or Z+) be a

dynamical system on X. An orbit {Stx : t > 0} is statistically regular if the time average

φ̄(x) = lim
n→∞

1

n

n
∑

k=1

φ(Skx) (if G = Z+) (2.40)

or

φ̄(x) = lim
T→∞

1

T

∫ T

0
φ(Stx) dt (if G = IR+) (2.41)

exists for every bounded continuous function φ : X → IR.

Statistical regularity implies the existence of an invariant probability measure:
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Theorem 2.6. Let {St : t ∈ G} be a dynamical system on a metrizable space X. If the

time average φ̄(x) exists for every bounded continuous function φ : X → IR then there is

a unique invariant Borel probability measure µx such that

φ̄(x) =

∫

φdµx. (2.42)

Proof. The mapping T : φ 7→ φ̄(x) defined by equations (2.40)–(2.41) is a bounded, linear,

positive functional on C(X). Therefore by the Riesz Representation Theorem [55] there

is a unique Borel probability measure µx such that

T (φ) =

∫

φdµx. (2.43)

Furthermore (in the discrete-time case),

∫

φ d(µx ◦ S−1
t ) =

∫

(φ ◦ St) dµx

= φ ◦ St(x)

= lim
n→∞

1

n

n
∑

k=1

(φ ◦ St)(Skx)

= lim
n→∞

1

n

n
∑

k=1

φ(St+kx)

= lim
n→∞

1

n

[

n
∑

k=1

φ(Skx) +

n+t
∑

k=n+1

φ(Skx)−
t

∑

k=1

φ(Skx)
]

= φ̄(x).

(2.44)

It follows that µx ◦ S−1
t = µx, by uniqueness of µx. A similar argument holds in the

continuous-time case.

2.4.3 Ergodicity, mixing, exactness

A century ago, motivated by fundamental problems in statistical mechanics, Boltzmann

and Gibbs raised the ergodic problem: to determine sufficient conditions under which the

time average φ̄(x) (equations (2.40)–(2.41)) exists and is essentially independent of x.

The answer, given by Birkhoff in 1931, is that it is both necessary and sufficient that the

dynamical system {St} be ergodic.
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Definition 2.23 (invariant set). Let S : X → X be a measurable transformation. A

set A ∈ A is invariant under S if4 S−1(A) ∆ A has measure 0 (that is, S−1(A) = A mod

µ). If {St} is a semigroup then A is invariant under {St} if A is invariant under St ∀t > 0.

Definition 2.24 (ergodic dynamical system). Let {St : t ∈ G} (G = IR+ or Z+) be

a dynamical system on a probability space X. {St} is ergodic (alternatively µ is ergodic)

if for every St-invariant set A, either µ(A) = 0 or µ(A) = 1.

Ergodicity is a non-decomposability condition: having {St} ergodic means there is

no non-null set that is invariant under {St}. If it were possible to decompose X into

invariant sets A ∪ B = X then {St} could be studied separately on either A or B. An

ergodic dynamical system must be studied on essentially the entire space X.

Ergodicity is a sufficient condition for statistical regularity:

Theorem 2.7 (Birkhoff Ergodic Theorem). Let {St : t ∈ G} be an ergodic µ-

preserving dynamical system on a measure space X, and φ ∈ L1(X). Then for µ-almost

all x,

∫

φdµ =



















lim
n→∞

1

n

n
∑

k=1

φ(Skx) if G = Z+

lim
T→∞

1

T

∫ T

0
φ(Stx) dt if G = IR+.

(2.45)

Proof. The proof is somewhat technical, and can be found in any of the standard refer-

ences on ergodic theory—see e.g. [71, 93].

In other words, if {St} is ergodic then the time average of φ along µ-almost every orbit

is just a “spatial” average or expectation of φ, weighted with respect to µ. Ergodicity also

gives an explicit formula for the ergodic measure µ in terms of time averages. Applying

the ergodic theorem with φ = 1A yields

µ(A) =

∫

1Adµ

= lim
n→∞

1

n

n
∑

k=1

1A(Skx)

= lim
n→∞

1

n
#{k > 0 : Skx ∈ A},

(2.46)

4The “symmetric difference” of two sets is defined by A ∆ B = (A \B) ∪ (B \A).
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which is just the fraction of time that the orbit {Skx : k > 0} spends in the set A. Thus

an ergodic measure describes the asymptotic distribution in phase space of µ-almost every

orbit. This helps explain the observation made in Chapter 1 that the long-run distribution

of points on any given orbit agrees with the invariant density.

From Theorem 2.7 we have that ergodicity implies the existence of the time average

of any L1 function φ evaluated along µ-almost every trajectory, hence ergodicity implies

statistical regularity. However, ergodicity remains a difficult property to prove for the

dynamical systems that arise in statistical mechanics, and for practical purposes the

ergodic problem is still unresolved.

Ergodicity (and hence statistical regularity) does not necessarily imply any kind of

“random” behavior of individual orbits. Irrational rotations are a classic example. Let

points on the circumference of a circle be parametrized by points x ∈ [0, 2π), and denote

rotation through angle φ by the map

S : x 7→ x+ φ (mod 2π). (2.47)

This system is ergodic if (and only if) φ/2π is irrational (see e.g. [74, p. 75] and [71, Prop

4.2.1]). The ergodic invariant measure is Lebesgue measure on [0, 2π), hence Lebesgue

almost every orbit of this system is statistically regular and is, asymptotically, distributed

uniformly on [0, 2π).

To distinguish between degrees of irregularity there are other, stronger statistical

properties that we can ask of a given dynamical system. Two such properties are mixing

and exactness.

Definition 2.25 (mixing). Let {St : t ∈ G} (G = IR+ or Z+) be a µ-preserving

dynamical system on a probability space (X,A, µ). {St} is called mixing if ∀A,B ∈ A

µ
(

A ∩ S−1
t (B)

)

→ µ(A)µ(B) as t→∞. (2.48)

In particular if µ(A) 6= 0 then for a mixing dynamical system,

µ
(

A ∩ S−1
t (B)

)

µ(A)
→ µ(B) as t→∞. (2.49)

In other words, the fraction (with respect to µ) of phase points originating in A that

end up in B after time t (for sufficiently large t) is equal to the size of B. This result is
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independent of the particular choice of sets A, B.

The mixing property comes closer than ergodicity to characterizing what one would

call a “random” process, as the condition (2.49) implies that Stx eventually becomes un-

correlated with the initial state x. Thus mixing plays much the same role as “sensitivity

to initial conditions” in the topological approach to chaotic dynamics. Mixing distin-

guishes between merely statistically regular systems and systems with stronger statistical

properties. Irrational rotations, for example, are ergodic but not mixing. A yet stronger

statistical property is exactness:

Definition 2.26 (exactness). Let {St : t ∈ G} be a µ-preserving dynamical system on

a probability space (X,A, µ), such that St(A) ∈ A ∀A ∈ A, t ≥ 0. {St} is called exact if

lim
t→∞

µ
(

St(A)
)

= 1. (2.50)

Non-invertibility is a necessary condition for exactness, since for invertible St we have

µ
(

St(A)
)

= (µ ◦ S−1
t )

(

St(A)
)

= µ(A), (2.51)

so the condition (2.50) cannot hold. Thus there are mixing systems (e.g. the two-

dimensional Baker transformation [74], which is invertible) that are not exact. The

transformation x 7→ 4x(1− x) is exact [74, p. 167].
The implications between the various ergodic properties of dynamical systems, and

their topological counterparts, are summarized in the following diagram (proofs can be

found in [71, 74]; definitions of topological notions of complex dynamics are given in [71]).

exactness




y

mixing −−−−→ topological mixing




y





y

ergodicity −−−−→ transitivity




y





y

statistical regularity −−−−→ orbit recurrence

For systems having any of the ergodic properties discussed above, an arbitrary ini-

tial density converges—that is, iterates of the Perron-Frobenius operator converge—to a
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uniform density with respect to the invariant measure. A classification can be made in

terms of the strength of this convergence, and the Perron-Frobenius operator beomes an

important classification tool:

Theorem 2.8. Let {St : t ∈ G} (G = IR+ or Z+) be a dynamical system on a probability

space (X,µ), and let {Pt : t ∈ G} be the corresponding semigroup of Perron-Frobenius

operators. If {St} has a unique absolutely continuous measure µf∗ with positive density

f∗ then

1. {St} is exact iff ∀f ∈ L1(X), {Ptf} is strongly convergent5 to f∗;

2. {St} is mixing iff ∀f ∈ L1(X), {Ptf} is weakly convergent6 to f∗;

3. {St} is ergodic iff ∀f ∈ L1(X), {Ptf} is Césaro convergent7 to f∗.

Proof. See e.g. [74, p. 72], [84, pp. 56, 63, 92].

2.4.4 Natural and physical measures

According the Birkhoff Ergodic Theorem 2.7, an ergodic measure µ describes the asymp-

totic statistics of µ-almost every trajectory of a dynamical system {St}. Unfortunately,

this statement need not have much dynamical relevance. For example, the map x 7→
4x(1 − x) has a fixed point at the origin. The probability measure concentrated at the

origin is ergodic, and trivially reflects the statistics of an orbit originating at this point,

but it has nothing to say about any other orbit. The same applies to an ergodic mea-

sure concentrated on any periodic orbit. The problem here is that the Birkhoff Ergodic

Theorem gives a description of orbits only on a set of Lebesgue measure zero.

In general, a dynamical system may have many ergodic measures—in fact uncountably

many [40, 104]—only some of which imply something about the statistical behavior of

typical orbits, if by “typical” we mean “Lebesgue almost every”. It would be nice to have

a way to select, among the ergodic measures present, which measure is natural in the

sense of reflecting the dynamics of typical orbits.

Ergodic measures that are absolutely continuous with respect to Lebesgue measure

are a good candidate for a class of “natural” ergodic measures. If µf is an ergodic measure

5{fn} is strongly convergent to f if ‖fn − f‖
n→∞
−−−−→ 0 (in the L1 norm).

6{fn} is weakly convergent to f if φ(fn − f)
n→∞
−−−−→ 0 for any bounded linear φ : L1(X)→ IR.

7{fn} is Césaro convergent to f if 1
n

∑n

k=1 φ(fk−f)
n→∞
−−−−→ 0 for every bounded linear φ : L1(X)→ IR.
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with strictly positive density f (with respect to Lebesgue measure) then the statement

“µf -almost every” implies “Lebesgue almost every”.8 Then the Birkhoff Ergodic Theorem

says that µf describes the statistics of Lebesgue almost every orbit, hence µf is the

dynamically relevant ergodic measure. Moreover, if such a natural measure exists then it

is unique:

Theorem 2.9. Let {St : t ∈ G} be a nonsingular dynamical system on a measure space

X. If {St} is ergodic then {St} has at most one invariant density with respect to µ.

Furthermore, if {St} has a unique strictly positive invariant density then {St} is ergodic.

Proof. See e.g. [74, Thm 4.2.2]; also [71, Prop 5.1.2]. The result follows from the fact

that if ν1, ν2 are distinct ergodic measures then ν1 ⊥ ν2
9 [93, p. 94]. Thus ν1, ν2 cannot

both be absolutely continuous, hence at most one of them can have a density.

However, absolute continuity is not an adequate criterion for the selection of a natural

ergodic measure for a dissipative dynamical system. In a dissipative system, phase space

volumes are contracted by the time evolution, typically onto a compact invariant set, or

attractor [103, 104]. In this case the relevant ergodic measure is expected to be concen-

trated on a set of Lebesgue measure zero, and therefore will not be absolutely continuous.

Thus, even for the dynamically relevant ergodic measure, the Birkhoff Ergodic Theorem

gives a statement only about orbits originating on a set of Lebesgue measure zero.

Nevertheless, in physical experiments and computer simulations there is typically just

one invariant measure—the so-called physical measure—that describes typical orbits of

the system. The existence of such a measure motivates the following definition.

Definition 2.27 (SRB (Sinai-Ruelle-Bowen) measure). Let {St : t ∈ G} be a

dynamical system on a measure space X. Then µ is an SRB or physical measure for {St}
if for any bounded continuous φ : X → IR and for all x in a set of positive Lebesgue

measure,
∫

φdµ = lim
n→∞

1

n

n
∑

k=1

φ(Skx) (if G = Z+) (2.52)

8The relation “¿” is transitive and reflexive, so the condition “µ¿ ν and ν ¿ µ” gives an equivalence
relation µ ∼ ν. Equivalent measures share the same null sets. All measures with positive density (e.g.,
with respect to Lebesgue measure) are equivalent. Thus we seek “natural” measures in the equivalence
class containing Lebesgue measure.

9The relation ⊥ is the antithesis of absolute continuity. If µ ⊥ ν then essentially the only sets on which
µ does not vanish are those on which ν does, and vice versa. See e.g. [55].
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or
∫

φdµ = lim
T→∞

1

T

∫ T

0
φ(Stx) dt (if G = IR+). (2.53)

Thus an SRB measure is one for which the conclusion of the Birkhoff Ergodic Theo-

rem 2.7 holds, not just on a set of positive µ measure, but on a set of positive Lebesgue

measure. Thus an SRB measure describes the statistics of Lebesgue almost every orbit

originating in some nontrivial set. By definition, existence of an SRB measure requires

statistical regularity for all orbits in a set of positive Lebesgue measure. An SRB measure

is necessarily invariant under St, as can be seen from the proof of Theorem 2.6. An SRB

measure need not be ergodic [14].

Other candidates for the notion of “physical” measure have been given. For example,

suppose a dynamical system with random perturbations of amplitude ε has a station-

ary measure µε. The zero-noise limit (ε → 0) of µε, if it exists, is the Kolmogorov

measure [104]. For some systems (e.g. Axiom A systems10) the Kolmogorov measure is

known to coincide with the SRB measure. Because of this equivalence, a number of differ-

ent definitions of SRB measure appear in the literature; see e.g. [14, 104]. The definition

above is commonly preferred because it is motivated by physical considerations.

Existence of an SRB measure is a strong condition that, although quite natural to

define, turns out to be very difficult to prove. Existence is known for Axiom A systems and

C2 flows with hyperbolic attractors [16, 102]. The notion of strange attractor, of which

much has been made in chaos studies, has been defined as an attracting invariant set that

supports an SRB measure that is mixing [18]. Proving the existence of such a measure

is widely recognized as one of the most important outstanding problems in dynamical

systems theory [40, 120]. Computer methods are showing promise in this direction, and

have recently been used to show the existence of an SRB measure supported on the

famous Lorenz attractor [78, 116, 117].

2.5 Dimensions and Lyapunov Exponents

In numerical studies of chaotic systems various numerical parameters—for example Lya-

punov exponents, dimensions, and entropy—are frequently used to quantify the degree of

“randomness” exhibited by typical orbits. The Birkhoff Ergodic Theorem and its gener-

10Axiom A systems are a fairly restrictive class of dynamical systems with strong chaotic properties.
For details see e.g. [104]. Examples are Anosov flows, Smale’s horseshoe map, and the solenoid [109].
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alizations make it possible to define these quantities rigorously in terms of time averages

along trajectories, and to establish that these quantities are identical for almost every

trajectory with respect to the ergodic measure:

Lyapunov characteristic exponents are the time averages of the exponential rates of

divergence of nearby trajectories, along orthogonal directions in the tangent space

of a given orbit [12, 13, 92].

Dimensions help quantify the geometric structure of invariant sets (e.g. attractors) of

dynamical systems. For sets that support an invariant measure, one can define

the information dimension, correlation dimension, and Hausdorff dimension (see

e.g. [104]) which quantify the average number of “independent directions” on the

invariant set.

Entropy is a measure of the average rate of information creation along an orbit of a

dynamical system (see e.g. [108]).

2.6 Reliability of Numerical Simulations

Because of sensitivity to initial conditions, orbits of chaotic dynamical systems cannot

be reliably computed using finite precision arithmetic, as in computer simulations. A

numerically computed pseudo-orbit approximating a true orbit typically loses any relation

to the true orbit after only a few iterations of the system dynamics. The exact map

S : x 7→ 2x mod 1 on [0, 1] makes this point especially clear, since S effects a left-shift on

the binary representation of x. That is,

S : 0.x1x2x3 . . . 7→ 0.x2x3x4 . . . (2.54)

where x1, x2, . . . are the digits of the binary representation of x. If the computer stores 16

binary digits in its representation of x, then the numerical approximation of any particular

orbit becomes meaningless after only 16 iterations of the dynamics.

The situation therefore seems hopeless when we come to using computer simulations

to approximate statistical properties of dynamical systems, since very long and reason-

ably accurate pseudo-orbits are required. Surprisingly, this does not pose a problem for

sufficiently well-behaved systems.
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Definition 2.28 (pseudo-orbit; shadowing). Let {Sn = Sn : n ∈ Z+} be a dynamical

system on a metric space X.

• A pseudo-orbit {xn : a ≤ n ≤ b} is an α-pseudo-orbit if

d
(

xn+1, S(xn)
)

< α ∀a ≤ n ≤ b. (2.55)

• A point y ∈ X β-shadows {xn : a ≤ n ≤ b} if

d
(

Sn(y), xn
)

< β ∀n. (2.56)

One can think of an α-pseudo-orbit as an orbit of {Sn} that is perturbed by an

amount smaller than α after each iteration; this models, for example, the round-off error

in a numerical simulation. A shadow orbit {Sn(y)} is a true orbit that is approximated

by {xn} within accuracy β at all times.

Definition 2.29 (shadowing property). A dynamical system {Sn} has the shadowing
property if ∀β > 0, ∃α > 0 such that every α-pseudo-orbit is β-shadowed by a point y.

For a system with the shadowing property, a pseudo-orbit (e.g., one found by numer-

ical simulation) is always an accurate representation of some nearby true orbit, although

perhaps not the particular orbit one was trying to approximate. It is known that Anosov

systems11 have this property [71]. More generally a smooth dynamical system has the

shadowing property in a neighborhood of a hyperbolic invariant set; this is the celebrated

Shadowing Lemma [51, 71].

It can be shown [11] that for any uniformly continuous functional φ and a given δ > 0,

one can choose a sufficiently small α > 0 so that if {xn} is an α-pseudo-orbit then, ∀n > 0,

∣

∣

∣

∣

1

n

n
∑

k=1

φ(xk)−
1

n

n
∑

k=1

φ(Sky)

∣

∣

∣

∣

< δ. (2.57)

where {Sk(y)} β-shadows {xk}. Thus the time average of φ along the pseudo-orbit differs

by less than δ from the time average of φ along some true orbit {Sky}, hence time averages

computed from numerical simulations are in principle reliable.

11An Anosov system is one for which the entire phase space is a hyperbolic set [71].
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The considerations above apply only to systems with the shadowing property. Unfor-

tunately this property is difficult to prove except under fairly restrictive conditions, as in

Anosov systems. Nevertheless, numerical studies suggest that numerical simulations of

many non-Anosov systems are statistically reliable as well [11]; the shadowing property

provides a plausible mechanism that might account for this phenomenon.
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3.1 Introduction

The central aim of this thesis is to apply probabilistic concepts, e.g., from ergodic theory,

to the dynamics of delay differential equations (DDEs). Before such a project can proceed,

a number of foundational questions must be addressed. For instance,

• In what sense can a DDE be interpreted as a dynamical system, i.e., with a corre-

sponding evolution semigroup?

• What is the phase space for such a system?

• What semigroup of transformations governs the phase space dynamics of a DDE?

The dynamical systems approach to delay equations is well established, and provides

standard answers to these questions. This theory is discussed in Sections 3.3–3.4 below.

As it happens the phase space for a delay differential equation is infinite dimensional,

which complicates matters considerably.

An ergodic approach to DDEs will require a theory of probability in infinite dimen-

sional spaces. The elements of this theory are discussed in Sections 3.5–3.6. Naturally,

there are technical and interpretational difficulties with doing probability in infinite di-

mensions. Indeed, the available mathematical machinery proves to be inadequate to deal

with some of the problems that arise. This has important consequences for the remainder

of the thesis.

3.2 Delay Differential Equations

Delay differential equations, which are representative of the more general class of func-

tional differential equations [53], take a great variety of forms. Delay equations having

multiple time delays, time-dependent delays, and even continuous distributions of delays

all arise in mathematical models of evolutionary systems [39]. To simplify matters we

will restrict our attention to delay equations of the form

x′(t) = f
(

x(t), x(t− τ)
)

, (3.1)

where x(t) ∈ IRn, f : IRn× IRn → IRn, and τ > 0 is a single fixed time delay. Despite this

restriction, the class of delay equations of the form (3.1) provides more than a sufficient

arena for the considerations that follow.
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3.2.1 Definition of a solution

By a solution of the DDE (3.1) we mean the following: if for some t0 ∈ IR and β > t0,

the function x : [t0 − τ, β]→ IRn satisfies (3.1) for t ∈ [t0, β], then we say x is a solution

of (3.1) on [t0− τ, β]. If φ : [t0− τ, t0]→ IRn and x is a solution that coincides with φ on

[t0 − τ, t0], we say x is a solution through (t0, φ).
1

Because equation (3.1) is autonomous (i.e., the right-hand side does not depend ex-

plicitly on t), it is invariant under time translation. That is, if x(·) is a solution then,

for any T ∈ IR, x(· + T ) is also a solution. Consequently the choice of initial time t0 is

arbitrary, and for the sake of convenience we can take t0 = 0. Let C = C([−τ, 0]) be the

space of continuous functions from [−τ, 0] into IRn. Then if φ ∈ C and x : [−τ, β]→ IRn,

we say x is a solution of (3.1) with initial function φ, or simply a solution through φ, if

x is a solution through (0, φ).

Our intention to consider delay equations as models of deterministic processes imposes

some constraints on the equations it makes sense to consider. In order that a given DDE

describes an evolutionary process at all, we require the existence of solutions, at least

for some subset of initial functions φ ∈ C. Moreover, since ergodic theory is concerned

largely with asymptotic properties, we require global existence, i.e. existence of solutions

on the entire interval [−τ,∞). To ensure that the process is deterministic we require

that, for given φ ∈ C, the solution through φ should be unique.

These constraints are in fact met under fairly mild restrictions on the right-hand

side of (3.1). The following section presents the basic results of this theory that we will

require. For further details of the existence and uniqueness theory for delay equations

see for example [39, 53].

3.2.2 Existence and uniqueness theory

The existence and uniqueness theory for delay equations can be derived from the more

general theory of functional differential equations. Since we intend to consider only equa-

tions of the form (3.1) we will not make use of the full generality available. Nevertheless,

the more general theory leads to a presentation that is simpler and also benefits from an

analogy with similar results in the theory of ordinary differential equations.

In the following, C([a, b]) denotes the Banach space of continuous functions from [a, b]

1The difficulty that arises if φ does not satisfy (3.1) at t0 is avoided if x′ is interpreted as a right-hand
derivative.
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into IRn, equipped with the sup norm, and C denotes the space C([−τ, 0]). If β > 0 and

x ∈ C([−τ, β]), let xt ∈ C be defined by

xt(s) = x(t+ s), s ∈ [−τ, 0]. (3.2)

Suppose F : IR× C → IRn. Then the equation

x′(t) = F (t, xt), (3.3)

where x′ denotes the right-hand derivative, is called a retarded functional differential

equation (RFDE) on D.

Equation (3.3) provides for a very general dependence of x′(t) on the retarded values

of x on the interval [t− τ, t]. The DDE (3.1) is a special case, with F given by

F (t, φ) = f
(

φ(0), φ(−τ)
)

. (3.4)

A solution x of (3.3) is defined in the same manner as for the DDE (3.1) (see the

preceding section). The basic results on existence and uniqueness of solutions are pre-

sented below. We omit the proofs, which are somewhat lengthy and technical, and refer

the reader to [39, 53] for details.

Theorem 3.1 (Local existence). Suppose Ω ⊂ IR × C is open, and F : Ω → IRn is

continuous. If (t0, φ) ∈ Ω then there is a solution of the RFDE (3.3) through (t0, φ).

Proof. See e.g. [53, p. 43].

Corollary 3.2. If f : IRn × IRn → IRn is continuous then for any φ ∈ C there is a

solution of (3.1) through φ.

Proof. Equation (3.1) is equivalent to (3.3) with F defined as in (3.4). Since f is contin-

uous, F is a composition of continuous functions and is therefore continuous on IR× C.
The conclusion follows from Theorem 3.1.

Definition 3.1 (Lipschitzian). Let Ω ⊂ IR× C and F : Ω→ IRn. F is Lipschitzian in

φ (on Ω) if, for some K ≥ 0,

∣

∣F (t, φ1)− F (t, φ2)
∣

∣ ≤ K|φ1 − φ2| ∀(t, φ1), (t, φ2) ∈ Ω. (3.5)
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Theorem 3.3 (Uniqueness). Suppose Ω ⊂ IR×C is open, F : Ω→ IRn is continuous,

and F (t, φ) is Lipschitzian in φ on every compact set in Ω. If (t0, φ) ∈ Ω then there is a

unique solution of the RFDE (3.3) through (t0, φ).

Proof. See e.g. [53, p. 44].

Corollary 3.4. If f : IRn × IRn → IRn is Lipschitzian then for any φ ∈ C there is a

unique solution of (3.1) through φ.

Proof. Equation (3.1) is equivalent to (3.3) with F defined as in (3.4). Since f is Lip-

schitzian, F (t, φ) is Lipschitzian in φ [39, p. 292]. The conclusion follows from Theo-

rem 3.3.

Theorem 3.5 (Global existence). Suppose F : [t0, β) × C → IRn is continuous, and

that F (t, φ) is Lipschitzian in φ. If

∣

∣F (t, φ)
∣

∣ ≤M(t) +N(t)
∣

∣φ
∣

∣, ∀t ∈ [t0, β), φ ∈ C, (3.6)

for some positive continuous functions M,N on [t0, β), then there is a unique solution of

the RFDE (3.3) through φ on [t0 − τ, β).

Proof. See e.g. [39, p. 308].

Corollary 3.6. If f : IRn × IRn → IRn is Lipschitzian and satisfies

∣

∣f(u, v)
∣

∣ ≤ N(t)max{|u|, |v|} (3.7)

for some positive continuous function N(t) on [0, β), then ∀φ ∈ C there is a unique

solution of (3.1) through φ on [−τ, β).

Proof. With F defined as in equation (3.4), equation (3.1) is equivalent to the RFDE (3.3).

Since f is Lipschitzian it is also continuous, hence F is continuous and F (t, φ) is Lips-

chitzian in φ [39, p. 292]. Since

∣

∣F (t, φ)
∣

∣ =
∣

∣f
(

φ(0), φ(−τ)
)
∣

∣

≤ N(t)max{|φ(0)|, |φ(−τ)|}
≤ N(t) sup

s∈[−τ,0]
|φ(s)|

= N(t)|φ|,

(3.8)
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the conclusion follows from Theorem 3.5.

The hypotheses of the preceding theorems can be considerably weakened. In par-

ticular, continuity of F can be weakened to continuity of F (t, xt) with respect to t for

every continuous x. The Lipschitz condition on F can also be weakened to a local Lips-

chitz condition, for which it suffices that f in the DDE (3.1) have continuous first partial

derivatives [39, p. 261].

In the following we also require continuous dependence of solutions on initial con-

ditions, for which the following theorem gives a result analogous to that for ordinary

differential equations.

Theorem 3.7 (Continuous dependence). Suppose x is a solution through (t0, φ) of

the RFDE (3.3) and that it is unique on [t0 − τ, β]. If {(tn, φn)} ⊂ IR× C is a sequence

such that (tn, φn) → (t0, φ) as n → ∞, then for all sufficiently large n every solution xn

through φn exists on [tn − τ, β], and xn → x uniformly on [t0 − τ, β].

Proof. See Theorem 2.2 of [53, p. 43], which proves a stronger result giving continuous

dependence on (t0, φ, F ). The version given here is a simpler special case.

3.2.3 Method of steps

Existence and uniqueness for a given DDE can sometimes be shown indirectly, by repre-

senting the DDE as a sequence of ordinary differential equations. This approach, known

as the method of steps [39], also furnishes a method of finding explicit solutions.

The DDE problem

x′(t) = f
(

x(t), x(t− τ)
)

, t ≥ 0

x0 = φ,
(3.9)

when restricted to the interval [0, τ ], becomes the ordinary differential equation

x′(t) = f
(

x(t), x0(t− τ)) ≡ g0
(

t, x(t)
)

, t ∈ [0, τ ], (3.10)

since x0 = φ is a known function. Under suitable hypotheses on g, existence and unique-

ness of a solution of this equation (hence a solution of (3.9)) on [0, τ ] can be established.

Denoting this solution by x1 and restricting equation (3.9) to the interval [τ, 2τ ], we
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obtain the ordinary differential equation

x′(t) = f
(

x(t), x1(t− τ)
)

≡ g1
(

t, x(t)
)

, t ∈ [τ, 2τ ], (3.11)

for which we can again establish existence and uniqueness of a solution x2.

Proceeding inductively, considering equation (3.9) as an ordinary differential equation

on a sequence of intervals [nτ, (n + 1)τ ], it is sometimes possible to show existence and

uniqueness of a solution of the DDE on [−τ,∞). This approach is especially simple if

f
(

x(t), x(t− τ)
)

= f
(

x(t− τ)
)

is independent of x(t), since existence and uniqueness of

xn+1 then requires only integrability of xn, hence almost-everywhere continuity of φ is

sufficient to guarantee existence and uniqueness of a solution on [−τ,∞).

3.3 Delay Equation as a Dynamical System

As noted above, to make sense of the DDE (3.1) as prescribing the evolution of a de-

terministic system, we require that for any φ in C, a solution x through φ exists and is

unique on [−τ,∞). We will also require that x(t) depend continuously on φ. Thus from

now on we will simply assume that sufficient conditions are satisfied to guarantee that

these constraints are met, for example the hypotheses of Corollary 3.6.

By a simple rescaling of the time variable in (3.1), the delay time τ can be made

equal to 1. For the sake of convenience, and wherever it seems natural, we will assume

in the following that such a rescaling has been done. Thus the generic DDE “initial data

problem” we consider is the following,

x′(t) = f
(

x(t), x(t− 1)
)

, t ≥ 0

x(t) = φ(t), t ∈ [−1, 0],
(3.12)

where φ ∈ C = C([−1, 0]).
Since equation (3.12) specifies the evolution of a variable x(t) ∈ IRn, it might seem

that such a DDE could be regarded simply as a dynamical system on IRn. However,

x(t) alone is inadequate as a “phase point”, since the initial value x(0) does not provide

sufficient information to determine a solution. Indeed, in order that the right-hand side

f
(

x(0), x(−1)
)

is well defined for all t ∈ [0, 1], initial data consisting of values of x(t) for

t ∈ [−1, 0] must be supplied, as in (3.12).

In general, to determine a unique solution of (3.12) for all t ≥ T , it is necessary and
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sufficient to know the retarded values of x(t) for all t in the “delay interval” [T − 1, T ].

Thus equation (3.1) can only be considered as a dynamical system if the phase point at

time t contains information about the solution x(t) on the entire interval [t− 1, t]. That

this is in fact sufficient to define a dynamical system corresponding to the initial value

problem (3.12) is shown in the following.

As before, let C be the Banach space of bounded continuous functions from [−1, 0]
into IRn, supplied with the sup norm. For each t ≥ 0 define a transformation St : C → C

by

(Stφ)(s) ≡ xt(s) = x(t+ s), s ∈ [−1, 0], (3.13)

where x(t) is the solution of (3.12). Then we have (cf. [53]):

Theorem 3.8. The family of transformations St, t ≥ 0, defined by equation (3.13), is a

semidynamical system on C ( cf. Definition 2.2). That is,

(a) S0φ = φ ∀φ ∈ C,

(b) (St ◦ St′)φ = St+t′φ ∀φ ∈ C, t1, t2 ≥ 0,

(c) (t, φ) 7→ St(φ) is continuous ∀t ≥ 0.

Proof. (a) is obvious from equations (3.12) and (3.13), since by definition

(S0φ)(s) = x(s) = φ(s), s ∈ [−1, 0]. (3.14)

To prove (b), let x(t) be the solution of (3.12). Then by definition of St,

(St+t′φ)(s) = x(t+ t′ + s),

(St′φ)(s) = xt′(s) = x(t′ + s).
(3.15)

By translation invariance of the DDE, x(t + t′) is also a solution, corresponding to the

initial function xt′ . Thus by definition of St,

(Stxt′)(s) = x(t+ t′ + s). (3.16)

Combining with (3.15), we have

(St ◦ St′)φ = Stxt′ = St+t′ . (3.17)
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(c) follows from Theorem 3.7, which asserts continuity of (t0, φ) 7→ x ∈ C([t0 − 1, β]).

Since xt+t0 is just the restriction of x to [t + t0 − 1, t + t0] ⊂ [t0 − 1, β], we also have

continuity of (t0, φ) 7→ xt+t0 = St+t0φ.

In terms of the evolution semigroup just defined, the initial data problem (3.12) can

be written as an abstract initial value problem,







xt = St(x0)

x0 = φ.
(3.18)

In accordance with the terminology of Section 2.1 we call the function xt the “phase

point” at time t of the corresponding DDE (3.12). The trajectory

{xt = Stφ : t ≥ 0} (3.19)

is a continuous curve in the function space C. The relationship of the DDE solution x(t)

to this trajectory is simple, and is given by

x(t) = xt(0). (3.20)

That is, the solution x(t) “reads off” the right endpoint of the phase point xt. In other

words, x(t) can be interpreted as the projection of xt under the map π : C → IRn defined

by π(xt) = xt(0).

The action of St has a simple geometric interpretation. Since (Stφ)(·) = x(t + ·), St

consists of a translation of the solution x followed by a restriction to the interval [−1, 0].
Figure 3.1 illustrates this action, together with the relationship of the state xt to the

DDE solution x(t).

The phase space of the dynamical system {St} (and hence the phase space of the

corresponding DDE (3.12)), being the space of continuous functions on the interval [−1, 0],
is infinite dimensional. The infinite dimensionality of the phase space for delay equations

complicates their analysis dramatically, and as we will see, it proves to be a serious barrier

to developing a probabilistic treatment.
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Figure 3.1: Relationship between the solution x(t) of the delay equation (3.12) and the
phase point xt ∈ C of the corresponding dynamical system.

3.4 Representations of the Semigroup

The previous section illustrates how the delay equation (3.12) can be viewed as a dynam-

ical system in an infinite dimensional phase space. However, the definition of the corre-

sponding semigroup St (cf. equation (3.13)) is given implicitly in terms of a particular

solution of the DDE. That is, in order to evaluate St(φ) we must have the corresponding

solution x of (3.12) already in hand. Consequently, the present definition of St provides

little insight as to how St operates as a transformation on C. It is illuminating to con-

sider alternative representations of the semigroup, with a view to making its action on

the phase space of continuous functions more transparent. Sections 3.4.1–3.4.3 explore

some of the possibilities.

3.4.1 Explicit solution map

For some delay equations it is possible to write the semigroup operator St explicitly as

an iterated map on C. For example, consider delay equations of the form (3.12) where f

is linear in its first argument, viz.,

x′(t) = −αx(t) + g
(

x(t− 1)
)

. (3.21)

Using the notation introduced in the previous section, let xt(·) = x(t + ·) ∈ C represent

the phase point at time t for the corresponding dynamical system {St}. It is simplest

to construct just the time-one map S = S1 for this system, for which the only relevant
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phase points are those at discrete times,

xn(·) = x(n+ ·), n = 0, 1, 2, . . . . (3.22)

In this notation the DDE (3.21) becomes

x′n+1(s) = −αxn+1(s) + g
(

xn(s)
)

, (3.23)

an ordinary differential equation for xn+1 in terms of the (known) previous phase point

xn. Its solution defines the time-one map S : xn 7→ xn+1. Explicitly (cf. [41]),

(Su)(s) = u(0)e−α(s+1) +

∫ s

−1
eα(t−s)g

(

u(t)
)

dt, s ∈ [−1, 0]. (3.24)

This map gives a representation of the DDE (3.21) as a discrete-time dynamical

system,

xn+1 = Sxn. (3.25)

Together with an initial function x0 = φ, this system defines a trajectory {xn : n =

0, 1, . . .} ⊂ C. From this trajectory, the solution x(t) of the original delay equation (3.21)

can be recovered according to equation (3.22).

It is interesting that, although {St} is a continuous-time dynamical system, a tra-

jectory of the discrete-time system {Sn : n ∈ Z+} is sufficient to construct the solution

x(t) of the original DDE for all t > 0. The continuous-time family of maps St does not

provide any additional information about the solution, so it is reasonable to treat the

DDE as a truly discrete-time dynamical system in C. This observation does not depend

on the special form of the DDE (3.21), as the same conclusion can be drawn for the more

general DDE (3.12) where, although we do not have an explicit formula for the time-one

map, S can be defined using the method of steps (cf. page 46).

3.4.2 Initial boundary value problem

The semigroup of operators St on C also has a representation in terms of the solution of

an initial boundary value problem. Again, this representation may be more illuminating

than an implicit definition of St in terms of solutions x(t) of the DDE, and it applies even

if an explicit solution map like that in the previous section cannot be obtained.

If the right-hand side f of the DDE (3.12) is continuous, then the solution x is
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continuously differentiable on (0,∞). Therefore, at least for t > 1, the phase point xt(s)

is differentiable in both t and s. It follows that xt, considered as a function

u(s, t) = xt(s) = x(t+ s), (3.26)

satisfies the partial differential equation

∂u(s, t)

∂t
=
∂u(s, t)

∂s
, s ∈ [−1, 0], t > 1. (3.27)

The DDE (3.12) implies a boundary condition on u,

∂u(s, t)

∂s

∣

∣

∣

s=0
= f

(

u(0, t), u(−1, t)
)

. (3.28)

Equations (3.27)–(3.28), together with initial data

u(s, 0) = φ(s), (3.29)

constitute an initial boundary value problem describing the evolution of xt. If the initial

function φ is differentiable and satisfies the “splicing condition”

φ′(0) = f(φ(0), φ(−1)), (3.30)

then the domain of (3.27) can be extended to [−1, 0]× [0,∞).2

This initial boundary value problem evidently has a solution u(s, t) = x(t+ s). More-

over, since any solution u(s, t) of (3.27)–(3.29) defines a solution x of the corresponding

DDE via (3.26), uniqueness of the solution of the DDE implies uniqueness for the initial

boundary value problem.

3.4.3 Abstract differential equation

The connection between the initial boundary value problem (3.27)–(3.29) and the evolu-

tion semigroup {St} can be made more explicit by re-interpreting the initial boundary

value problem as an “abstract Cauchy problem”, i.e., an initial value problem on the

function space C.

2If the splicing condition does not hold, u(s, t) can be interpreted as a weak solution on [−1, 0] ×
[0,∞) [10].
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Recall that the phase point xt for the DDE (3.12) is given by

xt(s) = x(t+ s), (3.31)

where x is a solution of the DDE. The phase space trajectory corresponding to this

solution is a continuous curve {xt : t ≥ 0} ⊂ C. Under suitable hypotheses on the

function f in the DDE (3.12) this curve is differentiable. That is, the time derivative

d

dt
xt = lim

h→0

xt+h − xt
h

(3.32)

exists, where the limit is taken in the strong sense of convergence in C. In fact, we have:

Theorem 3.9. Suppose that f : IRn × IRn → IRn is continuous, and that φ ∈ C is

continuously differentiable and satisfies the splicing condition (3.30). Let x be the corre-

sponding solution of the DDE (3.12), and let xt(s) = x(t+s), s ∈ [−1, 0]. Then the strong

derivative d
dtxt exists and satisfies d

dtxt = Axt where A : C → C is given by A : u 7→ u′.

Proof.

lim
h→0

∥

∥

∥

ut+h − ut
h

−Aut
∥

∥

∥

= lim
h→0

sup
s∈[−1,0]

∣

∣

∣

x(t+ h+ s)− x(t+ s)

h
− x′(t+ s)

∣

∣

∣
.

(3.33)

Then by the mean value theorem,

lim
h→0

∥

∥

∥

ut+h − ut
h

−Aut
∥

∥

∥
= lim

h→0
sup

s∈[−1,0]
|x′(t+ c(h) + s)− x′(t+ s)| (3.34)

for some |c(h)| < |h|. Under the given hypotheses, x is continuously differentiable on

[−τ,∞). Thus x′ is continuous and hence uniformly continuous on any closed interval

containing [t− 1, 1], so the limit above is zero.

Thus, at least for continuously differentiable initial functions satisfying the splicing

condition, the trajectory {xt : t ≥ 0} corresponding to x0 = φ is differentiable and satisfies

d

dt
xt = Axt. (3.35)

The operator A is called the infinitesimal generator of the semigroup [74, Ch. 7]. Equa-
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tion (3.35) can be regarded as an “abstract differential equation”, with the mapping

u 7→ Au acting like a vector field on C. Together with the initial condition x0 = φ,

it constitutes an “abstract Cauchy problem”, or initial value problem, on C. The DDE

semigroup {St} furnishes a solution of this initial value problem, xt = St(φ), t ≥ 0.3 Thus

the action of the semigroup St can be interpreted as carrying the initial function φ along

a trajectory in C that is an integral curve of the differential equation (3.35).

The theory of abstract differential equations such as (3.35) is most fully developed in

the case where the corresponding semigroup turns out to be a family of linear operators.

This is the case, for instance, when the DDE (3.12) is linear [53, p. 194]. Then there is an

existence and uniqueness theory for initial value problems satisfying differential equations

like (3.35) (the Hille-Yosida Theorem and its relatives [26, Ch. 2]). For our purposes a

detailed discussion of this theory is unwarranted. Instead, in the following we merely

sketch its relevance to linear delay equations.

Note that the infinitesimal generator A is not defined on all of C, so that it is not

strictly valid to consider A as a vector field on C. In fact, it is clear from the proof of

Theorem 3.9 that A is defined only on the domain

D(A) = {u ∈ C : u′ ∈ C and u′(0) = f
(

u(0), u(−1)
)

}, (3.36)

However, D(A) is dense in C [53, p. 194]. This, together with restrictions on A that are

satisfied if the delay equation (3.1) is linear, implies that the initial value problem

d

dt
xt = Axt, xt ∈ D(A),

x0 = φ ∈ D(A),
(3.37)

has a unique solution {xt = St(φ) : t ≥ 0} [36].

3.5 Perron-Frobenius Operator

Having determined how a delay differential equation defines a dynamical system, we are

in a position to approach one of the fundamental problems posed in this thesis. That is,

3If φ does not satisfy the splicing condition, xt = Stφ can be interpreted as a mild solution of (3.35),
i.e., there is a sequence of functions φn ∈ C, converging to φ, that do satisfy the splicing condition, such
that Stφn converges uniformly to Stφ [10, 36].
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given a system whose evolution is determined by a DDE

x′(t) = f
(

x(t), x(t− 1)
)

, (3.38)

and whose initial phase point φ ∈ C is not known but is given instead by a probability

distribution over all possible initial states, how does the probability distribution for the

phase point evolve in time? Alternatively, we could consider the statistical formulation

of the problem: given a large ensemble of independent systems, each governed by (3.38),

and whose initial functions are distributed according to some density over C, how does

this ensemble density evolve in time? It is of particular interest to characterize those

probability distributions that are invariant under the action of the DDE.

In a sense, the answer to this problem is simple and is provided by the Perron-

Frobenius operator formalism, introduced in Chapter 2. Suppose the initial distribution

of phase points is described by a probability measure µ on C. That is, the probability that

the initial function φ is an element of a given set A ⊂ C (correspondingly, the fraction

of the ensemble whose initial functions are elements of A), is given by µ(A). Then, after

evolution by time t, the new distribution is described by the measure ν given by

ν = µ ◦ S−1
t , (3.39)

provided St is a measurable transformation on C (cf. Section 3.6.1). That is, after time

t the probability that the phase point is an element of A ⊂ C is ν(A) = µ(S−1
t (A)).

If the initial distribution of states u can be described by a density ρ(u) with respect

to some measure λ, then after time t the density will have evolved to Ptρ, where the

Perron-Frobenius operator Pt corresponding to St is defined by

∫

A
Ptρ(u) dλ(u) =

∫

S−1
t (A)

ρ(u) dλ(u) ∀ λ-measurable A ⊂ C. (3.40)

Equations (3.39)–(3.40) might appear to answer the problem of the evolution of prob-

ability measures for DDEs. However, they amount only to a formal answer—essentially a

symbolic restatement of the problem. In fact, everything that is specific to a given DDE

is contained in the symbol S−1
t .

Although the DDE can be expressed in terms of an evolution semigroup, in none

of its representations (cf. Section 3.4) is there an apparent way to invert the resulting

transformation St. It is almost certain that such an inversion will be non-trivial, since
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solutions of delay equations frequently cannot be uniquely extended into the past [39], so

that St will not have a unique inverse. That is, S−1
t may have numerous branches that

need to be accounted for when evaluating S−1
t (A) in the Perron-Frobenius equation (3.40).

This is a serious barrier to deriving a closed-form expression for the Perron-Frobenius

operator Pt.

There are other subtle issues raised by equations (3.39)–(3.40). The most apparent

difficulty is that the integrals in (3.40) are over sets in a function space, and it is not

immediately apparent how such integrals can be carried out. More fundamentally, it is not

clear what family of measures we are considering, and in particular what subsets A ⊂ C
are measurable (i.e., what is the relevant σ-algebra on C?). Also, in equation (3.40) what

should be considered a natural choice for the measure λ with respect to which probability

densities are to be defined? For that matter, does it make sense to talk about probability

densities over the function space C? These issues are explored in the following section.

3.6 Probability in Infinite Dimensional Spaces

Any discussion of an ergodic theory of delay equations will require a theory of measure

and integration on function spaces. In particular we need to discuss probability measures

on the space C of continuous functions on the interval [−1, 0], since this is a natural phase

space for the DDE (3.12). Colloquially speaking, we need to make precise the somewhat

non-intuitive notion of selecting a random function from C.

Measure-theoretic probability provides a sufficiently abstract setting to accomplish

this. Recall from Chapter 2 that we can represent a random variable x ∈ X by its

associated probability measure µ, with the interpretation that for a given subset A ⊂ X,

µ(A) expresses the probability that x ∈ A. To ensure consistency with the axioms of

probability, we cannot assign a probability to just any subset of X. Rather, µ must

be defined on an appropriate σ-algebra—a collection of so-called measurable sets (cf.

Section 2.2.1). So choosing an appropriate σ-algebra on C is a necessary starting point.

3.6.1 Appropriate σ-algebra

In real Euclidean spaces, the notion of measure derives from our physical intuition of

length, area, volume, and their generalizations to higher dimensions. Thus line segments

in one dimension, and rectangles in two dimensions, are natural candidates for inclusion

in the σ-algebras of choice for these spaces. The natural choice of σ-algebra would seem
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to be the smallest σ-algebra that contains all such sets—that is, the σ-algebra generated

by these sets. This is the so-called Borel σ-algebra, which happens to coincide with the

smallest σ-algebra that contains all open subsets.

A similar approach leads to a natural choice of σ-algebra for infinite dimensional

spaces such as C. That is, we take the Borel σ-algebra generated by the metric topology

on C. With this choice, many important subsets of C such become measurable, i.e. we

can assign meaningful probabilities to them:

• any open set in C

• {u ∈ C : u(s) ∈ (a, b) ∀s ∈ [−1, 0]}; a, b ∈ IR

• any ε-ball Bε(v) = {u ∈ C : ‖u− v‖ < ε}; v ∈ C, ε ∈ IR

Besides achieving the measurability of important sets for analysis, there is a more

fundamental reason for choosing the Borel σ-algebra. Recall that studying the evolution of

probability measures under a given transformation makes sense only if the transformation

is measurable. Therefore, for our study of DDEs it is essential to choose a σ-algebra

on which the semigroup St defined by equation (3.13) is measurable. The following

establishes that the Borel σ-algebra accomplishes this.

Theorem 3.10. For every t ≥ 0, St : C → C ( cf. equation (3.13)) is a measurable

transformation on the Borel σ-algebra on C.

Proof. St is continuous on C, by Theorem 3.8(c), hence measurable, by Theorem 2.2.

It may be the case that the Borel σ-algebra on C is in fact not the most natural

choice in the context of a probabilistic approach to DDEs. Certainly, as demonstrated in

the following sections, measures on the Borel sets of infinite dimensional spaces do not

behave as we might like. However, in light of the preceding considerations, from now on

we will consider only measures defined on the Borel sets of C.

3.6.2 Densities

Recall that if a measure µ is absolutely continuous with respect to a measure λ, then it

can be expressed as

µ(A) =

∫

A
ρ dλ, (3.41)
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where the integral is in the sense of Lebesgue, and ρ ∈ L1(X,λ) is the density of µ with

respect to λ. Furthermore, any Lebesgue integrable function ρ ∈ L1(X,λ) with

∫

ρ dλ = 1 (3.42)

uniquely determines an absolutely continuous measure µ (cf. Section 2.2.4).

Since the relations (3.41)–(3.42) require only a σ-algebra and a measure λ on X,

they apply equally well in the more abstract setting of infinite dimensional spaces such

as C. That is, if C is equipped with a σ-algebra A and measure λ on A, then the

function space L1(C) = L1(C,A, λ) is unambiguously defined (cf. Section 2.2.3), and any

functional ρ ∈ L1(C) determines an absolutely continuous measure on C. However, in

this context the intuitive appeal of densities is lacking: it is impossible to draw the graph

of such a density functional. Even imagining a density on C seems beyond the power of

one’s imagination.

The analytical benefits of using densities also appear to be quite limited in infinite

dimensional spaces. The connection between measure theory and calculus in finite di-

mensions owes much to the theory of integration, notably the fundamental theorem of

calculus and other theorems that facilitate calculations with integrals. There is no ade-

quate theory of integration on function spaces that makes it possible to evaluate integrals

like (3.41) on C (cf. comments in [79]). A notable exception to this is Wiener measure,

although this does not seem to be adequate for our purposes; see Section 3.6.5, page 62.

Even allowing that a more powerful theory of integration may be available in the

future, there remain some inherent difficulties with using densities to specify probability

measures on infinite dimensional spaces. Equation (3.40) for the evolution of a probability

density ρ under the action of a semigroup St is valid only if St is non-singular. That is,

pre-images under St of λ-measure-zero sets must have λ-measure zero. It turns out to be

difficult to guarantee this. In fact, on an infinite dimensional space, every absolutely con-

tinuous measure fails to remain absolutely continuous under arbitrary translations [122].

That is, for any measure λ on C, there is some v ∈ C for which the translation

T : u 7→ u+ v (3.43)

is singular (in the measure-theoretic sense), and hence does not map densities to densities.

If even translations do not lead to well-defined density evolution, there is little hope of

studying delay equations with density functionals.
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3.6.3 Lack of a “natural” measure on C

As if the preceding did not complicate matters enough, if we are to work with densities

on C there remains the problem of choosing a basic measure λ with respect to which

densities are to be defined (cf. equation (3.41)). This too turns out to be problematic.

In real Euclidean spaces we are accustomed to taking Lebesgue measure as the “nat-

ural” measure with respect to which densities are defined. That is, “a random number

distributed uniformly on the interval [0, 1]” means “a random variable on [0, 1] distributed

according to Lebesgue measure”. Why is Lebesgue measure—of all possible measures—

the gold standard for representing the concept of “uniformly distributed”?

The property of Lebesgue measure that selects it uniquely as the natural measure

on Euclidean spaces is its translation invariance. Given a random variable x uniformly

distributed on [0, 1], we expect that adding a constant a to x should result in a new random

variable, x+a, that is uniformly distributed on [a, a+1], at least according to what seems

to be the common intuitive notion of “uniformly distributed”. More generally, a random

variable uniformly distributed on any set in IRn should remain uniformly distributed

if translated by a constant vector. Formally, the measure λ on IRn that encapsulates

uniform distribution should satisfy

λ(A) = λ(A+ a), ∀a ∈ IRn, ∀ measurable A. (3.44)

Another way to say this is that λ is invariant under the translation group

Ta : x 7→ x− a. (3.45)

That is,

λ = λ ◦ T−1
a ∀a ∈ IRn. (3.46)

Equation (3.46) uniquely defines the Borel measure λ on the Borel σ-algebra on IRn(which

agrees with Lebesgue measure on the Borel sets). This is a specific instance of Haar mea-

sure: every locally compact topological group (e.g., the translation group just considered

on IRn) has a unique group-invariant measure on the Borel σ-algebra, called the Haar

measure, that is non-zero on any open set [73, p. 313].

In light of these considerations, in choosing a natural measure on C it seems reasonable

to seek a translation-invariant measure. After all, we would like that a uniformly dis-

tributed ensemble of functions in the unit ball in C should remain uniformly distributed
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under translation by any function in C. Unfortunately the existence of a Haar measure

on C is not guaranteed, since C is not locally compact.4 In fact the situation is worse

than that, as the following theorem demonstrates.

Theorem 3.11. Let X be an infinite dimensional separable Banach space. If λ is a

non-zero translation-invariant measure on the Borel sets of X, then λ(A) =∞ for every

open A ⊂ X.

Proof. (after [58].) Let B ⊂ X be an open ball of radius ε > 0, and suppose λ(B) > 0

is finite. Because X is infinite dimensional, there is an infinite sequence Bi, i = 1, 2, . . .

of disjoint open balls Bi ⊂ B, each of radius ε/4 (cf. the proof of Theorem 4.3.3 in [44,

p. 134]). Because {Bi} is a countable disjoint collection with ∪iBi ⊂ B, we have

λ(B) ≥ λ(∪iBi) =
∞
∑

i=1

λ(Bi), (3.47)

where λ(Bi) = λ(B1) by translation invariance. Since λ(B) is finite, this implies that

λ(Bi) = 0 ∀i. Separability of X implies that X can be covered by a countable collection

of ε/4-balls, each of which we have just shown must have measure 0. Hence λ(X) = 0, a

contradiction.

Since we expect any reasonable measure to be non-zero at least on some open sets,

we can conclude that translation-invariance will not suffice to select a natural measure

on C.

Aside from making the definition of densities on C ambiguous, the absence of a natural

measure undermines one of the most important concepts in ergodic theory. Recall from

Section 2.4.4 that an SRB measure µ for a dynamical system St on X is one such that,

for any functional ϕ ∈ L1(X),

lim
T→∞

1

T

∫ T

0
ϕ(Stx) dt =

∫

ϕdµ (3.48)

for Lebesgue almost every x. Thus the time average of ϕ along almost every trajectory is

equal to the spatial average of ϕ weighted with respect to µ. Because ϕ(x) represents an

arbitrary observable of the system, and µ encapsulates the asymptotic statistical behavior

4A normed vector space is locally compact iff it is finite dimensional [73, p. 39].
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of ϕ(x(t)) on almost every orbit of the system, is it widely accepted that an SRB measure

is the relevant physical measure—the one that nature reveals to the experimentalist.

The notion of “almost every” in (3.48) is always unquestioningly taken to mean

“Lebesgue almost every”. As we have seen, for infinite dimensional systems, and for

delay equations in particular, we have no natural analog of “Lebesgue almost every”,

since there is no translation invariant measure to take the place of Lebesgue measure.

That this ambiguity emerges at all is somewhat amusing, since the notion of SRB

measure was introduced on purely physical grounds. The very definition of SRB measure

requires that we make precise the notion of “physically relevant”—but for DDEs this leads

to considerations in the decidedly non-physical setting of infinite dimensional geometry,

where it appears to be an inherently ambiguous term.

3.6.4 Genericity and prevalence

Without a natural measure on C to characterize a physically relevant notion of “almost

every”, the definition of SRB measure for a delay differential equation is problematic. One

way out of this dilemma is to introduce a notion of almost every that does not depend

on a specific measure, such as the topological concept of genericity. A property is said

to be generic if it holds on a residual set, that is a countable intersection of open dense

sets. The complement of a residual set is a set of “first category”, hence first category

sets are topological analogs of sets of measure zero. Although genericity provides one

way to quantify the notion of almost every in infinite dimensional spaces, it lacks the

probabilistic interpretation that we would like to have in the context of ergodic theory.

More importantly, even in IRn residual sets can have measure zero [58], so using genericity

in the definition of SRB measure would be inconsistent with the accepted definition for

finite dimensional systems.

A more promising alternative is a translation-invariant probabilistic notion of almost

every called prevalence [58]:

Definition 3.2. Let X be a Banach space equipped with its Borel σ-algebra A. A Borel

set A ∈ A is called shy if there is a measure µ on A such that

• 0 < µ(U) <∞ for some compact U ⊂ X, and

• µ(A+ x) = 0 ∀x ∈ X.

A is called prevalent if it is the complement of a shy set.
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Roughly speaking, a set is shy if for some nontrivial measure on X, every translate

of A has measure zero. Two key properties make prevalence an attractive candidate

for a notion of “almost every” appropriate to a definition of SRB measure for infinite

dimensional systems (for proofs see [58]):

1. If A is prevalent then any translate of A is prevalent; i.e. prevalence is a translation-

invariant property.

2. A ⊂ IRn is shy if and only if A has Lebesgue measure zero.

The first property means prevalence is a natural or physical notion of almost every

in the sense discussed in the previous section. The second property guarantees that, in

finite dimensions, a property holds on a prevalent set if and only if it holds on a set of

positive Lebesgue measure. Thus for finite dimensional systems the definition of SRB

measure (cf. Definition 2.27, page 35) is unchanged is we substitute “a prevalent set” for

“a set of positive Lebesgue measure”. The novelty and significance of this alternative

definition is that it applies equally well to infinite dimensional systems.

Tools for proving shyness and prevalence are developed in [58]. The following interest-

ing results have been proved (here we use “almost every” in the sense of “in a prevalent

set”):

• If X is infinite dimensional then every compact subset of X is shy.

• Almost every element of C is nowhere differentiable.

• For 1 ≤ p ≤ ∞ almost every Cp map on IRn has the property that all of its periodic

points are hyperbolic.

• Almost every f ∈ C([0, 1], IR) satisfies
∫ 1
0 f(x) dx 6= 0.

We are unaware of any applications of prevalence to the concept of SRB measure.

This appears to be a promising direction for further investigation.

3.6.5 Wiener measure

As already noted, an adequate theory of integration on infinite dimensional spaces in

lacking. Such a theory is needed if we are to further develop the Perron-Frobenius operator

formalism to characterize the evolution of densities for DDEs, which requires a theory of
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integration of functionals on the space C. This difficulty also arises in [79], in the context

of a different approach to the evolution of densities for DDEs.

However, there is a notable exception worth mentioning. There is one probability

measure (or family of measures) on a function space, called Wiener measure, for which

there is a substantial theory of integration [68]. This measure plays an important role in

quantum field theory (see e.g. [105]), and is central to the theory of stochastic differential

equations [74, Ch. 11].

Let

C0 = {u ∈ C([0, 1], IRn) : u(0) = 0}. (3.49)

A Brownian motion5 is a stochastic process that generates a random path or “random

function” w ∈ C0 such that for a given t ∈ [0, 1], w(t) has Gaussian probability density [79]

ρ(x1, . . . , xn) =
1

(
√
2πt)n

exp
[

− (x2
1 + · · ·+ x2

n)/(2t)
]

. (3.50)

Then, roughly speaking, Wiener measure µw assigns to a given subset A ⊂ C0 a measure

equal to the probability that a Brownian motion generates an element of A.

With Wiener measure it is possible to prove strong ergodic properties (e.g. exactness)

for a certain class of partial differential equations [17, 99, 100, 101]. The success of

these investigations, together with the considerable machinery that has been developed

around the Wiener measure, suggests that Wiener measure might be a good choice for

the measure of integration in the study of other infinite dimensional systems such as

delay equations. However, in contrast with the quantum field equations and the PDEs

mentioned above, the dynamical system {St} corresponding to a delay equation does not

leave the space C0 invariant. That is, we cannot study St on C0 alone. Thus Wiener

measure does not seem to be adequate for our purposes. Nevertheless, an approach based

on Wiener measure might be still possible, and this suggests a fruitful avenue for further

investigation.

3.7 Conclusions

In this chapter we have developed a framework in which an ergodic treatment of delay

differential equations might be developed. This provides a setting and terminology that

5A Brownian motion is a continuous-time analog of a random walk starting at the origin. See e.g. [74].
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will be needed for our subsequent discussions of the ergodic properties of DDEs.

However, as far as the possibilities for the rigorous development of an ergodic theory

of DDEs are concerned, the main results of this chapter are somewhat pessimistic. The

picture that emerges is a characterization of DDEs as infinite dimensional dynamical

systems on the phase space C of continuous functions on the interval [−1, 0]. With this

characterization, an ergodic theory of DDEs is possible in principle. In such a theory the

mathematical objects of primary interest are probability measures on C. This entails a

theory of measure and probability on infinite dimensional spaces. As we have seen, the

foundations of this theory run aground on a number of technical and interpretational

difficulties including the following.

• Non-invertibility of the evolution semigroup {St}.

• Likely singularity of St with respect to most measures on C.

• Lack of an adequate theory of integration on infinite dimensional spaces.

• Non-existence of a natural (i.e. translation-invariant) measure on C.

• Ambiguity in the definition of SRB measure for infinite dimensional systems.

Some of these difficulties (e.g., with integration in infinite dimensions) appear to re-

quire significant new mathematical tools that are beyond the scope of this thesis. Others

(e.g., with the choice of a natural measure on C and the definition of SRB measure)

are simply ambiguities that arise when dynamical systems theory developed with only

finite-dimensional systems in mind is carried over to an infinite dimensional setting. Nev-

ertheless, in the absence of criteria by which these ambiguities could be resolved, we must

content ourselves with having carefully discussed the available alternatives.

In light of the foregoing the following chapters focus less on ergodic formalism, in

order to pursue more fruitful lines of inquiry. In the next chapter we turn to the practical

problem of computing the evolution of probability densities for the state x(t) ∈ IRn rather

than an abstract phase point in C.
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Figure 4.1: An ensemble of 100 solutions of the Mackey-Glass equation (4.2), correspond-
ing to an ensemble of constant initial functions with values uniformly distributed on the
interval [0.3, 1.3].

In light of the results of the previous chapter, a comprehensive treatment of delay

equations within the ergodic theory of dynamical systems is out of reach. Nevertheless, a

probabilistic treatment is feasible if the dynamical systems formalism is abandoned, and

this is the approach taken in the present chapter.

This chapter again considers systems that can be modeled by a DDE of the form

x′(t) = f
(

x(t), x(t− 1)
)

, t ≥ 0, x(t) ∈ IRn, (4.1)

where without loss of generality the “delay time” has been scaled to one. In contrast with

the previous chapter, we now take the point of view of an experimentalist, interpreting

this equation as prescribing the evolution of an observable quantity x(t) ∈ IRn, rather

than a phase point in an abstract function space. Thus we imagine an experimental

setting in which an ensemble of independent systems evolves according to (4.1), and

seek a probabilistic description of this ensemble in terms of the evolution of the density

ρ(x, t) of the ensemble of solution values x(t). (Alternatively we can think of ρ(x, t) as

a probability distribution that quantifies our uncertain knowledge of the state of a single

system governed by (4.1).)
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Figure 4.1 illustrates the problem we wish to consider. The figure depicts an ensemble

of 100 solutions1 of the Mackey-Glass equation [86],

x′(t) = −αx(t) + β
x(t− 1)

1 + x(t− 1)10
,

α = 2, β = 4, n = 10,

(4.2)

which was originally introduced to model oscillations in neutrophil populations. This

equation has been the subject of much study because of the variety of dynamical phe-

nomena it exhibits. The parameter values chosen here correspond to the existence of a

chaotic attractor. The solutions shown in Figure 4.1 correspond to an ensemble of 100

constant initial functions, whose values are uniformly distributed on the interval [0.3, 1.3].

From the density of solution curves on this graph, one can form an idea of the density

ρ(x, t) of solution values x(t) at any given time t. For example, at t = 3 solutions are

particularly dense near x = 0.45, x = 0.6, x = 0.9 and x = 1.2.

The main question this chapter attempts to answer in the context of Figure 4.1 is the

following. If the density ρ0(x) = ρ(x; 0) of constant initial values x at t = 0 is known, how

can one determine (i.e., predict) the density ρ(x; t) for times t > 0? The following section

develops an appropriate framework for the analysis of this problem. In Sections 4.2–

4.4 this framework is used to develop various approaches to the evolution of densities.

Each of these approaches is essentially independent of the others, but they are presented

in an order that takes advantage of the interplay between them. Analytical techniques

are considered in Sections 4.2 and 4.5; Sections 4.3 and 4.4 focus on computational

approaches.

1Numerical solutions were computed here using the solver DDE23 [107]
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4.1 Probabilistic Framework

Although equation (4.1) describes the evolution of a finite-dimensional vector x(t) ∈ IRn,

the space of initial conditions for this equation—the space C of continuous functions

from [−1, 0] into IRn—is infinite dimensional. This is the main source of difficulty in our

attempts so far to develop a probabilistic approach. To make the problem more intuitive

as well as mathematically tractable, it is necessary to somehow restrict the dimension of

the set of “allowable” initial conditions.

4.1.1 Restricted initial value problem

The simplest such restriction would be to allow only initial functions from some n-

dimensional subspace of C, such as the space of constant initial functions (cf. Figure 4.1).

Given the plethora of different finite-dimensional subspaces available in C, this restric-

tion might seem excessive. However, there is a physical justification for such a restriction,

since in an experimental setting the initial preparation of the ensemble is typically in an

equilibrium state. In this case we expect each of the units in the ensemble will have a

constant initial history, and thus the subspace of constant initial functions is naturally

selected by the experiment.

There are a number of other ways that an experimental setting might naturally select

a finite-dimensional set of allowable initial functions for (4.1). Since our hypothetical

ensemble has presumably not been in existence for all time, there must be some process

by which the individual initial histories are generated. Since this process cannot be

described by the governing delay equation, it is reasonable to posit some other process

that does govern the initial histories x(t) on the interval [−1, 0], and to describe this

process by an ordinary differential equation.

For convenience, let the initial time for the DDE (4.1) be t = 1 rather than t = 0.

Thus we consider the DDE

x′(t) = f
(

x(t), x(t− 1)
)

, t ∈ [1,∞) (4.3)

with initial function specified on the interval [0, 1]. Then the corresponding initial value
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problem can be written

x′(t) =







g
(

x(t)
)

if t ∈ [0, 1)

f
(

x(t), x(t− 1)
)

if t ≥ 1,

x(0) = x0,

(4.4)

where g : IRn → IRn describes the process by which the initial function is determined by

the initial value x(0). Of course we require that x′ = g(x) with initial value x(0) = x0

have a unique solution2 on [0, 1], so that (4.4) describes a deterministic process on [0,∞).

In (4.4) the set of allowable initial functions selected by g is just the set of solutions of

the ODE x′ = g(x) on [0, 1]. This is a one-dimensional set parametrized by the initial

value x0. For example the space of constant initial functions corresponds to g = 0.

Even if the initial function is not determined by an ODE, we still would like the set of

allowable initial functions to be parametrized by the initial value x0, since specifying an

ensemble of initial values x0 then determines an ensemble of initial functions, and hence

an ensemble of solutions of the given DDE. Thus in the most general case we wish to

consider the DDE (4.3) with an initial function specified by

x(t) = ψ(t, x0), t ∈ [0, 1] (4.5)

for some function ψ : IR× IRn → IRn which should have the following properties:

• The function t 7→ ψ(t, x0) (i.e. the initial function corresponding to the initial value

x0) is continuous.

• The mapping x0 7→ ψ(t, x0) is a measurable, non-singular transformation of IRn, so

if x0 is distributed with density ρ0 then the density of x(t) = ψ(t, x0) is well defined

for each t ∈ [0, 1] (cf. Section 2.3.2, page 23).

• ψ(0, x0) = x0, so the parameter x0 defines the initial value x(0).

Every such ψ determines a particular one-parameter family of allowable initial functions

in C. If ψ(t, x0) is the solution map for an ordinary differential equation x′ = g(x) (i.e.,

the function t 7→ ψ(t, x0) is the solution of the ODE with x(0) = x0), then it satisfies

2e.g., it suffices to have g bounded and continuously differentiable [39].
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the conditions above. For example the family of constant initial functions corresponds to

ψ : (t, x) 7→ x, which in turn corresponds to g = 0.

Having parametrized the set of allowable initial functions according to a particular

function ψ, the initial value problem corresponding to (4.3) becomes

x′(t) = f
(

x(t), x(t− 1)
)

, t ≥ 1

x(t) = ψ(t, x0), t ∈ [0, 1],

x(0) = x0.

(4.6)

Under suitable mild restrictions on f (cf. Chapter 3), for each x0 ∈ IRn this problem

uniquely determines the evolution of x(t) for t ∈ [0,∞).

In the following we restrict our attention to systems in which the initial function is

determined by an ordinary differential equation. Thus the remainder of this chapter is

concerned with probabilistic approaches to the initial value problem (4.4) which we will

call the “augmented DDE”, as distinguished from the corresponding DDE (4.3) with no

restriction on the set of allowable initial functions.

4.1.2 Perron-Frobenius operator

Let St : IR
n 7→ IRn be the solution map for the augmented DDE (4.4). That is,

St : x0 7→ x(t), t ∈ [0,∞), (4.7)

where x(t) is the (presumed unique) solution of (4.4). If an ensemble of initial values x0 is

specified with density ρ0, then the evolution of this density under the action of St is given,

in principle, by the corresponding Perron-Frobenius operator Pt : L
1(IRn)→ L1(IRn) (cf.

Section 2.3.2). This operator carries the initial density ρ0 to the density Ptρ0 at time t,

and is defined by the relation

∫

A
Ptρ0(x) dx =

∫

S−1
t (A)

ρ0(x) dx ∀ Borel A ⊂ IRn. (4.8)

Recall that Pt is well defined only if St is a measurable, nonsingular transformation.

In fact measurability is guaranteed because for each t, St is a continuous map on IRn

(this follows from continuity with respect to initial conditions for both the ODE and the

DDE, cf. Theorem 3.10 page 57). However, non-singularity of St is not guaranteed for
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all t—indeed, Section 4.2 presents a counter-example.

Note that the family of transformations {St : t ≥ 0} is not a semigroup. Consequently,

neither is the family of Perron-Frobenius operators {Pt}. This is not a consequence

of restricting the allowable set of initial functions, but rather comes from viewing the

DDE as specifying an evolution in IRn (rather than the function space C). In IRn the

augmented DDE (4.4) is non-autonomous, in that an explicit time dependence appears

in the term x(t − 1) (which acts as a forcing term). This destroys the time-invariance

required by the semigroup property. In short, the value of x(t) at a particular time is

not sufficient to uniquely determine its subsequent evolution—an obvious consequence of

delayed dynamics.

The absence of the semigroup property for St and Pt has important consequences. For

instance, it is not possible to express Pt+t′ as a composition Pt ◦Pt′ . With the semigroup

property, to find Pn for any integer n it suffices to find P1 and then express Pn = (P1)
n.

Without the semigroup property this construction fails, and finding Pt for arbitrarily

large t becomes far less trivial.

The remainder of this chapter is concerned with the evolution of densities for the

augmented DDE (4.4). This amounts to finding the corresponding Perron-Frobenius

operator Pt. Sections 4.2 and 4.5 are concerned with finding an analytical formula for Pt.

Sections 4.3 and 4.4 present numerical approaches to approximating Ptρ0 for given initial

densities ρ0.

4.2 Explicit Solution Map

For some delay equations it is possible to find an explicit formula for the Perron-Frobenius

operator defined by equations (4.4) and (4.7)–(4.8). This can be accomplished by first

finding an explicit formula for the transformation St : x0 7→ x(t), which requires that

the general solution to the given DDE be found. Equation (4.8) is then used to derive a

formula for Pt. The following examples illustrate this procedure.

Example 4.2.1. Consider the linear DDE

x′(t) = αx(t− 1), t ≥ 1, (4.9)



72 CHAPTER 4. DENSITY EVOLUTION FOR DELAY EQUATIONS

with the set of allowable initial functions on [0, 1] restricted to constant functions, i.e.,

x(t) = x0, t ∈ [0, 1], (4.10)

with x0 distributed according to a given initial density ρ0. Define the family of solution

maps {St : t ≥ 0} by
St : x0 7→ x(t), (4.11)

where x(t) is the solution of (4.9)–(4.10). Since the DDE does not depend explicitly on

x(t), the method of steps (cf. Section 3.2.3 page 46) reduces to iterating the following

integral for n = 1, 2, . . .,

x(t) = x(n) +

∫ t

n
αx(s− 1) ds, t ∈ [n, n+ 1]. (4.12)

Thus we obtain

St(x0) =











































x0 t ∈ [0, 1]

(αt− α+ 1)x0 t ∈ [1, 2]

(1
2α

2t2 − 2α2t+ αt+ 2α2 − α+ 1)x0 t ∈ [2, 3]
...

βn(t)x0 t ∈ [n, n+ 1]

= β(t)x0,

(4.13)

where, from equation (4.12), βn(t) is a polynomial of degree n. Recall that the Perron-

Frobenius operator corresponding to St is defined by

∫

A
Ptρ0(x) dx =

∫

S−1
t (A)

ρ0(x) dx. (4.14)

Taking A = [0, x] we have

S−1
t (A) =







[0, x/β(t)] if β(t) > 0

[x/β(t), 0] if β(t) < 0,
(4.15)



4.2. EXPLICIT SOLUTION MAP 73

and equation (4.14) becomes

∫ x

0
Ptρ0(s) ds =















∫ x/β(t)

0
ρ0(s) ds if β(t) > 0

∫ 0

x/β(t)
ρ0(s) ds if β(t) < 0.

(4.16)

Differentiating on both sides yields the explicit formula

(Ptρ0)(x) = ρ(x, t) =
1

|β(t)|ρ0

( x

β(t)

)

. (4.17)

Notice that St is non-singular (hence Pt is well defined) if and only if β(t) 6= 0, which

does not necessarily hold for all t. In particular, for any α ≤ −1/2 there is a time

t∗ = 1− 1/α ∈ [1, 2] at which β(t∗) = 0 and therefore

St∗(x) = 0 ∀x. (4.18)

That is, all solutions of (4.9)–(4.10) pass through 0 at t = t∗. In general this occurs

whenever β(t) = 0. At these times St is singular and Pt is undefined, though it is clear

that the ensemble of solutions is described by a point mass concentrated at x = 0. In

such cases it is possible to give the interpretation Ptρ0 → δ (the Dirac delta function) as

β(t)→ 0 (cf. [89] and [74, p. 398]).

In the previous example the Perron-Frobenius operator was easy to construct because

the solution map St was one-to-one and easy to invert. The following example shows

what happens for even slightly more interesting DDEs, where the solution map is not

necessarily one-to-one.

Example 4.2.2. Consider the DDE

x′(t) = −x(t− 1)2, t ≥ 1, (4.19)

where again we allow only constant initial functions on [0, 1], so that

x(t) = x0, t ∈ [0, 1]. (4.20)
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With the solution map St : x0 7→ x(t) defined as before, the method of steps yields

St(x) =











































x t ∈ [0, 1]

x− (t− 1)x2 t ∈ [1, 2]

x− (t− 1)x2 + (t2 − 4t+ 4)x3

+(−1
3 t

3 + 2t2 − 4t+ 8
3)x

4 t ∈ [2, 3]
...

(4.21)

For t ∈ [0, 1], we have simply Ptρ0 = ρ0 since St is the identity transformation. For

t ∈ [1, 2], take A = (−∞, x]. Then if x ≤ 1
4(t−1) ,

S−1
t (A) =

(

−∞, 1−
√

1− 4(t− 1)x

2(t− 1)

]

∪
[

1 +
√

1− 4(t− 1)x

2(t− 1)
,∞

)

, (4.22)

and otherwise S−1
t (A) = IR. Differentiating with respect to x on both sides of (4.14) then

yields

(Ptρ0)(x) =
1

√

1− 4(t− 1)x

[

ρ0

(1−
√

1− 4(t− 1)x

2(t− 1)

)

+ρ0

(1 +
√

1− 4(t− 1)x

2(t− 1)

)]

(4.23)

if x ≤ 1
4(t−1) , and (Ptρ0)(x) = 0 otherwise. Inverting St becomes extremely difficult for

t ∈ [2, 3], and impossible for t > 3 (since it would require explicit roots of a fifth-order

polynomial), so that it is not possible to derive an explicit formula for Pt.

In each of the preceding examples, the solution map St is a differentiable transfor-

mation on IR. For such transformations the corresponding Perron-Frobenius operator Pt

can be expressed as

(Ptρ0)(x) =
∑

y∈S−1
t {x}

ρ0(y)

|S′t(y)|
, (4.24)

where S′t(y) is understood to mean d
dySt(y)). Indeed, this is frequently given as the

definition of the Perron-Frobenius operator in studies of transformations of the real line

(see e.g. [71, 93]). The results of examples 4.2.1–4.2.2 are in fact specific cases of this

result.
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For more complicated delay equations than those considered in the examples above,

the difficulties in finding an explicit formula for the Perron-Frobenius operator are twofold:

• It can be difficult to determine the general solution, and hence the solution map St.

This was made easier in the examples by lack of explicit dependence on x(t), but

in general the problem can be difficult.

• Determining pre-images St, as in equation (4.14) and (4.24), can be quite difficult.

The second of these difficulties is the more imposing, especially as St is generally not

a one-to-one transformation. Even the simple example 4.2.2 results in a solution map

St for which it is impossible to find an expression for the pre-image S−1
t {x} that occurs

in (4.24). For these reasons it is not practical, in general, to construct Perron-Frobenius

operators for DDEs by the direct means of first constructing the solution map.

For many applications, an analytical solution of the problem will not be possible,

whereas a numerical approximation of the density ρ(x, t) ≡ (Ptρ0)(x) might suffice. The

following section presents a simple method of computing such an approximation, by

directly simulating an ensemble of solutions.

4.3 Ensemble Simulation

The simplest approach to approximating Ptρ0 for particular initial densities ρ0 is the

“brute force” method of simulating an actual ensemble of solutions. That is, a large en-

semble of initial values {x(1)
0 , . . . , x

(N)
0 } is chosen at random from a distribution with den-

sity ρ0. For each x
(i)
0 the corresponding solution x(i)(t) = St(x

(i)
0 ) of (4.4) is constructed

(numerically, or by some analytical formula). Then for any given t the density ρ(x, t) =

(Ptρ0)(x) is approximated by a histogram of the set of values {x(i)(t), . . . , x(N)(t)}. With

reference to Figure 4.1, this amounts to constructing a histogram of solution values x(t)

plotted above a given value of t.

Figure 4.2 shows the results of such a computation applied to the Mackey-Glass equa-

tion (4.2). As in Figure 4.1, the initial ensemble consists of constant functions (hence

g = 0 in (4.4)), with values uniformly distributed on the interval [0.3, 1.3] (all initial

values in this interval are eventually attracted to the same chaotic attractor). That is,

ρ0(x) =







1 if x ∈ [0.3, 1.3]

0 otherwise.
(4.25)
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Figure 4.2: Normalized histograms of x(t), at times t = 0, 1, 2, 3, for an ensemble of 106

solutions of the Mackey-Glass equation (4.2). The solutions correspond to an ensemble of
constant initial functions with values uniformly distributed on [0.3, 1.3] (cf. Figure 4.1).
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For each of 106 initial values x0 = x(i)(0) sampled from this distribution, an approximate

solution x(i)(t) was computed numerically.3 The sequence of graphs shown in Figure 4.2

depict the resulting histograms of the solution values {x(i)(t) : i = 1, . . . , 106} at times

t = 0, 1, 2, 3 (here we take the initial time for the DDE to be t = 0, so the initial function

is specified on the interval [−1, 0]). The relationship between these densities and the

corresponding ensemble of solutions shown in Figure 4.1 is apparent on brief inspection.

For example, jump discontinuities in the densities occur at boundaries where the solutions

in Figure 4.1 overlay one another, e.g., near x = 0.5 at t = 1. High peaks, apparently

integrable singularities in the density, occur where the ensemble of solutions in Figure 4.1

“folds over” on itself, e.g. near x = 1.3 at t = 1. Some of these features are artifacts

resulting from discontinuities in the initial density, but others are not. See e.g. Figure 4.7

which illustrates the evolution of a Gaussian initial density.

An interesting property of the Mackey-Glass equation is revealed when the evolution of

densities is carried to large times. Figure 4.3 shows a sequence of histograms constructed

at times t = 0, 20, 50, 100, for the same ensemble considered in Figure 4.2. It appears

from this sequence that the density ρ(x, t) approaches a limiting density ρ∗(x) as t→∞.

That is, there appears to be an asymptotically stable invariant density for this system.

The invariant density observed is in fact independent of the initial density. We will return

to the problem of characterizing such invariant densities for DDEs in Chapter 5.

Note that convergence to the invariant density is relatively slow, for example compared

to maps on the interval where statistical convergence occurs after only a few iterations of

the Perron-Frobenius operator (cf. Figures 1.2–1.3). The behavior seen here is not typical

of dynamical systems considered elsewhere, and may have implications for the statistical

mechanics of systems with delayed dynamics, for example the neural ensemble encoding

mechanism proposed in [88] where rapid statistical convergence plays an important role.

The brute force approach to densities has the tremendous advantage of being easy

to implement—it requires only a method for numerically solving DDEs—and it is the

obvious “quick and dirty” solution to the problem. However, it is a näıve approach, in

that it provides no insight into the process by which ρ(x, t) evolves. For example, the

method offers only a heuristic explanation of the discontinuities and singularities that

appear in Figure 4.2. Moreover, as shown below, constructing an accurate histogram

can require millions of samples {x(i)(t)}, hence millions of solutions of the DDE must

3Numerical solutions were computed using the solver DDE23 [107].
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Figure 4.3: Normalized histograms of x(t), at times t = 0, 20, 50, 100, for the same en-
semble of solutions considered in Figure 4.2.
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be computed. Especially when approximating the evolution of densities for large t, the

amount of computation necessary can render the method practically useless.

Sampling requirements

In order for the histogram of a solution ensemble {x(1)(t), . . . , x(N)(t)} to provide an

accurate approximation of the actual density ρ(x, t), the ensemble must be sufficiently

large. Suppose an interval B ⊂ IR is one of the histogram bins. The height of the

histogram on B is given by

y = #{x(i) ∈ B}, (4.26)

i.e., the number of the x(i) that lie in B. The x(i) are independent samples from a

distribution with density ρ, so for sufficiently large n the fraction

y

N
=

1

N

N
∑

i=1

1B(xi) (4.27)

estimates (by the weak law of large numbers) the probability

p =

∫

B
ρ(x, t) dx (4.28)

that a random number x selected from this distribution will lie in B.

The random variable y takes integer values between 0 and N , with binomial proba-

bility distribution

P (y) =
N !

y!(N − y)!p
y(1− p)N−y. (4.29)

For sufficiently large N , P (y) can be approximated by a Gaussian density with mean Np

and standard deviation
√

Np(1− p). Thus the quantity y/N (equation (4.27)) will be

distributed with mean p and standard deviation

σ =

√

p(1− p)
N

. (4.30)

Equation (4.30) predicts O(1/
√
N) convergence of the “sample mean” y/N to the

“population mean” p—a standard result in sampling and measurement theory [8, p. 36].

Suppose we wish y/N to approximate p within fractional error δ, with 95% confidence.
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Then we require that 2σ < δp, yielding (via equation (4.30)) the sampling requirement

N >
4(1− p)
δ2p

. (4.31)

Thus, for a moderately high-resolution histogram (say, with 100 bins, so p is on the order

10−2), 95% confidence of accuracy within fractional error δ = 10−2 would require a sample

of size

N &
4

(10−2)210−2
= 4× 106. (4.32)

For some delay equations, and particularly when densities are to be obtained for large

t, this sample size requirement entails a prohibitive computational cost (for example,

constructing Figure 4.3 required about 10 hours of computer time). In such situations,

the brute force approach to density evolution becomes impractical. This motivates the

following section, which develops a more efficient numerical method for computing the

evolution of densities for DDEs.

4.4 Approximate Solution Map

The brute force approach to approximating densities is computationally expensive, so

a more efficient numerical method is desirable. Developing such a method is the aim

of the present section. To simplify the development, the method is presented only in

the context of one-dimensional delay equations (i.e., with solution variable x(t) ∈ IR).

The generalization to higher dimensions is straightforward, but requires more elaborate

notation.

4.4.1 Approximate Perron-Frobenius operator

Consider the DDE initial value problem (4.4) for x(t) ∈ IR, with solution map St : x0 7→
x(t), and suppose an ensemble of initial values x0 is specified with density ρ0. Since St is

a continuous transformation of IR, it can be approximated by a piecewise linear function.

Thus, suppose I = (a, b) is an interval containing the support of ρ0, and define a mesh

of points a = x0 < x1 < · · · < xk = b spanning I. Let S̃t : I → IR be the transformation

whose graph is a straight line on each interval (xi, xi+1), and satisfies

S̃t(xi) = St(xi) ≡ yi, i = 1, . . . , k. (4.33)
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Then S̃t furnishes a piecewise linear approximation of St, and agrees with St at each of

the xi.

Because S̃t is piecewise linear, it is almost-everywhere differentiable. Therefore the

corresponding Perron-Frobenius operator P̃t can be expressed as [93, Ch. 12]

(P̃tρ0)(x) =
∑

z∈S̃−1
t {x}

ρ0(z)

|S̃′t(z)|
, (4.34)

Since only those pre-images of {x} that lie in the support of ρ0 give a non-zero contribution

to the sum, we need consider only those z ∈ S̃−1
t {x} that lie in some interval [xi, xi+1).

On each such interval we have simply

S̃′t(z) =
yi+1 − yi
xi+1 − xi

. (4.35)

Furthermore, since S̃t is piecewise linear each z ∈ S̃−1
t {x} can be found by linear inter-

polation. Thus, for each interval [yi, yi+1) that contains x, there is exactly one element

z ∈ S̃−1
t {x}, given by

z = xi +
xi+1 − xi
yi+1 − yi

(x− yi). (4.36)

Figure 4.4 illustrates this procedure for determining the set of pre-images of {x} under a
piecewise linear transformation.

4.4.2 Algorithm

The considerations above suggest the following algorithm for computing an approximation

of the transformed density ρ(x, t) = (Ptρ0)(x).

1. Specify a grid of closely spaced points x1 < x2 < · · · < xk ∈ IR, such that the

interval (x1, xk) contains the support of ρ0.

2. Compute (e.g., by numerical solution of (4.4)) the sequence of values {yi = St(xi) :

i = 1, . . . , k}.

3. Specify a grid of points x̃1 < x̃2 < · · · < x̃p ∈ IR, at which the density ρi = ρ0(x̃i, t)

is to be approximated.

4. Initialize ρi = 0 for i = 1, . . . , p.



82 CHAPTER 4. DENSITY EVOLUTION FOR DELAY EQUATIONS

PSfrag replacements

x̂1 x̂2 x̂3

(x1, y1)

(x2, y2)

(x3, y3)
ŷ
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Figure 4.4: Construction of the set of pre-images of a point ŷ under a piecewise linear
transformation S̃.

5. For each i ∈ {1, 2, . . . , (k − 1)} determine which, if any, of the x̃j lie in the interval

[yi, yi+1) (or the interval (yi+1, yi] if yi+1 < yi). For each such x̃j , compute

z = xi +
xi+1 − xi
yi+1 − yi

(x̃j − yi), (4.37)

and increment ρj by the quantity

ρ0(z)
|xi+1 − xi|
|yi+1 − yi|

. (4.38)

This algorithm constructs a vector (ρi : i = 1, . . . , p) approximating the density

ρ(x, t) at points {x̃i}. Steps 1–2 define the piecewise linear approximation S̃t. Steps 3–5

evaluate (4.34) at each of the points x̃i. Notice that steps 1–2 are decoupled from 3–5 in

that the initial density ρ0 enters only in steps 3–5, after the approximating transformation

S̃t has already been determined.

Example

Figures 4.5–4.6 illustrate the results of applying this algorithm to the Mackey-Glass equa-

tion (4.2). As before, the equation is restricted to constant initial functions (hence g = 0

in (4.4)), and the initial density ρ0 corresponds to an ensemble of initial values uniformly
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distributed on the interval [0.3, 1.3]. Figure 4.5 shows graphs of the approximating trans-

formation S̃t ≈ St, at times t = 1, 2, 3, 4. These were obtained by using the numerical

solver DDE23 [107] to compute values yi = St(xi) for a uniform grid of 1000 initial values

xi in the interval [0, 1.5].

4.4.3 Discussion

The algorithm presented here is superior in a number of respects to the “brute force”

ensemble simulation approach of Section 4.3. In the brute force approach, a sufficient

number of solutions of the DDE must be computed to ensure adequate statistical sam-

pling. Here, one solution of the given DDE is computed for each point on the grid {xi}
used to define the piecewise linear approximation of St. Figure 4.6 was generated using

k = 1000 such points. In fact even k = 100 yields an approximate ρ(x, t) with accuracy

on the order of that obtained by the brute force approach with an ensemble of 106 solu-

tions. This is a dramatic computational saving, and is the primary benefit of the method

developed here.

The present method has the further advantage that the computation of ρ(x, t) (page 81,

steps 3–5) is decoupled from the solution of the DDE (steps 1–2). Since steps 1–2 are in-

dependent of the initial density, a set of solutions of the DDE only needs to be computed

once to construct the approximation S̃t. Subsequently, the evolution of any number of

different initial densities can be computed by steps 3–5. By contrast, in the brute force ap-

proach, computing the evolution of each different initial density requires the computation

of a new ensemble of solutions of the DDE.

Unfortunately it is not possible to evolve densities arbitrarily far forward in time in

this way, at least for delay equations with chaotic dynamics. Because of the stretching

and folding of phase space typical of chaotic systems, for large t the solution map St

acquires a very complex structure. This is illustrated in Figure 4.8, which shows the

approximate solution map S̃50 for the Mackey-Glass equation (4.2). Owing both to this

fine structure and sensitivity to initial conditions, as t increases it eventually becomes

impossible to obtain a reasonable approximation of St using finite-precision arithmetic.

This difficulty is not a function of the accuracy of the numerical method for integrating

the DDE, but is rather a consequence of the complex dynamics of the DDE itself.

Surprisingly, even though S̃t is a poor approximation of St for large t, it nevertheless

appears to retain information about the ensemble dynamics. Figure 4.9 shows a density

ρ(x, t) evolved forward to time t = 50, again for the Mackey-Glass equation (4.2) restricted
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Figure 4.5: Approximate solution maps S̃t ≈ St at times t = 1, 2, 3, 4, for the Mackey-
Glass equation (4.2) restricted to constant initial functions on [0, 1].
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Figure 4.6: Computed densities ρ(x, t) for the Mackey-Glass equation (4.2) restricted to
constant initial functions. Densities were computed using the algorithm on page 81, and
are shown (heavy curves) together with the corresponding histograms from Figure 4.2,
obtained by “brute force” ensemble simulation.
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Figure 4.7: As Figure 4.6, with a different initial density.
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Figure 4.8: Approximate solution map S̃50 for the Mackey-Glass equation (4.2) restricted
to constant initial functions (evaluated on a grid of 2000 initial values x).
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Figure 4.9: Computed density ρ(x, t) at time t = 50, for the Mackey-Glass equation (4.2)
restricted to constant initial functions.
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to constant initial functions. This density was computed using the algorithm above, for

the solution map S̃50 shown in Figure 4.8, and the same initial density as in Figure 4.7.

The result shows a remarkable agreement with the corresponding density computed by

“brute force” ensemble simulation, shown in Figure 4.3, page 78. Thus it appears that

the present method can provide an approximation of the same asymptotic density as that

found by direct ensemble simulation, while requiring about 2 orders of magnitude less

computation time than the ensemble simulation approach.
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4.5 Evolution Equation for Densities

In section 4.2 Perron-Frobenius operators were derived by first finding an explicit formula

for the solution map St. This is an awkward and difficult intermediate step. Rather it

would be nice if, in the spirit of equation (2.33) for the evolution of a density under the

action of a flow defined by an ordinary differential equation, one could derive an evolution

equation for the density itself. This approach to density evolution for DDEs is the subject

of the present section.

Consider the augmented DDE initial value problem

x′(t) =







g
(

x(t)
)

t ∈ [0, 1)

f
(

x(t), x(t− 1)
)

t ≥ 1

x(0) = x0,

(4.39)

with x(t) ∈ IR, and suppose that an ensemble of initial values x0 is specified with den-

sity ρ0. We would like to derive an evolution equation for the density ρ(x, t) of the

corresponding ensemble of solutions x(t).

There is an important preliminary observation to be made. Ideally, we would like to

derive an evolution equation of the form

dρ

dt
= {some operator}(ρ). (4.40)

However, ρ cannot satisfy such an equation. This is because the family of solution maps

{St} for equation (4.39) does not form a semigroup (cf. remarks at the end of Sec-

tion 4.1.2). That is, the density ρ cannot be sufficient to determine its own evolution, as

in (4.40), because the values x(t) in the ensemble it describes are insufficient to deter-

mine their own evolution. This difficulty arises because ρ does not contain information

about the past states of the ensemble, which is necessary to determine the evolution of

the ensemble under (4.39). Thus, any solution to the problem must take a form other

than (4.40).

4.5.1 ODE system

The method of steps is sometimes used to write a DDE as a system of ordinary differential

equations. This is a promising connection, as we already know how densities evolve for
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Figure 4.10: Relationship between the DDE solution x(t) and the variables yn(s) defined
in the method of steps, equation (4.41).

ODEs (cf. Section 2.3.2, page 27).

Method of steps

Let x(t) be a solution of (4.39), and define for n = 0, 1, 2, . . . the functions

yn(s) = x(n+ s), s ∈ [0, 1]. (4.41)

Figure 4.10 illustrates this relationship between the yn and x. Since x(t) satisfies (4.39),

it follows that for n ≥ 1,

y′n(s) = f
(

yn(s), yn−1(s)
)

, n = 1, 2, . . . , (4.42)

and y0 satisfies

y′0 = g(y0). (4.43)

Thus the augmented DDE becomes a system of evolution equations for the yn, together

with the set of compatibility or boundary conditions

y0(0) = x0

yn(0) = yn−1(1), n = 1, 2, . . .
(4.44)

The ODE system (4.42)–(4.43), together with these compatibility conditions, can be

solved sequentially to yield the solution x(t) of the DDE up to any finite time. This is

essentially the method of steps for solving the DDE (cf. Section 3.2.3, page 46).

If the system of ODEs (4.42)–(4.43) could be taken together as a vector field F in
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IRN+1, then an ensemble of solutions of the DDE could be represented via (4.41) as an

ensemble of vectors y = (y0, . . . , yN ), each carried along the flow induced by F . The

density η(y, t) of such an ensemble would evolve according to a continuity equation (cf.

Section 2.3.2)
∂η

∂t
= −∇ · (ηF ). (4.45)

[85] suggests this as an avenue to a probabilistic treatment of DDEs. However, it is

unclear how to ensure the compatibility conditions (4.44) are satisfied by every vector

in the ensemble, or how to determine the initial (N + 1)-dimensional density η(y, 0) of

this ensemble in terms of a given density of initial values x0 in (4.39). In short there is

no obvious way to treat equations (4.42)–(4.43) simultaneously rather than sequentially.

The following modified setup is one way to avoid these difficulties.

Modified method of steps

Any solution of the DDE problem (4.39) can be extended unambiguously to all t < 0 by

setting

x(t) = x0, t < 0, (4.46)

so that x′(t) = 0 for all t < 0. For n = 0, 1, 2, . . . let functions yn be defined by

yn(t) = x(t− n), t ≥ 0. (4.47)

Figure 4.11 illustrates the relationship between the yn and x. On substitution into equa-

tion (4.39) we find that for t ∈ [m,m+ 1], m = 0, 1, 2, . . ., the yn(t) satisfy

y′n =



















f(yn, yn+1) if n < m

g(ym) if n = m

0 if n > m.

(4.48)

Thus, for fixed N the vector y(t) =
(

y0(t), . . . , yN (t)
)

satisfies an ordinary differential

equation

y′ = F (t, y), (4.49)
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PSfrag replacements

y1(t)

y2(t)

y3(t)

x(t) = y0(t)

x0

tt− 1t− 2t− 3

Figure 4.11: Relationship between the DDE solution x(t) and the variables yn(t) defined
in the modified method of steps, equation (4.47).

where the vector field F : IR× IRN+1 → IRN+1 is given by

F (t, y0, . . . , yN ) = (y′0, . . . , y
′
N ),

with y′n =



















0 if t < n

g(yn) if t ∈ [n, n+ 1)

f(yn, yn+1) if t ≥ n+ 1.

(4.50)

Some remarks about the ODE system (4.49)–(4.50) are in order:

• For fixed N > 0, the right-hand side F (t, y), and hence the solution y(t), is defined

only for 0 ≤ t ≤ N + 1.

• For any given initial vector y(0) = (y0(0), . . . , yN (0)), equation (4.49) has a unique

solution y(t) defined for 0 ≤ t ≤ N +1, provided we have existence and uniqueness

for the original DDE problem (4.39).

• F (t, y) is piecewise constant in time. That is, for each m = 0, 1, 2, . . ., the vector

field F (t, y) = F (y) is independent of t ∈ [m,m + 1), and induces a flow in IRN+1

that carries the solution y(t) forward from t = m to t = m+ 1. Thus we can speak

of (4.49) as defining a sequence of flows in IRN+1.

The ODE system (4.49) gives a representation of the method of steps as an evolution

equation in IRN+1. Indeed, the solution x(t) of the DDE is given, up to time t = N + 1,

by x(t) = y0(t) where y(t) is the solution of (4.49) corresponding to the initial condition
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y(0) = (x0, . . . , x0). Thus the DDE problem (4.39) is equivalent to the initial value

problem

y′ = F (y, t), y(t) ∈ IRN+1, 0 ≤ t ≤ N + 1,

y(0) = (x0, . . . , x0),
(4.51)

with the identification x(t) = y0(t).

4.5.2 Continuity equation

Having established the equivalence of the DDE system (4.39) with the ODE system (4.51),

we can proceed to the probabilistic treatment of DDEs using techniques developed for

ODEs.

Suppose an ensemble of initial vectors y ∈ IRN+1 is given, with (N + 1)-dimensional

density η(y, t). Then under the sequence of flows induced by the vector field F (y, t), this

density evolves according to a continuity equation (cf. Section 2.3.2),

∂η(y, t)

∂t
= −∇ ·

(

η(y, t)F (y, t)
)

, (4.52)

where ∇ = (∂/∂y0, . . . , ∂/∂yN ). The initial density η(y, 0) derives from the density ρ0 of

initial values x0 for the DDE (4.39). That is, an ensemble of initial values x0 with density

ρ0 corresponds to an ensemble of initial vectors y = (x0, . . . , x0) in IRN+1, with “density”

η(y0, . . . , yN ; 0) = ρ0(y0)δ(y0 − y1)δ(y0 − y2) · · · δ(y0 − yN ), (4.53)

where δ is the Dirac delta function. This corresponds to a line mass concentrated on the

line y0 = y1 = · · · = yN with linear density ρ0(y0). Thus the problem of density evolution

for DDEs becomes a problem of determining how this line mass is redistributed by the

flow induced by (4.49).

With singular initial data such as (4.53), strong solutions of the continuity equa-

tion (4.52) do not exist. However, (4.52) can be interpreted in a weak sense that makes it

possible to define “solutions” that satisfy initial conditions like (4.53) (cf. Section 2.3.2).

Such a weak solution can be obtained using the method of characteristics.
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4.5.3 Method of characteristics

Consider the initial value problem

∂η(y, t)

∂t
+∇ ·

(

F (y, t)η(y, t)
)

= 0, t ≥ 0,

η(y, 0) = g(y)

(4.54)

for the unknown function η(y, t), with y = (y0, . . . , yN ). Assume provisionally that F

and η are differentiable in y, so the divergence operator can be expanded (by the product

rule) to yield
∂η

∂t
+ η∇ · F + F · ∇η = 0. (4.55)

Let a curve Γ ⊂ IRN+2 (that is, in (y0, . . . , yN , t)-space) be parametrized by smooth

functions

y0 = y0(t), . . . , yN = yN (t) (4.56)

defined for all t ≥ 0, and parametrize the value of η on Γ by

η(t) = η
(

y0(t), . . . , yN (t), t
)

. (4.57)

(This slight abuse of notation helps clarify the following development.) Differentiat-

ing (4.57) yields
dη

dt
= ∇η · dy

dt
+
∂η

∂t
. (4.58)

Thus, if the functions y(t), η(t) satisfy

dy

dt
= F

(

y(t), t
)

(4.59)

dη

dt
= −η(t)∇ · F

(

y(t), t
)

(4.60)

for all t ≥ 0, then η as given by equation (4.57) satisfies the PDE (4.55) at every point

on Γ. In fact any solution of the ODE system (4.59)–(4.60) furnishes a solution of the

PDE (4.55) on a particular curve Γ. In particular, if y, η are solutions of this system

corresponding to initial values

y(0) = (y0, . . . , yN )

η(0) = g
(

y0, . . . , yN
)

,
(4.61)
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PSfrag replacements
y

t

Q = (0, y(0))
η(0) = g(y(0))

y′ = F (y, t)

η′ = −∇ · F (y, t)

P = (t, y(t))
η = η(t)

Figure 4.12: Method of characteristics for the continuity equation (4.54): propagation of
initial data along an integral curve of y′ = F (y, t).

then Γ intersects the hyperplane t = 0 at the point y = (y0, . . . , yN ), where η(0) agrees

with the initial data given by g, so that η(t) gives the solution of (4.54) at every point of

Γ.

The family of curves Γ that satisfy (4.59) are called the characteristics of the PDE

(4.55). As we have seen, the characteristics have the geometric interpretation that an

initial datum specified at (y0, . . . , yN , 0) is propagated along the characteristic that passes

through this point. Not surprisingly, the characteristic curves of (4.54) coincide with

the integral curves of the vector field F (cf. equation (4.59)). That is, initial data are

propagated along streamlines of the induced flow.

If the characteristics foliate IRN+2, every point (y0, . . . , yN , t) ∈ IRN+2 has a charac-

teristic curve passing through it. Then the solution of (4.54) can found at any point, by

using (4.59)–(4.60) to obtain the solution on the characteristic curve through that point.

The usual procedure for obtaining the solution η(y, t) at P = (y0, . . . , yN , t) is as follows.

1. Determine the characteristic curve Γ through P and follow it “backward” in time

to find the point Q on Γ at t = 0.

2. Evaluate g at Q to determine the initial value η(0) on Γ.

3. With this value of η(0), integrate equation (4.60) forward along Γ to P , at which

point the value of η(t) is the solution of (4.54).

Figure 4.12 gives a schematic illustration of the method.
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Although the derivation assumes differentiability of η (hence also of g), the method

itself does not rely on any special properties of these functions—it requires only integra-

tion of the vector field F and evaluation of g. Hence the method can be applied even if

g is discontinuous, or singular as in (4.53). However, in such cases the resulting function

η must be interpreted as a weak solution [20, 125].

Supposing the solution η(y, t) of the initial value problem (4.52)–(4.53) to have been

found—e.g., by the method of characteristics—the corresponding density ρ(x, t) of DDE

solutions x(t) can be determined as follows. Since x(t) = y0(t) (cf. equation (4.47)), the

density of x is identified with the density of y0. This density is determined by integrating

η over all components except y0, i.e.,

ρ(y0, t) =

∫

· · ·
∫

η(y0, y1, . . . , yN ; t) dy1 · · · dyN . (4.62)

Alternative formulation

There is another way to formulate the evolution of the density η(y, t), that turns out to

be equivalent to the method of characteristics and serves to illuminate the method above.

It also provides an explicit formula (actually a codification of the algorithm on page 95)

for the solution η(y, t).

Recall that the vector y(t) evolves according to a system of ODEs (4.49)–(4.50). Let

y(t) be the solution of this system with initial value y(0), and define the corresponding

family of solution maps Ŝt : IR
N+1 → IRN+1 by

Ŝt : y(0) 7→ y(t) (4.63)

(to be distinguished from the solution map St for the DDE, defined by (4.7)). As y(t)

evolves under the action of Ŝt, the density η(y, t) evolves according to the corresponding

Perron-Frobenius operator P̂t : η(y, 0) 7→ η(y, t), defined by

∫

A
P̂tη(y, 0) d

N+1y =

∫

Ŝ−1
t (A)

η(y, t) dN+1y ∀ Borel A ⊂ IRN+1. (4.64)

Recall that Ŝt can be represented as a composition of flows on the intervals [m,m+1],

m = 0, 1, 2, . . ., so it is one-to-one on IRN+1 and has an inverse (which can be found by

reversing the sequence of flows). This makes possible the change of variables z = St(y)
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in (4.64), which by Theorem 3.2.1 of [74] becomes

∫

A
P̂tη(y, 0) d

N+1y =

∫

A
η
(

Ŝ−1
t (z), t

)

J−1
t (z) dN+1z. (4.65)

Since A is arbitrary, this implies the following explicit formula for Pt,

Ptη(y, 0) = η(y, t) = η
(

Ŝ−1
t (y), 0

)

J−1
t (y). (4.66)

Here J−1
t is the density of the measure λ ◦ S−1

t with respect to Lebesgue measure λ [74,

p. 46] (also [71, Section 5.1]). If Ŝt and Ŝ
−1
t are differentiable transformations4 of IRN+1

then J−1
t is just the determinant of the Jacobian matrix DŜ−1

t ,

J−1
t (y) = det

(

DŜ−1
t (y)

)

,

Jt(y) = det
(

DŜt(y)
)

.
(4.67)

In this case the formula (4.66) can be seen as a multi-dimensional analog of (4.24), in the

case of invertible St.

Notice that Ŝt effects the translation of a point (y(0), 0) along a characteristic curve

Γ to (y(t), t). Similarly Ŝ−1
t effects a translation backward along Γ to t = 0. This draws

the connection between (4.66) and the method of characteristics (page 95): the point Q

(where the initial density is evaluated) is identified with the point (Ŝ−1
t (y), 0) in (4.66).

The factor J−1
t (y) also has a geometric interpretation: it is the factor by which the

volume of an infinitesimal volume element at y(t) increases under transportation by Ŝ−1
t .

This factor can equivalently be understood as resulting from step 3 of the method of

characteristics algorithm, since ∇·F (y, t) is the instantaneous growth rate of an infinites-

imal volume at y as it is transported by the flow St induced by F . Conservation of

mass requires that the density supported on an infinitesimal volume element decrease in

proportion to the volume growth, i.e., by the factor J−1
t (y). This provides a geometrical

explanation of the term J−1
t (y) in (4.66).

Examples

To illustrate this approach to the evolution of densities for DDEs, we revisit examples 4.2.1

and 4.2.2, for which analytical solutions are obtainable for the densities η(y, t) and ρ(x, t).

4It suffices that the vector field F (t, y) be smooth in y [72, p. 19].
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Example 4.5.1. Consider again the linear DDE of example 4.2.1 (page 71),

x′(t) = αx(t− 1), t ≥ 1, (4.68)

with initial data restricted to constant initial functions on [0, 1], and the initial value x(0)

distributed with density ρ0(x). The vector y = (y0, y1, y2) defined by (4.47) satisfies a

differential equation y′ = F (y, t) for t ∈ [0, 3], with

y′n =







0 if t < n+ 1

αyn+1 if n+ 1 ≤ t ≤ 3.
(4.69)

Under the action of this system, the density η(y, t) of an ensemble of vectors y ∈ IR3

evolves according to the continuity equation (4.52). whose characteristic curves are

streamlines of the flow induced by (4.69). The solution of this system is readily obtained

(e.g., using Maple), and the solution map Ŝt : y(0) 7→ y(t) found to be

Ŝt(y) =































(y0, y1, y2) if t ∈ [0, 1)
(

y0 + α(t− 1)y1, y1, y2

)

if t ∈ [1, 2)
(

y0 + α(t− 1)y1 +
(

1
2α

2t2 − 2α2(t− 1)
)

y2,

y1 + α(t− 2)y2, y2

)

if t ∈ [2, 3].

(4.70)

This linear transformation is easily inverted to yield

Ŝ−1
t (y) =































(y0, y1, y2) if t ∈ [0, 1)
(

y0 − α(t− 1)y1, y1, y2

)

if t ∈ [1, 2)
(

y0 − α(t− 1)y1 + α2(1
2 t

2 − t)y2,

y1 − α(t− 2)y2, y2

)

if t ∈ [2, 3].

(4.71)

The Jacobian of this transformation is

J−1
t (y) = det

(

DŜ−1
t (y)

)

= 1 ∀t ∈ [0, 3] (4.72)

(i.e., Ŝ−1
t is volume-preserving). The initial ensemble of vectors y has “density” η(y, 0)

is given by

η(y0, y1, y2, 0) = ρ0(y0)δ(y0 − y1)δ(y0 − y2), (4.73)
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hence equation (4.66) gives

η(y, t) =



































































ρ0(y0)δ(y0 − y1)δ(y0 − y2) if t ∈ [0, 1)

ρ0

(

y0 − α(t− 1)y1

)

δ
(

y0 − α(t− 1)y1 − y1

)

·
δ
(

y0 − α(t− 1)y1 − y2

)

if t ∈ [1, 2)

ρ0

(

y0 − α(t− 1)y1 + α2(1
2 t

2 − t)y2

)

·
δ
(

[y0 − α(t− 1)y1 + α2(1
2 t

2 − t)y2]−
[y1 − α(t− 2)y2]

)

·
δ
(

[y0 − α(t− 1)y1 + α2(1
2 t

2 − t)y2]− y2

)

if t ∈ [2, 3].

(4.74)

Integrating over y1, y2 with x = y0 we obtain for t ∈ [0, 1),

ρ(x, t) =

∫∫

ρ0(x)δ(x− y1)δ(x− y2) dy1 dy2

= ρ0(x),

(4.75)

(hence Ptρ = ρ as expected, since St is just the identity transformation). For t ∈ [1, 2),

ρ(x, t) =

∫∫

ρ0

(

x− α(t− 1)y1

)

δ
(

x− α(t− 1)y1 − y1

)

·

δ
(

x− α(t− 1)y1 − y2

)

dy1 dy2

=

∫

ρ0

(

x− α(t− 1)y1

)

δ
(

x− α(t− 1)y1 − y1

)

dy1

=
1

|1 + α(t− 1)|

∫

ρ0

(

x− α(t− 1)
x− z

1 + α(t− 1)

)

δ(z) dz

=
1

|1 + α(t− 1)|ρ0

(

x− α(t− 1)
x

1 + α(t− 1)

)

=
1

|1 + α(t− 1)|ρ0

( x

1 + α(t− 1)

)

.

(4.76)

This agrees with the result (4.17) of example 4.2.1, which was obtained by a different

method. For t ∈ [2, 3] the integral for ρ(x, t) becomes too complicated to be worth writing

out fully here, but its result also agrees with (4.17).

Example 4.5.2. Consider again the DDE of example 4.2.2 (page 73),

x′(t) = −x(t− 1)2, t ≥ 1, (4.77)



100 CHAPTER 4. DENSITY EVOLUTION FOR DELAY EQUATIONS

with initial data restricted to constant initial functions on [0, 1], and the initial value x(0)

distributed with density ρ0(x). The vector y = (y0, y1, y2) defined as in (4.47) satisfies a

differential equation y′ = F (y, t) for t ∈ [0, 3], with

y′n =







0 if t < n+ 1

−y2
n+1 if n+ 1 ≤ t ≤ 3.

(4.78)

Solving this system (e.g., using Maple), and defining the solution map Ŝt : y(0) 7→ y(t)

yields

Ŝt(y) =































(y0, y1, y2) if t ∈ [0, 1)
(

y0 − (t− 1)y2
1, y1, y2

)

if t ∈ [1, 2)
(

y0 − (t− 1)y2
1 + (t2 − 4t+ 4)y1y

2
2−

(1
3 t

3 − 2t2 + 4t− 8
3)y

4
2, y1 − (t− 2)y2

2, y2

)

if t ∈ [2, 3].

(4.79)

Inverting this transformation yields

Ŝ−1
t (y) =































(y0, y1, y2) if t ∈ [0, 1)
(

y0 + (t− 1)y2
1, y1, y2

)

if t ∈ [1, 2)
(

y0 + (t− 1)y2
1 + (t2 − 2t)y1y

2
2 + (1

3 t
3 − t2 + 4

3)y
4
2,

y1 + (t− 2)y2
2, y2

)

if t ∈ [2, 3].

(4.80)

The Jacobian of this transformation is again

J−1
t (y) = det

(

DŜ−1
t (y)

)

= 1 ∀t ∈ [0, 3]. (4.81)

The initial density η(y, 0) is given by

η(y, 0) = ρ0(y0)δ(y0 − y1)δ(y1 − y2), (4.82)
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so equation (4.66) gives

η(y, t) =























































ρ0(y0)δ(y0 − y1)δ(y1 − y2) if t ∈ [0, 1)

ρ0

(

y0 + (t− 1)y2
1

)

δ
(

y0 + (t− 1)y2
1 − y1

)

δ(y1 − y2) if t ∈ [1, 2)

ρ0

(

y0 + (t− 1)y2
1 + (t2 − 2t)y1y

2
2 + (1

3 t
3 − t2 + 4

3)y
4
2

)

·
δ
(

[y0 + (t− 1)y2
1 + (t2 − 2t)y1y

2
2 + (1

3 t
3 − t2 + 4

3)y
4
2]

−[y1 + (t− 2)y2
2]
)

·
δ
(

[y1 + (t− 2)y2
2]− y2

)

if t ∈ [2, 3].

(4.83)

Finally, ρ(x, t) is obtained by integrating η(y, t) over y1, y2. For t ∈ [0, 1),

ρ(x, t) =

∫∫

ρ0(x)δ(x− y1)δ(y1 − y2) dy1 dy2

= ρ0(x),

(4.84)

as expected. For t ∈ [1, 2),

ρ(x, t) =

∫∫

ρ0

(

x+ (t− 1)y2
1

)

δ
(

x+ (t− 1)y2
1 − y1

)

δ(y1 − y2) dy1 dy2

=

∫

ρ0

(

x+ (t− 1)y2
1

)

δ
(

x+ (t− 1)y2
1 − y1

)

dy1

=
∑

{y1:x+(t−1)y2
1−y1=0}

ρ0

(

x+ (t− 1)y2
1

)

|2(t− 1)y1 − 1|

=
1

√

1− 4(t− 1)x

[

ρ0

(1−
√

1− 4(t− 1)x

2(t− 1)

)

+ ρ0

(1 +
√

1− 4(t− 1)x

2(t− 1)

)]

.

(4.85)

This is identical to the result of example 4.2.2. For t ∈ [2, 3) it would be extremely

difficult to find an explicit formula for ρ(x, t), since the final integration requires solving

a quartic equation. For t > 3, a quintic equation must be solved, so finding an explicit

formula for ρ(x, t) appears to be impossible.

Remark 4.5.1. In each of the examples above, the transformation Ŝt was found to be

volume-preserving, so that the Jacobian J−1
t (y) = 1 in equation (4.66). This could have

been anticipated from equation (4.60) for the evolution of the density along a character-
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istic curve of the continuity equation, since by equation (4.48),

∇ · F (y, t) = D1f(y0, y1) + · · ·+D1f(ym−1, ym) + g′(ym) (4.86)

for t ∈ [m,m + 1). Thus, if f is independent of its first argument and g′ = 0 (as in the

examples above), then ∇ · F (y, t) = 0, so that the sequence of flows constituting St are

all volume-preserving.

4.5.4 Geometric interpretation

As the examples above suggest, for all but the simplest delay equations an analytical

treatment of the density evolution problem is difficult, and perhaps impossible. Never-

theless, the approach developed above does provide some geometrical insight even when

an analytical approach fails.

Recall that up to any finite time t ≤ N+1 the DDE problem (4.4) can be represented

by an ordinary differential equation

y′ = F (y, t), y(t) ∈ IRN+1, t ≥ 0, (4.87)

with F defined by (4.50). An ensemble of initial values with density ρ0 corresponds to

an ensemble of initial vectors y with (N + 1)-dimensional “density”

η(y0, . . . , yN ; 0) = ρ0(y0)δ(y0 − y1)δ(y1 − y2) · · · δ(yN−1 − yN ), (4.88)

representing a line mass concentrated on the line y0 = y1 = · · · = yN in IRN+1. Under

evolution by (4.87), i.e., under transformation by the solution map Ŝt, this line mass is

redistributed. This transportation of a line mass under Ŝt is illustrated in Figure 4.13.

After evolution by time t, η(y, t) is supported on a one-dimensional curve that is the

image of this line under Ŝt. We will call this curve the “density support curve”. It is a

continuous, non-self-intersecting curve in IRN+1, owing to continuity and invertibility of

Ŝt.

Example 4.5.3. Explicit representations can be found for the density support curves in

the previous examples. Consider the linear DDE of example 4.5.1 (page 98), for which

the transformation S̃t is given explicitly by equation (4.70). The initial density support
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Figure 4.13: Transportation of a line mass under a transformation of the (y0, y1)-plane.
(a) Initial mass distributed on the line y0 = y1. (b) Mass distribution after transformation.

curve y0 = y1 = y2 can be represented parametrically as

Γ = {(s, s, s) : s ∈ IR}. (4.89)

Then

S̃t(Γ) =
{

S̃t(y) : y ∈ Γ
}

=
{

y(s) = (y1, y2, y3)(s) : s ∈ IR
}

(4.90)

where

(y1, y2, y3)(s) =































(s, s, s) t ∈ [0, 1)
(

s+ α(t− 1)s, s, s
)

t ∈ [1, 2)
(

s+ α(t− 1)s+
(

1
2α

2t2 − 2α2(t− 1)
)

s,

s+ α(t− 2)s, s
)

t ∈ [2, 3).

(4.91)

For this DDE, at any given time the density support curve is a straight line, a consequence

of linearity of S̃t.

Example 4.5.4. Consider the quadratic DDE of example 4.5.2 (page 99), for which the

transformation S̃t is given explicitly by equation (4.79). Representing the initial density
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support curve Γ parametrically as in the previous example, we have

S̃t(Γ) =
{

y(s) = (y1, y2, y3)(s) : s ∈ IR
}

(4.92)

where

(y1, y2, y3)(s) =































(s, s, s) t ∈ [0, 1)
(

s− (t− 1)s2, s, s
)

t ∈ [1, 2)
(

s− (t− 1)s2 + (t2 − 4t+ 4)s3−
(1
3 t

3 − 2t2 + 4t− 8
3)s

4, s− (t− 2)s2, s
)

t ∈ [2, 3].

(4.93)

Thus, the density evolution method developed in section 4.5.3 amounts to keeping

track of the evolution of the density support curve under the action of (4.87). For the

purposes of a numerical implementation, this curve can be represented by a set of points

{y(1)(t), y(2)(t), . . . , y(k)(t)} ⊂ IRN+1 (e.g., representing a piecewise-linear approximation

of the curve). The y(i)(t) are images under Ŝt of points y
(i)(0) of the form

y(i)(0) =
(

x
(i)
0 , . . . , x

(i)
0

)

∈ IRN+1, (4.94)

which lie on the initial density support curve y0 = y1 = · · · = yN . Thus the points

y(i)(t) can be determined by integrating (numerically) each of these initial points forward

under (4.87). With sufficiently closely spaced points x
(i)
0 in the support of the initial

density ρ0(x), the resulting set of y(i)(t) should provide a good approximation of the

density support curve, and the mass distribution on it (see Figure 4.14).

Figure 4.15 illustrates the results of applying this idea to the Mackey-Glass equa-

tion (4.2), for an ensemble of constant initial functions with values distributed on the

interval [0.3, 1.3], as in Figures 4.1–4.2. Thus the initial density support curve is the part

of the line y0 = y1 = · · · with 0.3 ≤ y0 ≤ 1.3.

The first row of figure 4.15 shows the sequence of density support curves obtained at

times t = 1, 2, 3, 4, projected onto the (y0, y1)-plane (as a result of this projection, some

of the curves intersect themselves). The second row shows the corresponding densities

ρ(x, t) from Figure 4.2. These densities can be interpreted as resulting from projecting the

mass supported on the corresponding density support curve onto the y0-axis. With this

interpretation, the density support curves provide an obvious geometrical interpretation
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Ŝt

Figure 4.14: Approximating the image under Ŝt of the density support curve, by following
the evolution under (4.87) of a set of points {y(i)(t)} that represent the nodes of a piecewise
linear curve. Here the curve is shown projected onto the (y0, y1)-plane.

of the structures observed in the corresponding densities ρ(x, t). Discrete jumps in the

density occur at the endpoints of the transformed density support curve, and the maxima

(singularities) correspond to turning points of the transformed density support curve.
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For large t the transformed density support curve becomes very complicated. Fig-

ure 4.16 shows the density support curve at time t = 20, which follows in the sequence of

Figure 4.15. As with the solution map shown of Figure 4.8, the complexity of this curve

results from the repeated stretching and folding that occurs under the dynamics of the

DDE. Because of this complexity it is difficult to provide a clear geometric interpretation

of the corresponding density, as was possible for small times as in Figure 4.15. Also, just

as with the solution map, determining the density support curve numerically becomes

problematic (in fact impossible using finite precision) for large times.
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Figure 4.16: Density support curve (projected onto the (y0, y1)-plane) for the Mackey-
Glass equation (4.2) restricted to constant initial functions, evolved forward in time to
t = 20.
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4.6 Conclusions

This chapter has developed a number of approaches to the evolution of densities for

delay equations. To place the problem in a more intuitive and mathematically tractable

setting, we have considered delay equations for which ensembles of initial functions are

restricted to some finite-dimensional set. This results in a family of measurable solution

maps St : IR
n → IRn for which a Perron-Frobenius operator can be defined. However, this

restriction destroys the semigroup structure of the family of solution maps, so any results

that are derived for such systems will have limited application to an ergodic theory of

delay equations.

At least for simple DDEs, the analytical techniques considered in sections 4.2 and 4.5

can be used to derive explicit formulae for the Perron-Frobenius operator corresponding

to St (examples 4.2.1–4.2.2). For more complicated equations, non-invertibility of St

makes both methods difficult to apply. As such, there appears to be little hope, using

these methods, of an analytical approach to the evolution of densities for delay equations

with interesting statistical properties, such as the Mackey-Glass equation and others

that exhibit chaotic solutions. Nevertheless, Section 4.5 provides an intuitive model for

the evolution of densities for DDEs, in terms of the transportation of a line mass by

a sequence of flows in IRN . This model gives some geometrical insight into results of

numerical approaches applied to more complicated DDEs (e.g., Figure 4.15).

In the absence of a generally applicable analytical method, it is desirable to have an

effective computational (numerical) approach to the evolution of densities for DDEs. Of

the numerical methods considered (Sections 4.3 and 4.4), the simplest is the “brute force”

method of simulating a large ensemble of solutions, for an ensemble of initial values chosen

at random in accordance with the initial density. Because this method relies on adequate

statistical sampling to obtain accurate results, it is computationally intensive to the point

of being impractical for many applications. This limitation motivates Section 4.4, which

develops a method based on a piecewise linear approximation of the solution map St, and

provides a much more efficient approach to computing the evolution of densities.

Much of the interest in a probabilistic approach to delay equations is with regard to

their asymptotic statistical properties. Asymptotic densities, such as those observed for

the Mackey-Glass equation in Figure 4.3, quantify states of statistical equilibrium. That

is, they describe the long-term equilibrium distribution of ensembles of systems governed

by DDEs. The same densities also characterize the long-time statistics of individual so-
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lutions. Thus invariant densities are important from the points of view of both statistical

mechanics and ergodic theory.

Asymptotic densities can be found by evolving an initial density forward to large time

until the asymptotic statistics become apparent. Unfortunately none of the methods con-

sidered in this chapter, other than the “brute force” ensemble simulation method, is well

suited to evolving densities to large times. As the time increases, so does the complexity of

the solution map for the DDE (cf. Figures 4.8 and 4.16, and the examples of Section 4.2).

The dimension of the system increases with time as well (cf. Section 4.5). These seem

to be fundamental obstacles to developing effective (i.e. fast) numerical techniques for

evolving densities to large times and thereby obtaining asymptotic densities. None of

the methods developed so far provides a viable alternative to the computationally inten-

sive ensemble simulation approach. Other approaches to obtaining asymptotic densities,

which do not rely on evolving densities to large times, are investigated in next chapter.
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Chapter 4 considered density evolution for the augmented DDE problem

x′(t) =







g
(

x(t)
)

t ∈ [0, 1]

f
(

x(t), x(t− 1)
)

t ≥ 1,

x(0) = x0,

(5.1)

which determines the evolution of a quantity x(t) ∈ IRn.1 The role of the function g here

is to restrict the DDE to a particular family of allowable initial functions parametrized

by x0, each a solution of x′ = g(x) on [0, 1]. An ensemble of initial values x0 with density

ρ0 generates a corresponding ensemble of solutions x of (5.1), with density ρ(x, t) at time

t. Chapter 4 considered the problem of determining the evolution of this density.

Numerical simulation of solution ensembles for the Mackey-Glass equation (cf. Fig-

ure 4.3, page 78) suggests that ρ(x, t) approaches a limiting density ρ∗(x) as t → ∞. In

fact, in multiple simulations with different initial densities and different families of al-

lowable initial functions (corresponding to different choices of the function g), this same

limiting density is observed. It appears, then, that the asymptotic density ρ∗ is an in-

trinsic property of the DDE. This same phenomenon can be observed in other delay

equations, of which section 5.1 presents some examples. These observations motivate the

present chapter, the purpose of which is to formulate an interpretation of asymptotic

densities for DDEs and to investigate methods for computing such densities.

Section 5.2 suggests a theoretical framework to account for the existence of asymp-

totic densities for delay equations. We find that the existence of ρ∗ is consistent with the

existence of an SRB measure (Definition 2.27), µ, for the corresponding infinite dimen-

sional dynamical system. In this interpretation ρ∗ can be seen as the projection of µ onto

the finite-dimensional space IRn in which the solution variable (i.e., the physical state)

x(t) is observed.

The existence of an asymptotic density has practical significance in that it charac-

terizes the asymptotic behavior of any ensemble governed by a given DDE. Moreover,

ρ∗ also appears to characterize the asymptotic statistics of every “typical” solution of

the DDE. In light of the important role played by asymptotic densities, it is desirable

to characterize and if possible compute them. Sections 5.3–5.4 explore the problem of

computing asymptotic densities for DDEs. Two methods are considered, both based

1As before, we assume that sufficient conditions are satisfied to guarantee existence and uniqueness of
solutions, as well as continuity of solutions with respect to the initial value.
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on previously published techniques that have proved successful in the context of some

finite-dimensional dynamical systems. Section 5.3 presents an adaptation of the well-

studied “Ulam’s method”, while section 5.4 develops a “self-consistent Perron-Frobenius

operator” method.

5.1 Existence of Asymptotic Densities:

Ensemble Simulation

The simplest and most direct approach to estimating asymptotic densities is to actually

simulate large ensembles of solutions and investigate their asymptotic statistics, as we

have done already in Figure 4.3 for the Mackey-Glass equation. Even if finite-precision

numerical simulations do not give meaningful predictions of the fate of individual solu-

tions, there is reason to be optimistic about the accuracy of statistics collected on large

ensembles of solutions (see section 2.6).

In each of the following examples an ensemble of 106 solutions has been simulated for

a given delay equation2, and histograms constructed from the ensemble of solution values

x(t) for some large t. In each case this histogram, which approximates the ensemble

density ρ(x, t), appears to approach a limiting density ρ∗(x) as t → ∞. This same

limiting density is obtained independent of the initial density and the particular family

of allowable initial functions (determined by g in (5.1)).

It must be emphasized that asymptotic regularity of the ensemble dynamics does not

imply regularity of individual solutions. On the contrary, statistical regularity is closely

tied to disordered behavior of individual trajectories (cf. section 2.4). The asymptotic

density characterizes a statistical rather than a dynamical equilibrium. To emphasize

this point, in each example below we illustrate a single long-time solution typical of other

solutions represented in the ensemble, confirming that the solutions themselves appear

to exhibit a random character, despite the eventual invariance the ensemble density.

Example 5.1.1 (Mackey-Glass equation). Densities for the Mackey-Glass equa-

tion [86]

x′(t) = −αx(t) + β
x(t− 1)

1 + x(t− 1)n
,

α = 2, β = 4, n = 10,

(5.2)

2Numerical solutions have been performed using the numerical DDE solver DDE23 [107]
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were estimated by ensemble simulation in Chapter 4 (cf. Figures 4.2–4.3). The histogram

approximating the limiting density ρ∗, together with part of a typical asymptotic solution,

is shown in Figure 5.1

Example 5.1.2 (Piecewise-constant nonlinearity). The delay equation

x′(t) = −αx(t) + F
(

x(t− 1)
)

,

F (x) =







c if x ∈ [x1, x2]

0 otherwise.

(5.3)

has been studied previously in [4, 5, 7, 81]. Despite the simplicity of the piecewise-

constant feedback term, solutions of this equation are known to exhibit a wide variety of

behaviors as the parameters are varied.

Equation (5.3) can be reduced to an ordinary differential on a sequence of intervals,

on each of which it easy to construct an analytical solution, viz.,

x(t) =







c
α +

(

x(t0)− c
α

)

e−α(t−t0) if x(t− 1) ∈ [x1, x2]

x(t0)e
−α(t−t0) otherwise.

(5.4)

The dependence on x(t−1) occurs only through the “crossing times” at which x(t−1) = x1

or x2 (where the forcing term switches on or off). In fact, the solution of (5.3) for

t ≥ 1 is uniquely determined by the values x(0), x(1), and the set of crossing times in

the interval [0, 1]. This simplification facilitates an analytical treatment, to the extent

that the existence of limit cycles, a homoclinic orbit, and chaos (in the sense of Li and

Yorke [76]) have been proved for certain parameters [5]. It has also been proved [4] that,

for certain parameters, the map governing the evolution of the crossing times is exact

(cf. definition 2.26, page 33). To date this is the only rigorous result on strong ergodic

properties for a delay differential equation.

Figure 5.2 shows the asymptotic density obtained by a histogram of 106 long-time

solutions of (5.3), with parameter values x1 = 1, x2 = 2, α = 6, c = 24 (which were also

considered in [5]). The typical form of an asymptotic solution is also shown.

Example 5.1.3 (“Tent map” nonlinearity). The delay equation

εx′(t) = −x(t) + 1− 1.9|x(t− 1)|. (5.5)
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Figure 5.1: Histogram approximating the asymptotic density for the Mackey-Glass equa-
tion (5.2), obtained from a simulated ensemble of 106 large-time numerical solutions. Also
shown is a single solution typical of those represented in the ensemble at large times.
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Figure 5.2: Histogram approximating the asymptotic density for the delay equation (5.3)
with piecewise-constant feedback, obtained from a simulated ensemble of 106 large-time
numerical solutions. Also shown is a typical solution represented in the ensemble.
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Figure 5.3: Histogram approximating the asymptotic density for the delay equation (5.5)
with piecewise-linear feedback (ε = 0.3), obtained from a simulated ensemble of 106 large-
time numerical solutions. Also shown is a typical solution represented in the ensemble.
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has been previously been studied from a probabilistic point of view in [41]. For sufficiently

small ε the solutions of DDE (5.5) appear to have chaotic solutions. Figure 5.3 shows the

asymptotic density obtained by a histogram over 106 large time solutions, together with

a segment of a typical long-time solution when ε = 0.3.
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5.2 Ergodic Theoretic Interpretation

The existence of asymptotic densities in the examples above can be explained in terms

of ergodic properties of the corresponding dynamical system on C([−1, 0]). While we are

not in a position to prove that a given DDE actually possesses strong ergodic properties,

this at least provides one framework for interpreting the dynamics of ensembles of DDE

solutions.

5.2.1 DDE solution is the trace of a dynamical system

Recall (cf. Chapter 3) that the DDE

x′(t) = f
(

x(t), x(t− 1)
)

, x(t) ∈ IRn, t ≥ 0, (5.6)

can be interpreted as a dynamical system on the phase space C of continuous functions

from [−1, 0] into IRn. The corresponding semigroup {St : t ≥ 0} of evolution operators

St : C → C defined by

(Stφ)(s) = x(t+ s), s ∈ [−1, 0], (5.7)

where x is the solution of (5.6) with initial function

x(t) = φ(t), t ∈ [−1, 0]. (5.8)

For any given initial function φ ∈ C there corresponds a trajectory {Stφ : t ≥ 0} ⊂ C
for this dynamical system. Let xt ∈ C denote the phase point on this trajectory at time

t. That is, xt is the function

xt(s) ≡ (Stφ)(s) = x(t+ s), s ∈ [−1, 0]. (5.9)

Then x(t) can be expressed as

x(t) = π(xt), (5.10)

where the functional π : C → IRn is given by

π(u) = u(0). (5.11)

This gives an interpretation of the solution variable x(t) as the image under π of the

phase point of the corresponding dynamical system.
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In general if {St : t ≥ 0} is a dynamical system on Y then a function h : IR → X is

called a trace of {St} if there is a continuous map π : Y → X and a y ∈ Y such that

h(t) = π
(

St(y)
)

, t ≥ 0. (5.12)

In other words, h(t) is the continuous image under π of some trajectory of the dynamical

system. A familiar example of a trace is the projection onto two dimensions of a trajectory

of a three-dimensional dynamical system. See [74, p. 193] for further discussion of this

concept.

Thus we can interpret a solution x(t) of the DDE (5.6) as a trace of the corresponding

dynamical system. Indeed, equation (5.7) together with (5.11) gives

x(t) = π(Stφ), t ≥ 0, (5.13)

so x(t) is the trace of the trajectory of {St} through φ. It is readily verified that π is

continuous if C is equipped with the sup norm. With this interpretation it is straight-

forward to show how various properties of the dynamical system {St} are manifested as

corresponding properties of solutions of the DDE. In particular we have the following:

• If {St} has an invariant measure, µ, then for an ensemble of phase points xt ∈ C
distributed according to µ, the corresponding ensemble of DDE solutions x = π(xt)

will be distributed according to the probability measure π(µ) ≡ µ◦π−1 on IRn, and

this distribution will be invariant under the dynamics.

• If {St} has an attractor Λ ⊂ C, then x(t) lies asymptotically on the image π(Λ) ⊂
IRn.

• If Λ supports an SRB measure µ, then we expect that any solution ensemble will

be asymptotically distributed according to the measure π(µ). This provides an

explanation of the convergence of ensemble histograms in the examples above.

The following sections explore these connections in greater detail.

5.2.2 Evidence of an invariant measure

In the examples above, by simulating ensembles of solutions we have found evidence for

the existence of asymptotic densities for delay equations. That is, for a given density of
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initial values x0 in the DDE initial value problem (5.1), the density ρ(x, t) of the ensemble

of solution values x at time t evolves toward a seemingly unique density ρ∗(x) as t→∞.

It is tempting to use the terminology of chapter 2 and call the limiting density ρ∗ an

“invariant density”. This turns out to be inappropriate, since ρ∗ is in fact not truly in-

variant in the strict sense already defined: if an ensemble of initial values x0 is distributed

with density ρ∗, the subsequent evolution of the ensemble density ρ(x, t) does not agree

with ρ∗ for all time. Figure 5.4 illustrates this fact. Here we consider the Mackey-Glass

equation (5.2) restricted to constant initial functions (hence g = 0 in (5.1)). An ensemble

of 106 solutions has been simulated, corresponding to an ensemble of initial values x0

distributed according to the asymptotic density ρ∗ shown in Figure 5.1. From the result-

ing sequence of histograms, which approximate ρ(x, t) at times t = 0, 1, 2 and 100, it is

apparent that ρ(x, t) initially diverges from ρ∗. Hence ρ∗ is not appropriately described

as an invariant density.

Nevertheless, as can be seen from the histogram representing ρ(x, 100) in Figure 5.4,

ρ(x, t) does appear to eventually converge to ρ∗ once again. As t increases beyond about

100 the ensemble histograms (not shown here) agree with ρ∗. Thus it seems appropriate

to call ρ∗ an “asymptotically invariant” density.

This phenomenon has a simple explanation if the infinite dimensional dynamical sys-

tem corresponding to the delay equation has an invariant measure. Indeed, suppose the

dynamical system {St : t ≥ 0} (as defined in equation (5.7)) has an invariant measure µ∗,

i.e.,

µ∗ = St(µ∗) ≡ µ∗ ◦ S−1
t ∀t ≥ 0. (5.14)

If an ensemble of phase points xt ∈ C is distributed according to µ∗, then the correspond-

ing ensemble of solution values x(t) ∈ IRn will be distributed according to the measure

η∗ = π(µ∗) ≡ µ∗ ◦ π−1, (5.15)

since x(t) = π(xt) where the trace map π : C → IRn is defined by equation (5.11). Under

the evolution prescribed by the delay equation the distribution of solution values x(t)

does not change with time since, under evolution by St, η∗ transforms to

π
(

St(µ∗)
)

= π(µ∗) = η∗. (5.16)

This is just what we see with the asymptotic histograms shown in Figures 5.1–5.3, and
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Figure 5.4: Histograms of solution values x(t) for an ensemble of 106 solutions of the
Mackey-Glass equation (5.2), corresponding to an ensemble of constant initial functions
with values distributed according to the asymptotic density ρ∗ depicted in Figure 5.1.
Histograms are shown for times t = 0, 1, 5, 100.
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suggests the interpretation of these histograms as approximating measures η∗ that are

just projections of invariant measures µ∗ on the phase space C.

As discussed above, η∗ cannot be considered an invariant measure for the DDE, since

an ensemble of initial values distributed according to η∗ does not necessarily remain

distributed according to η∗. This can now be understood as a consequence of the fact

that the trace map π is not one-to-one. That is, there can be measures on C, other

than µ∗, whose images under π coincide with η∗. In general these measures will not be

invariant. In particular, there is an ensemble of constant initial functions with values

distributed according to η∗ (corresponding to the first histogram in Figure 5.4), but this

ensemble is not invariant under St. As this ensemble evolves, its projection under π

(corresponding to the subsequent histograms in Figure 5.4) diverge from η∗.

The foregoing considerations show that by interpreting a DDE solution x(t) as the

trace of the corresponding dynamical system {St} in C, we obtain a framework in which

statistical properties of DDE solutions can be understood in terms of statistical properties

of {St}. In particular, existence of an invariant measure µ∗ for {St} implies existence of

a corresponding measure η∗ on IRn that is invariant under the DDE dynamics. This

suggests one explanation for the origin of the asymptotic densities shown in Figures 5.1–

5.3. The following sections show how the trace map π carries over other properties of

trajectories in C to corresponding properties of DDE solutions in IRn.

5.2.3 Existence of an attractor

Theorem 5.1. Suppose F : IR→ IR maps an interval I = (−k, k) into itself for some k.

Let the semigroup {St : t ≥ 0} be defined by (5.7) for the delay equation

x′(t) = −αx(t) + F
(

x(t− 1)
)

, t ≥ 1 (5.17)

with α ≥ 1. Then {St} has an attractor, Λ. That is [103], there is a compact set Λ ⊂ C

and a neighborhood U of Λ such that

(a) For every neighborhood V of Λ, St(U) ⊂ V for all sufficiently large t.

(b) St(Λ) = Λ ∀t ≥ 0.

(c) Λ =
⋂

t≥0 St(U).

Proof. (Adapted from a sketch given in [41]). By [103, Prop. 3.2] it is sufficient to show

that for some open U ⊂ C, for all t > 1 St(U) is relatively compact and contained in U .
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To this end let

U = {u ∈ C : |u| < k/α}. (5.18)

Recall (Section 3.4.1) that the time-one map S1 : C → C can be written

(S1u)(s) = u(0)e−α(s+1) +

∫ s

−1
eα(t−s)F

(

u(t)
)

dt, s ∈ [−1, 0]. (5.19)

Thus for u ∈ U we have

∣

∣(S1u)(s)
∣

∣ ≤
∣

∣

∣
u(1)e−α(s+1)

∣

∣

∣
+
∣

∣

∣

∫ s

−1
eα(t−s)F

(

u(t)
)

dt
∣

∣

∣

<
k

α
e−α(s+1) +

∫ s

−1
eα(t−s)k dt

=
k

α
e−α(s+1) +

k

α

(

1− e−α(s+1)
)

= k/α.

(5.20)

By (5.7) we have, ∀t ∈ [0, 1],

(Stφ)(s) =







φ(s+ t) if s ∈ [−1,−t]
(S1φ)(s+ t− 1) if s ∈ (−t, 0]

(5.21)

so that |(Stu)(s)| < k/α ∀t ∈ [0, 1]. The semigroup property then implies

St(U) ⊆ U ∀t ≥ 0. (5.22)

Furthermore, if φ ∈ U then the solution x(t) of (5.17) with initial function φ satisfies, for

t ∈ [0, 1],

|x′(t)| ≤ | − αx(t)|+ |F
(

φ(t− 1)
)

|
≤ α|x(t)|+ k,

(5.23)

so for u ∈ U we have

(Stu)
′(s) ≤ αk

α
+ k = 2k. (5.24)

Thus for t ≥ 1 every element of St(U) has a bounded derivative, hence the set St(U)

is equicontinuous and therefore relatively compact (by the Arzela-Ascoli Theorem [73,



5.2. ERGODIC THEORETIC INTERPRETATION 125

p. 57]). Thus by [103, Prop. 3.2] the set

Λ =
⋂

t≥0

St(U) (5.25)

is compact and satisfies (a)–(c) above.

In each of the examples given in Section 5.1 the delay equation satisfies the conditions

of the theorem above (in particular it suffices that F be bounded), so the corresponding

dynamical system has a compact attractor Λ ⊂ C. Thus for any initial function φ in

some open ball U ⊂ C, the trajectory {Stφ : t ≥ 0} ⊂ C lies asymptotically on (or near)

Λ. The proof gives an explicit formula for the radius of U in terms of α and the radius

of the “maximal invariant interval” I such that F (I) ⊆ I. The full basin of attraction of

Λ, W =
⋃

t≥0 S
−1
t (U), might actually be much larger than U .

Since any initial function φ ∈ W has dist(St(φ),Λ) → 0 as t → ∞, continuity of the

trace map π implies that

dist
(

x(t), π(Λ)
)

= dist
(

π(Stφ), π(Λ)
)

→ 0 as t→∞. (5.26)

That is, the solution x(t) corresponding to the initial function φ lies asymptotically in

the image of Λ under the mapping π : C → IRn.

If St possesses an invariant measure µ∗ describing the asymptotic statistics of its

trajectories then, since trajectories in C lie asymptotically on Λ, µ∗ will be concentrated

on Λ. According to the previous section, there is a corresponding measure η∗ = π(µ∗)

on IRn that is invariant under the dynamics, and this measure will be concentrated on

π(Λ). In particular, as the following section shows, if Λ carries an SRB measure that

characterizes the distribution of orbits on Λ, then the image of this measure under π

describes the asymptotic statistics of typical solutions x(t).

5.2.4 Evidence of an SRB measure

Each asymptotic density ρ∗ shown in Figures 5.1–5.3 is constructed from an ensemble

of solutions x(t) of a given DDE, evaluated at a particular (large) time. If we instead

sample values {xn = x(nh) : n = 0, . . . , N} along a single solution x(t), where h is some

fixed time increment (e.g. the time step for numerical integration), the histogram of these

values approaches ρ∗ as N →∞.
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Figure 5.5 illustrates this phenomenon. Here we consider the DDE (5.5) with piecewise-

linear feedback, restricted to constant initial functions (hence g = 0 in (5.1)). For an

arbitrarily chosen initial value x0 in the DDE problem (5.1) we have computed a single

numerical solution and constructed histograms as described above. Comparison with Fig-

ure 5.3 shows good agreement between the asymptotic histogram obtained as N → ∞,

and the asymptotic histogram obtained by ensemble simulation. This behavior can also

be seen in the DDEs of examples 5.1.1 and 5.1.2. Moreover, the asymptotic histogram

thus obtained seems to be independent of the initial value x0, with the exception of initial

values on equilibrium solutions of the DDE (e.g. x0 = 0 generates the zero solution of the

Mackey-Glass equation (5.2), hence a trivial histogram concentrated at the origin).

Convergence of a histogram along a single solution requires existence of the time

average

lim
N→∞

#{n = 1, . . . , N : xn ∈ A}
N

= lim
N→∞

1

N

N
∑

k=1

1A(xk), (5.27)

for each histogram bin A ⊂ IR. This behavior is indeed expected, for solutions corre-

sponding to µ-almost every initial function φ, if the DDE’s attractor supports an ergodic

invariant measure µ on C (cf. equation (2.46), page 31). However, the set of allowable

(e.g. constant) initial functions selected by (5.1) are not on the attractor, hence not in

the support of the supposed ergodic measure µ. The fact that the time average (5.27)

exists all the same suggests a property stronger than ergodicity. We conjecture that the

density ρ∗ characterizes the asymptotic statistics of every “typical” solution x(t), with

“typical” taken in the sense of “on a set of positive Lebesgue measure”. This hypothesis

is similar to the existence of an SRB measure (cf. Section 2.4.4).

If the sequence {xn = x(nh) : n ≥ 0} does in fact have a well-defined asymptotic

distribution according to a probability measure η∗, then convergence of histograms of

{xn} to η∗ can be expressed as.

1

N

N
∑

n=1

δxn(A) −→ η∗(A) as N →∞, (5.28)

for each measurable A, where δxn is the probability measure corresponding to a point

mass at xn:

δx(A) =







1 if x ∈ A
0 otherwise.

(5.29)
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Figure 5.5: Histograms of solution values {xn = x(nh) : n = 0, . . . , N} for a single
numerical solution of the DDE (5.5) with fixed time step h.
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The authors of [14] show that (5.28) implies

1

N

N
∑

i=1

ϕ
(

xn
)

−→
∫

ϕdη∗. (5.30)

for any bounded continuous function ϕ : IR → IR. Thus we have (supposedly) that the

average of ϕ along any typical solution x(t) is given by the average of ϕ with respect to η∗.

Equation (5.30) is just defining condition for η∗ to be an SRB measure (cf. Section 2.4.4

page 34), except that {xn} is not the orbit of a dynamical system, but rather the trace

of a dynamical system.

In fact, if the dynamical system {St} corresponding to the DDE does possess an SRB

measure µ∗, then η∗ is just the image of µ∗ under the trace map π. To see this, suppose

µ∗ is an SRB measure for {St}, i.e., for any bounded continuous functional ψ : C → IR,

lim
N→∞

1

N

N
∑

k=1

ψ(Skφ) =

∫

C
ψ dµ∗ (5.31)

for all initial functions φ in a set of positive m-measure.3 Here S = Sh is the time-h map.

Let x be the DDE solution corresponding to initial function φ. Then for the particular

functional ψ = ϕ ◦ π, where ϕ : IRn → IR is bounded and continuous, and π : C → IRn is

the trace map (5.11), equation (5.31) gives

lim
N→∞

1

N

N
∑

k=1

ϕ(xn) = lim
N→∞

1

N

N
∑

k=1

ϕ
(

π(Sk(φ)
)

=

∫

C
ϕ ◦ π dµ∗

=

∫

IRn
ϕd(µ∗ ◦ π−1).

(5.32)

The last line follows from measurability of π and Theorem 2.3 (page 21). Comparison

with equation (5.30) gives (via the Riesz Representation Theorem [55])

η∗ = π(µ∗) ≡ µ∗ ◦ π−1. (5.33)

3We suppose m is a measure on C that provides the relevant notion of “almost every”. As discussed
in Section 3.6 the appropriate choice of m is ambiguous, so we leave it unspecified.
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That is, η∗ is just the image of µ∗ under the trace map π : C → IRn. Thus the existence

of an SRB measure µ∗for {St} implies the convergence of histograms, and more generally

the existence of time averages (5.30), where the asymptotic the measure η∗ can now be

interpreted as the projection π(µ∗) of µ∗ onto IRn.

The supposed existence of an SRB measure for the infinite dimensional dynamical

system {St} is only a conjecture supported by numerical evidence. At present a proof

appears to be unattainable. Indeed, justifying (5.31) is a formidable task even for finite-

dimensional dynamical systems [40, 120]. For infinite dimensional systems, even the

definition of SRB measure, and in particular the appropriate choice of reference measure

m, is ambiguous. Nevertheless, supposing the existence of an SRB measure does provide

a plausible framework that explains the apparent existence of asymptotic densities for

ensembles of solutions of some DDEs. This model is helpful to the discussion in the

following sections, where we consider methods of computing these asymptotic densities.
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5.2.5 Higher dimensional traces

The trace map π : C → IRn defined by (cf. Section 5.2.1)

π(u) = u(0) (5.34)

is a natural way to construct finite-dimensional images of objects in C. In particular

if Λ ⊂ C is an attractor for the dynamical system {St} corresponding to the delay

equation (5.1) then π(Λ) gives a finite-dimensional picture of Λ, in the space IRn of the

solution variable x(t). If {St} has an invariant measure µ then the measure π(µ) on IRn

describes the statistics of an ensemble of solutions x(t), and is also invariant under the

dynamics. Since π is many-to-one, some information is lost in these projections. Indeed,

if x(t) ∈ IR then π(Λ) is just an interval, and gives little information about the structure

of Λ.

If one was to choose a different mapping π : C → IRM with M > n then intuitively

π(Λ) should give a more accurate picture of Λ. Ideally we would like π to be one-to-one

on Λ, in which cased case the image π(Λ) is called an embedding of Λ in IRM [59, 106].

The following theorem establishes that for M sufficiently large, almost any π : C → IRM

in a certain class will yield an embedding of a given finite-dimensional set in C.

Theorem 5.2 (after [59]). Let X be a Banach space, A ⊂ X a compact set with box-

counting dimension D. If M > 2D then almost every4 bounded linear function π : X →
IRM is one-to-one on A.

To illustrate how a multi-dimensional trace map can be used to visualize the attractor

of a DDE, we consider the mapping π : C → IR2 defined by

π(u) =
(

u(−1), u(0)
)

. (5.35)

If xt = St(φ) ∈ C is a phase point on a trajectory of {St} then we have (by equation (5.9))

π(xt) =
(

xt(−1), xt(0)
)

=
(

x(t− 1), x(t)
)

(5.36)

where x(t) is the solution of the DDE with initial function φ. The image π(Λ) can be

approximated by computing a numerical solution of the given DDE and plotting the set

4In the sense of prevalence [58], cf. Section 3.6.4.
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of points {
(

x(t − 1), x(t)
)

: t ≥ T} in the plane (where T is a sufficiently large time

for transients to die out, i.e. for St(φ) to approach Λ). This amounts to plotting x(t)

vs. x(t − 1); in the literature this is occasionally done to construct phase plots of DDE

solutions in the “pseudo phase space” IR2. The results of this procedure applied to the

examples in Section 5.1 are shown in Figures 5.6, 5.8 and 5.10, respectively. Even in

these 2-dimensional images an intricate (presumably fractal) structure of the attractor is

apparent.

The previous section gave evidence of an SRB measure µ∗ supported on Λ, and showed

how the histograms depicted in Figures 5.1–5.3 can be interpreted as approximations of

the image of µ∗ under π : u 7→ u(0). Just as with the attractor Λ, a more accurate

image of µ∗ is obtained under the 2-dimensional trace map (5.36). The measure π(µ∗)

can be approximated by computing a typical numerical solution of the given DDE and

constructing a two-dimensional histogram of the sequence of vectors {
(

x(t − 1), x(t)
)

:

t > T}. The results of this procedure applied to the examples of Section 5.1 are shown in

Figures 5.7, 5.9 and 5.11, respectively. In each figure, part of the (x(t− 1), x(t))-plane is

divided into a grid of rectangles (the histogram bins). Each rectangle is uniformly shaded

with a level of grayscale intensity that indicates the histogram height, which approximates

the measure π(µ∗) of that rectangle.
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Figure 5.6: Numerical approximation of the image π(Λ) of the attractor Λ ⊂ C of the
Mackey-Glass equation (5.2), under the trace map (5.36).
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Figure 5.7: Two-dimensional histogram approximating the projection π(µ∗) of the sup-
posed SRB measure µ∗ for the Mackey-Glass equation (5.2), under the trace map (5.36).
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Figure 5.8: Numerical approximation of the image π(Λ) of the attractor Λ ⊂ C for the
delay equation (5.3), under the trace map (5.36).
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Figure 5.9: Two-dimensional histogram approximating the projection π(µ∗) of the sup-
posed SRB measure µ∗ for the delay equation (5.3), under the trace map (5.36).
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Figure 5.10: Numerical approximation of the image π(Λ) of the attractor Λ ⊂ C of the
delay equation (5.5), under the trace map (5.36).
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Figure 5.11: Two-dimensional histogram approximating the projection π(µ∗) of the sup-
posed SRB measure µ∗ for the delay equation (5.5), under the trace map (5.36).
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5.3 Ulam’s Method

The remainder of this chapter is concerned with methods for computing asymptotic den-

sities for delay equations. The methods considered so far are of the “brute force” type:

simulating large ensembles of solutions (Section 5.1) and computing statistics on a sin-

gle long solution (Section 5.2.5). The utility of these methods is limited by their large

sampling requirements, owing to the slow O(1/
√
N) rate of convergence of histograms as

the number N of solutions is increased (see p. 79). In the following sections we seek more

efficient methods.

A preliminary observation is in order, related to the remark at the beginning of

Section 4.5. The obvious approach to finding asymptotic densities is to begin with an

evolution equation for ρ(x, t), of the form

d

dt
ρ = {some operator}(ρ). (5.37)

Invariance of ρ∗ could then be characterized by setting the left-hand side equal to zero,

resulting in the equation

{some operator}(ρ∗) = 0, (5.38)

which hopefully could be solved, at least approximately, for ρ∗. This approach fails since,

for reasons discussed in Section 4.5, ρ(x, t) cannot be described by an evolution equation

of the desired form (or, for that matter, by any evolution equation in terms of ρ(x, t)

alone). For that matter, ρ∗ cannot even be considered invariant in the above sense (cf.

Section 5.2.2). At best, we can only apply this approach to an approximate evolution

equation for ρ. One such possibility is considered in Section 5.4.

An alternative approach, and probably the best known technique for approximating

invariant measures for dynamical systems, is Ulam’s method [119, 77, 37]. The following

section presents the basic idea, after which we consider how the method might be adapted

to delay differential equations.

5.3.1 Stochastic approximation of dynamical systems

Let a discrete-time dynamical system be defined by iterates of a map S : X → X

(X ⊂ IRn) and suppose S has an invariant measure µ (for continuous time systems, the

following applies to a suitable discrete-time map, e.g. the time-one map). For a given

partition A = {A1, . . . , An} of X, let pi(k) denote the probability at time k that the
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system state x(k) = Sk(x) ∈ Ai.

Ulam’s method approximates the evolution of the probability vector p(k) =

(p1(k), . . . , pn(k)) by a Markov chain

p(k + 1) = Pp(k), (5.39)

where P is a transition matrix that models the dynamics of S. The basic idea is to ignore

the details of the dynamics within each Ai, and instead consider the “coarse-grained”

dynamics with respect to the partition. Thus, given that x(k) ∈ Aj , we suppose that

x(k) is equally likely to be anywhere in Aj , i.e., x(k) is distributed according to normalized

Lebesgue measure λ on Aj . Then the “transition probability” that x(k + 1) ∈ Ai is

Pij =
λ(Aj ∩ S−1Ai)

λ(Aj)
, (5.40)

i.e., the fraction (with respect to Lebesgue measure) of Aj that is mapped by S into

Ai. This defines the n× n transition matrix P for the Markov chain (5.39), a stochastic

process that (hopefully) approximates the probabilistic dynamics of S, in the following

sense.

Each probability vector p = p(k) defines a probability measure ν on X such that

ν(Ai) = pi, and in general

ν(A) =
n
∑

i=1

λ(A ∩Ai)

λ(Ai)
· pi. (5.41)

This measure has piecewise constant density

ρ(x) =
pi

λ(Ai)
if x ∈ Ai. (5.42)

Thus the evolution equation (5.39) for p(k) implicitly defines a sequence of piecewise

constant densities, approximating a sequence of densities evolving under the action of S.

To be more precise, P can be interpreted as a projection of the Perron-Frobenius operator

P̃ corresponding to S onto the space of piecewise constant densities (with respect to the

partition A). Formally, P can be written in terms of P̃ as [77]

P (Qf) = Q(P̃ f) ∀f ∈ L1(X), (5.43)
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where the operator Q projects f to the piecewise constant function Qf ∈ L1(X) given by

(Qf)(x) =
n
∑

i=1

∫

Ai
f dλ

λ(Ai)
· 1Ai(x). (5.44)

Since P approximates the Perron-Frobenius operator P̃ , it can be hoped that a fixed

point of P̃ (i.e., an invariant density for S) can be approximated by a fixed point of P .

That is, suppose that p satisfies

p = Pp (5.45)

i.e., p is an eigenvector of P with eigenvalue 1, normalized so that
∑

pi = 1. The

corresponding piecewise constant density defined by equation (5.42) then approximates

the density of the invariant measure µ. Ulam conjectured [119] that as the partition is

refined (λ(Ai)→ 0), the sequence of approximations obtained in this way should converge

to the fixed point of P̃ , i.e., the true invariant density. This conjecture has in fact been

proved for particular cases, such as piecewise expanding transformations on intervals [77]

and on rectangles in IRn [38]

5.3.2 Application to delay equations

In the case of delay differential equations, we are concerned with an invariant measure

µ for a dynamical system St on the space C([−1, 0]). If µ has support in some bounded

set X ⊂ C (e.g., when µ is an SRB measure supported on a compact attractor Λ)

then in principle Ulam’s method could be applied to the time-one map S = S1 and for

some partition A of X. However, it is unclear (cf. Chapter 3) what measure on C is

an appropriate analog of Lebesgue measure in the definition of the transition matrix P

(equation (5.40)). For now, suppose we do have some such reference measure, m, such

that 0 < m(Ai) <∞ for each i. Then, in analogy with (5.40) the matrix P with elements

Pij =
m(Aj ∩ S−1Ai)

m(Aj)
(5.46)

defines a Markov chain p(k + 1) = Pp(k) that hopefully models the dynamics of S. In

particular, we can hope that a fixed point p of P approximates the invariant measure µ

on A, i.e., pi ≈ µ(Ai).

Suppose, in accordance with the framework of Section 5.2, that η∗ = π(µ∗) is the

measure on IRn corresponding to the asymptotic density ρ∗ (where π : C → IRn is defined
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by (5.11)) and that the support of η∗ is contained in some bounded B ⊂ IRn. Then, for a

given partition B = {B1, . . . , Br} of B, a careful choice of A permits an interpretation p

as a piecewise constant approximation of ρ∗ with respect to B. The following shows how

this can be done.

Note that η∗ has support in the bounded set B = π(X). Let B = {B1, . . . , Br} be

a partition of B on which we wish to approximate η∗ by a piecewise constant density.

Define a partition A of X by

Ai = π−1(Bi), i = 1, . . . , r, (5.47)

or more explicitly,

Ai = {u ∈ C : u(0) ∈ Bi}. (5.48)

Then, since η∗ = µ∗ ◦ π−1, we have

µ∗(Ai) = η∗(Bi). (5.49)

Thus if we use Ulam’s method to obtain a vector p = Pp of probabilities pi ≈ µ∗(Ai)

then we also have pi ≈ η∗(Bi), yielding a piecewise constant approximation

ρ∗(x) ≈
pi

λ(Bi)
if x ∈ Bi (5.50)

of the density ρ∗.

The immediate difficulties in implementing this method are in evaluating the ele-

ments of the transition matrix (equation (5.46)), where we must compute the pre-images

S−1(Ai) under the infinite dimensional map S (e.g., as given explicitly in equation (5.19))

and evaluate the reference measure m of S−1(Ai). Both of these difficulties can be cir-

cumvented if we take as the reference measure m the invariant measure µ∗. If µ∗ is an

SRB measure (which seems to be the case in the examples of Section 5.1) then for any

bounded continuous ψ : C → IR we have

lim
N→∞

1

N

N
∑

k=1

ψ
(

Sk(φ)
)

=

∫

ψ dµ∗ (5.51)

for every initial function φ in some set of positive m-measure. In particular, for ψ = 1A
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we have5

1

N

N
∑

k=1

1A(S
k(φ)) =

1

N
#{k ∈ 1, . . . , N : Sk(φ) ∈ A}

N→∞−−−−→
∫

1A dµ∗ =
∫

A
dµ∗ = µ∗(A).

(5.52)

Then for sufficiently large N and for any typical initial function φ, we can approximate

µ∗(Ai) by

µ∗(Ai) ≈
1

N
#{k ∈ 1, . . . , N : Sk(φ) ∈ Ai}

=
1

N
#{k ∈ 1, . . . , N : (Skφ)(0) ∈ Bi}

=
1

N
#{k ∈ 1, . . . , N : xk ∈ Bi},

(5.53)

where xk =
(

Sk(φ)
)

(0) = x(k) and x(t) is the solution of the DDE with initial function

φ. Thus, to construct the transition matrix P , we compute (e.g., numerically) a long

sequence {xk = x(k) : k = 1, . . . , N} along a single solution x(t) of the DDE, and

approximate Pij in equation (5.46) by (see also e.g. [15])

Pij =
#{k : xk ∈ Bj and xk+1 ∈ Bi}

#{k : xk ∈ Bj}
, (5.54)

assuming B has been chosen so that {xk} ∩Bj 6= ∅ ∀j.

The transition matrix P defines a Markov chain that approximates the asymptotic

probabilistic dynamics of the given DDE. In particular, we hope that a fixed point p of P

will provide a piecewise constant approximation of the asymptotic density ρ∗, via (5.50).

Indeed, when applied to the examples of Section 5.1 this method identically reproduces

the asymptotic density found by computing a histogram of {xk} (i.e. as in Section 5.2.4,

Figure 5.5).

It turns out that this must be the case. Let p = (p1, . . . , pr) represent the normalized

5There is a technical difficulty here: 1A is not continuous so (5.51) does not strictly apply with ψ = 1A.
However, we can approximate 1A from below by continuous functions {ψn} with ψn → 1A µ∗-almost
everywhere, so

∫

ψn dµ∗ →
∫

1A dµ∗ by the Lebesgue dominated convergence theorem [74, p. 22]. See [71,
p. 134] for further details.
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histogram of {xk} taken with respect to the partition B, i.e.,

pi =
1

N
#{k ∈ 1, . . . , N : xk ∈ Bi} (5.55)

A simple calculation shows that

(Pp)i =
r

∑

j=1

Pijpj

=
r

∑

j=1

#{k : xk ∈ Bj and xk+1 ∈ Bi}
#{k : xk ∈ Bj}

· #{k : xk ∈ Bj}
N

=
r

∑

j=1

#{k : xk ∈ Bj and xk+1 ∈ Bi}
N

=
#{k : xk+1 ∈ Bi}

N

=
#{k : xk ∈ Bi} ± 1

N

= pi ±
1

N
−→ pi as N →∞.

(5.56)

Thus p is (almost) a fixed point of P , and Ulam’s method as applied here simply repro-

duces the results of computing a histogram along a single solution of the given DDE.

Essentially, the construction is circular and no new information about the asymptotic

density is gained.

For lack of any other reasonable reference measure m on C that we can evaluate (or

approximate), our formulation of Ulam’s method for DDEs does not provide an indepen-

dent estimate of the asymptotic density. However, the Markov chain p 7→ Pp defined

by (5.54) is interesting in its own right, as a simple model of the asymptotic probabilistic

dynamics of the given DDE. An intuitive way to represent such a Markov chain is to

graph the matrix of transition probabilities P . Figures 5.12–5.14 give examples of such

plots, with P computed as in equation (5.54), for each of the delay equations considered

in the examples of Section 5.1. For each figure the support of the asymptotic density in IR

has been partitioned into 100 intervals Bi, i = 1, . . . , 100, of equal length. Each rectangle

Bj × Bi in the plane is shaded uniformly with grayscale level indicating the probability

Pij of transition from x(t) ∈ Bj to x(t + 1) ∈ Bi. Thus darker rectangles indicate likely

transitions; white regions indicate transitions that never occur, at least asymptotically.
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Figure 5.12: Graphical representation of the matrix P of transition probabilities (defined
by equation (5.54)) for the Markov chain approximating the asymptotic dynamics of the
Mackey-Glass equation (5.2).

Figures 5.12–5.14 are remarkably similar to Figures 5.7, 5.9 and 5.11. There is in fact

an intimate connection between these figures, owing to the fact that the numerator in

equation (5.54) is equivalent to a two-dimensional histogram of the sequence of vectors

{
(

x(t), x(t − 1)
)

: t = 0, 1, . . .}, with bins {Bj × Bi : i, j = 1, . . . , N}. The entries of

the matrix P are therefore identical to the heights of the corresponding two-dimensional

histograms in Figures 5.7, 5.9 and 5.11, except that each column of P is normalized so

that
∑r

i=1 Pij = 1.
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Figure 5.13: Graphical representation of the matrix P of transition probabilities (defined
by equation (5.54)) for the Markov chain approximating the asymptotic dynamics of the
delay equation (5.3).
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Figure 5.14: Graphical representation of the matrix P of transition probabilities (defined
by equation (5.54)) for the Markov chain approximating the asymptotic dynamics of the
delay equation (5.5).
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5.4 Fixed Points of Approximate Markov Operators

Ulam’s method and its generalizations are the only techniques we are aware of for ap-

proximating invariant measures of general dynamical systems. However, Lepri et al. [75]

present a method specifically aimed at approximating invariant measures for discrete-time

systems with delayed dynamics, based on a similar method for coupled map lattices [69].

This seems like a promising approach to asymptotic densities for delay differential equa-

tions. In this section we consider the application of the method in [75] to a discretized

approximation of a particular class of DDEs.

5.4.1 Approximate Markov operator

Consider the DDE6

x′(t) = −αx(t) + f
(

x(t− 1)
)

, t ≥ 0, x(t) ∈ IR, (5.57)

with initial function

x(t) = φ(t), t ∈ [−1, 0]. (5.58)

Euler discretization of (5.57) with time step h = 1/N yields

x(t+ h)− x(t)
h

≈ −αx(t) + f
(

x(t− 1)
)

, (5.59)

which gives the explicit formula

xn+1 = (1− αh)xn + hf(xn−N ) (5.60)

for the approximate solution xn = x(tn) at the “mesh points” tn = nh, n = 0, 1, 2, . . ..

Together with initial values xi = φ(ti), i = −N, . . . , 0, this formula can be iterated to

construct a sequence {xn : n = 0, 1, 2, . . .} that approximates the solution of (5.57)–(5.58).

The problem we consider here is to estimate the asymptotic density ρ∗(x) (supposing

one exists) of an ensemble of systems evolving under (5.60). This is just the problem

considered in [75] for more general discrete-time systems with delayed dynamics. Their

approach is easily adapted to the particular system (5.60) as follows.

6The ideas of this section generalize in a straightforward way to DDEs in IRn, but this requires more
complex notation. To simplify the presentation we will restrict our attention to DDEs in one dimension
only.
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With

yn = xn−N (5.61)

equation (5.60) becomes

xn+1 = T (xn, yn), (5.62)

where

T : (x, y) 7→ (1− αh)x+ hf(y). (5.63)

If f : IR → IR is measurable then T is a measurable, nonsingular transformation from

IR2 into IR. Let ρ2(x, y;n) be the density at time n of the pair (xn, yn), for an ensemble

of sequences governed by (5.60). Then in analogy with the definition of the Perron-

Frobenius operator, the ensemble of values xn+1 = T (xn, yn) will be distributed with

one-dimensional density ρ1(x;n+ 1) satisfying

∫

A
ρ1(x;n+ 1) dx =

∫

T−1(A)
ρ2(x, y;n) dx dy ∀ Borel A ⊂ IR. (5.64)

For A = (−∞, s) we have

T−1(A) =
{

(x, y) ∈ IR2 : x <
s− hf(y)
1− αh

}

, (5.65)

so that
∫ s

−∞
ρ1(x;n+ 1) dx =

∫ ∞

−∞

∫
s−hf(y)
1−αh

−∞
ρ2(x, y;n) dx dy. (5.66)

Differentiating with respect to s yields the explicit formula

ρ1(x;n+ 1) =
1

1− αh

∫ ∞

−∞
ρ2

(x− hf(y)
1− αh , y;n

)

dy. (5.67)

If the densities ρ1∗(x) and ρ2∗(x, y) are invariant under the process defined by (5.60)

then we can drop the dependence on n to yield

ρ1∗(x) =
1

1− αh

∫ ∞

−∞
ρ2∗

(x− hf(y)
1− αh , y

)

dy. (5.68)

As it stands, this equation cannot be used on its own to determine ρ1∗, since it requires

prior knowledge of the 2-dimensional density ρ2∗. With a similar approach it is possible

write an analogous equation defining ρ2∗, but this in turn requires knowledge of the 3-
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dimensional density ρ3∗ of the triple (xn, xn−N , xn−2N ). In general, the evolution equation

for the density ρk of the k-tuple (xn, xn−N , . . . , xn−(k−1)N ) requires knowledge of ρ(k+1),

so that we obtain an open recursion relation for the corresponding invariant densities ρk∗.

To close this open recursion relation so it can be solved for ρ1∗, one can make an

approximation whereby for some k, ρk∗ can be expressed in terms of the {ρj∗ : j ≤ k}.
The simplest such approximation is the factorization

ρ2∗(x, y) = ρ1∗(x)ρ1∗(y). (5.69)

This amounts to assuming that x and y are independent, i.e., uncorrelated. It is a

“self-consistent” approximation, in that x and y are both supposed to be distributed

according to ρ1∗. This is exactly what we expect if ρ1∗ is an invariant density: if xn is

distributed according to ρ1∗ for all sufficiently large n, then so must be yn = xn−N . This

approximation closes equation (5.68), which becomes

ρ1∗(x) =
1

1− αh

∫ ∞

−∞
ρ1∗

(x− hf(y)
1− αh

)

ρ1∗(y) dy ≡ (Qρ1∗)(x). (5.70)

By its construction Q maps densities to densities, but it is not a Markov operator

since it is nonlinear. Nevertheless, in [69] the operator analogous to Q is called a “self-

consistent Perron-Frobenius operator”. Q can be interpreted intuitively as the operator

that effects the evolution of densities under the action of (5.60) with the assumption that

at each time step, xn−N is a random variable independent of xn and distributed with the

same density as xn.

Since Q approximates, in some sense, the probabilistic dynamics of the Euler dis-

cretization of the given DDE, it is hoped that a density that is invariant under Q (i.e., a

fixed point of Q) will approximate the asymptotic density ρ∗, e.g. as observed in Fig-

ures 5.1–5.3. One approach to approximating the solution of the operator equation

ρ∗ = Qρ∗ is fixed point iteration: if a sequence of densities {un+1 = Qun} can be found

that converges in L1, then the limit ρ∗ = limn→∞ un furnishes a solution of (5.70).7 In

practice this iteration is carried out numerically.

7Actually this requires continuity of Q, which seems to require restricting Q to L∞. So far we have
not found a satisfactory proof.
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5.4.2 Numerical implementation

The integral in (5.70) resembles a convolution. In fact by the change of variables

v(x) =
1

1− αh u
( x

1− αh
)

(5.71)

w(x) =
∑

s∈f−1{x/h}

u(s)

h|f ′(s)| , (5.72)

Q(u) can be written as a convolution integral,

(Qu)(x) =

∫ ∞

−∞
v(x− z)w(z)dz. (5.73)

This integral can be approximated numerically as follows.

Let the densities u, Q(u), and w be approximated by the corresponding vectors of

values they assume on a uniform grid {x1, . . . , xM},

xi = x1 + (i− 1)∆x, i = 1, . . . ,M, (5.74)

and designate a vector of weights {αj} appropriate for numerical quadrature on this grid

(e.g., by Simpson’s Rule [94, p. 134]). Then (Qu)(xi) can be approximated by

(Qu)i = (Qu)(xi) ≈
M
∑

j=1

v(xi − xj)w(xj)αj

=
M
∑

j=1

v
(

(i− j)∆x
)

w(xj)αj

=
M
∑

j=1

v(yi−j+M )w(xj)αj

=

M
∑

j=1

vi+M−jwjαj ,

(5.75)

where

yk = (k −M)∆x, k = 1, . . . , 2M − 1, (5.76)



5.4. FIXED POINTS OF APPROXIMATE MARKOV OPERATORS 147

and the vectors

vk = v(yk)

wj = w(xj).
(5.77)

are evaluated according to (5.71), using interpolation of the ui = u(xi). The final line

of (5.75) is a discrete convolution, representing a moving average of length-M windows of

{vk} with respect to the vector of weights {wjαj}. Using standard techniques [94, ch. 12],

the (Qu)i can then be evaluated efficiently using a Fast Fourier Transform.

5.4.3 Case study

The delay equation (5.57) with piecewise linear feedback term

f(x) = g(x)/ε

g(x) = 1− 1.9|x|
(5.78)

and α = 1/ε was found in Example 5.1.3 to exhibit an asymptotic density ρ∗ when ε = 0.3

(cf. Figure 5.3). However, when the method described above is applied to this equation,

it does not yield an approximation of ρ∗. Instead, for any initial density u, iterating

u 7→ Qu results in convergence toward a point mass concentrated at x∗ = 1/2.9, which is

readily seen to be an unstable fixed point of the map x 7→ g(x).

Given the success of this method for estimating invariant densities for other systems

with delayed dynamics [75] this result is surprising, but a partial explanation can be ad-

vanced as follows. The assumption implicit in the factorization (5.69) essentially removes

any explicit delay from the dynamics of the discretization (5.60), since the delayed coor-

dinate yn = xn−N is always assumed to have the same density as xn. In other words, the

delayed coordinate is being modeled by a stochastic variable distributed like xn. Iteration

of u 7→ Qu gives a probabilistic description of the map (x, y) 7→ T (x, y) where at every

iteration y is assumed to have the same distribution as x. This is sort of (but not quite)

like evolving a density under the one-dimensional map x 7→ T (x, x). From equation (5.63)

we have

T (x, x) = x+
h

ε

(

g(x)− x
)

, (5.79)

so that x 7→ T (x, x) has the same fixed points as g. In particular the stability of the fixed
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point x∗ = 1/2.9 is determined by

∣

∣

∣

∣

d

dx∗
T (x∗, x∗)

∣

∣

∣

∣

=

∣

∣

∣

∣

1 +
h

ε

(

g′(x∗)− 1
)

∣

∣

∣

∣

=

∣

∣

∣

∣

1 +
h

ε
(−1.9− 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

1− 2.9
h

ε

∣

∣

∣

∣

< 1 for h¿ ε.

(5.80)

Thus the fixed point x∗ = 1/2.9 of T is stable, hence the apparent convergence of densities

to a point mass δx∗ .

A similar phenomenon occurs when fixed-point iteration is attempted to solve (5.70)

in the case of either the Mackey-Glass equation (5.2) or the delay equation (5.3) with

piecewise constant feedback. In neither case does the method yield an approximation of

the asymptotic density found by ensemble simulation (cf. Figures 5.1 and 5.2), but yields

rather a point mass concentrated as a fixed point of T (x, x).

Evidently the instability of the dynamics of the DDE (5.57) is delay-induced. Indeed,

with zero delay and f defined as in (5.78) the DDE becomes

x′ = F (x) ≡ −1

ε
x+

1

ε

(

1− 1.9|x|
)

, (5.81)

which has a single stable fixed point x∗ = 1/2.9. It is easily shown that the situation is

similar with the other DDEs considered in examples 5.1.1 and 5.1.2: with zero delay the

asymptotic dynamics are trivial. Instability is essential to the existence of a nontrivial

invariant density. Since the assumption in (5.69) effectively removes the delay, the re-

sulting condition (5.70) reasonably does not provide an approximation of the observed

asymptotic density ρ∗. The examples considered in [75] exhibit chaotic behavior even for

zero delay; this helps explain why they did not encounter the difficulties we find here.

5.4.4 Second-order method

A less restrictive assumption than (5.69), specifically one that retains the essential delay

in the dynamics, might yield an effective method of approximating ρ∗. One possibility,

suggested in [75] as a more accurate variant on the original method, is to make a different

approximation that truncates the recursion relationship for the ρk∗ at some k > 2. The

following gives a sketch of how this might be done.
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With yn = xn−N and zn = xn−2N , the discretization (5.60) becomes

(xn+1, yn+1) =
(

(1− αh)xn + hf(yn), (1− αh)yn + hf(zn)
)

=
(

T (xn, yn), T (yn, zn)
)

≡ T̃ (xn, yn, zn).
(5.82)

Then T̃ is a measurable, nonsingular transformation from IR3 into IR2 .Let ρ3(x, y, z;n) be

the density of the triple (xn, yn, zn), for an ensemble of sequences governed by (5.60). The

ensemble of pairs (xn+1, yn+1) will be distributed with 2-dimensional density ρ2(x, y;n+1)

satisfying

∫

A
ρ2(x, y;n+ 1) dx dy =

∫

T̃−1(A)
ρ3(x, y, z;n) dx dy dz ∀ Borel A ⊂ IR2. (5.83)

Since

T̃ (x, y, z) ∈ (−∞, r]× (−∞, s] =⇒







x < (r − hf(y))/(1− αh)
y < (s− hf(z))/(1− αh),

(5.84)

equation (5.83) yields (with A = (−∞, r]× (−∞, s])

∫ s

−∞

∫ r

−∞
ρ2(x, y;n+ 1) dx dy =

∫ ∞

−∞

∫
s−hf(z)
1−αh

−∞

∫
r−hf(y)
1−αh

−∞
ρ3(x, y, z;n) dx dy dz. (5.85)

Differentiating with respect to r and s yields the explicit formula

ρ2(x, y;n+ 1) =
1

(1− αh)2
∫ ∞

−∞
ρ3

(x− hf(y−hf(z)
1−αh )

1− αh ,
y − hf(z)
1− αh , z;n

)

dz

=
1

(1− αh)2
∫ ∞

−∞
ρ3

(

G
(

x,G(y, z)
)

, G(y, z), z;n
)

dz

(5.86)

where

G(y, z) = (y − hf(z))/(1− αh). (5.87)

If the densities ρ2∗(x, y) and ρ3∗(x, y, z) are invariant under the dynamics then we can

drop the dependence on n. To close this equation requires an approximation whereby ρ3∗
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can be written in terms of ρ2∗. One possibility, suggested in [75], is the factorization

ρ3∗(x, y, z) =
ρ2∗(x, y) ρ2∗(y, z)

ρ1∗(y)
, (5.88)

where

ρ1∗(y) =
∫

ρ2∗(x, y) dx. (5.89)

Thus both (xn, xn−N ) and (xn−N , xn−2N ) are distributed with the same density ρ2∗; this is

consistent with ρ2∗ being invariant under the dynamics. Substituting these relationships

into (5.86) yields a nonlinear operator equation

ρ2∗ = Qρ2∗ (5.90)

for the two-point density ρ2∗. Solving this equation by fixed point iteration approximates

the evolution of a two-point density for the system (5.60), where at each iteration the pair

(xn−N , xn−2N ) is assumed to have the same density as (xn, xn−N ). Since this method

retains the inherent delay in the dynamics, it is possible that (5.90) will have a solution

ρ2∗, whereby equation (5.89) gives an approximation of the invariant density ρ∗ = ρ1∗.

However, the computational complexity is much greater than in the previous method,

and to date we have not developed an implementation.

5.4.5 Continuous-time formulation

In the previous sections we considered a discretized version of a given delay differential

equation, to which the method developed in [75] could be directly applied. However, it

seems more natural to avoid the discretization step altogether. It is in fact possible to

formulate a continuous-time approach analogous to the discrete time method in [75], as

illustrated below.

Consider the delay equation

x′(t) = f
(

x(t), x(t− 1)
)

, x(t) ∈ IRn, t ≥ 0, (5.91)

written as

x′(t) = f
(

x(t), y(t)
)

(5.92)

where y(t) = x(t− 1). For any given value of y = y(t) this is just an ordinary differential



5.4. FIXED POINTS OF APPROXIMATE MARKOV OPERATORS 151

equation prescribing the flow of x(t) along a vector field x 7→ f(x, y), in which y acts as

a fixed parameter. Of course this interpretation is valid only instantaneously, i.e., at a

particular time, since y(t) itself changes in time. If ρ1(x; t) is the density at time t of an

ensemble of solutions x(t) that all share the same value of y(t), then the transportation

of ρ1 along this flow is described by a continuity equation (cf. Section 2.3.2),

∂ρ1(x; t)

∂t
= −∇x · (ρ1(x; t)f(x, y)), (5.93)

where ∇x = (∂/∂x1, . . . , ∂/∂xn).

Suppose now that we have an ensemble of solutions without any restriction on y(t), and

that the ensemble of pairs
(

x(t), y(t)
)

is distributed with 2-dimensional density ρ2(x, y; t).

It is helpful to think of this ensemble as being partitioned into sub-ensembles according

to the value of y(t). Then as the ensemble evolves under the action of (5.91), each sub-

ensemble contributes an increment to ρ1 according to (5.93). Proceeding heuristically, the

total increment to ρ1 can be found by summing equation (5.93) over these sub-ensembles,

i.e.,
∂ρ1(x; t)

∂t
= −

∫

∇x ·
(

ρ2(x, y; t) f(x, y)
)

dy. (5.94)

A less heuristic derivation of this result is as follows. Suppose that vectors (x, y) ∈ IR2n

are distributed with density ρ2(x, y; t), and that x evolves according to equation (5.92).

Let

ρ1(x; t) =

∫

ρ(x, y; t) dy (5.95)

denote the “collapsed” density of the ensemble of values x. For the purposes of deter-

mining the instantaneous increment of ρ1(x; t) under the action of (5.92), the dynamics

of y(t) are a second-order effect and can be ignored. Thus we can make the simplifying

assumption that y′(t) = 0, and write

d

dt

[

x(t)

y(t)

]

=

[

f
(

x(t), y(t)
)

0

]

≡ H
(

x(t), y(t)
)

, (5.96)

which gives the flow of (x(t), y(t)) ∈ IR2n along the vector field H : IR2n → IR2n. Under

transportation by this flow, the density ρ2(x, y; t) evolves according to the continuity
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equation

∂ρ2(x, y; t)

∂t
= −∇ ·

(

ρ2(x, y; t)H(x, y)
)

= −∇x ·
(

ρ2(x, y; t)f(x, y)
)

−∇y ·
(

ρ2(x, y; t) · 0
)

= −∇x ·
(

ρ2(x, y; t)f(x, y)
)

,

(5.97)

where ∇y = (∂/∂y1, . . . , ∂/∂yn). Then we have

∂

∂t
ρ1(x; t) =

∫

∂

∂t
ρ2(x, y; t) dy

= −
∫

∇x ·
(

ρ2(x, y; t)f(x, y)
)

dy,

(5.98)

in agreement with (5.94).

If the one- and two-point densities ρ1∗(x) and ρ2∗(x, y) are invariant under the dy-

namics then equation (5.98) gives

∫

∇x ·
(

ρ2∗(x, y)f(x, y)
)

dy = 0. (5.99)

Assuming again that ρ2∗ can be factored as in (5.69), this yields the condition

∫

ρ1∗(y) ∇x ·
(

ρ1∗(x)f(x, y)
)

dy = 0, (5.100)

which is analogous to the discrete-time condition (5.70). It is unclear whether this rela-

tionship uniquely determines (within a constant multiple) a unique approximate invariant

density ρ1∗.

However, here again we have resorted to an assumption (equation (5.69)) that ef-

fectively removes the explicit delay from the dynamics. As discussed in the previous

section, this assumption leads to trivial asymptotic dynamics. Without a more sophis-

ticated approach that retains the essential delay, it seems unwarranted to pursue these

ideas further.
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5.5 Conclusions

For a variety of delay differential equations, numerically computed solution ensembles

appear to converge to an asymptotic distribution, described by an asymptotic measure

η on IRn. This phenomenon can be understood in terms of ergodic properties of the

associated infinite dimensional dynamical system {St} on C. In the examples considered,

{St} is known to possess a compact attractor Λ: any ensemble of trajectories starting

in the basin of attraction of Λ will, asymptotically, be distributed on Λ. The numerical

evidence supports the existence of a natural invariant probability measure (i.e., an SRB

measure) µ∗ supported on Λ. This serves to explain the convergence of solution ensem-

bles to a particular asymptotic distribution η, as well as the fact that averages along

“typical” individual solutions of the DDE coincide with spatial averages or expectations

with respect to this same measure.

The practical and theoretical importance of invariant measures, and SRB measures

especially, makes the computation of invariant measures for DDEs a desirable goal. How-

ever, an effective solution to this problem remains elusive. Previously published methods

of estimating invariant measures for dynamical systems do not adapt well to delay equa-

tions.

Ulam’s method—the most widely known technique for estimating invariant measures—

can be formulated for DDEs in such a way that it yields an approximation of the asymp-

totic measure η. This approximation turns out to be identical to the histogram of a time

series generated by a typical solution of the given DDE. Thus, at least in our formulation,

Ulam’s method per se is not a useful approach to DDEs but merely points to the fact

that if the desired invariant measure is an SRB measure, then it can be estimated by

computing a histogram along a single long-time solution. This is, in fact, a far more

efficient method than the ensemble simulation approach, in which on the order of 106

individual solutions must be computed.

An alternative approach to estimating invariant measures for DDEs is the “self-

consistent Perron-Frobenius operator” method of [75]. A suitable discretization of a

given DDE yields a discrete-time system of the type to which this method applies. Some-

what surprisingly, however, a straightforward application of the method fails to generate

the desired approximate invariant density.
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6.1 Introduction

Studies of chaotic dynamical systems have focused mainly on persistent, or attracting

chaos—i.e., on systems that possess a chaotic attractor. The phenomenon of transient

chaos has aroused less interest despite its ubiquity [70]. Systems exhibiting transient

chaos have the distinguishing feature that their evolutions are very irregular (chaotic)

during a transient period, but eventually become periodic. This behavior is seen in many

physical systems, including fluid dynamics [2, 27] and chaotic scattering [21], as well as

in mathematical dynamical systems such as the Hénon map [49, 56], the Lorenz system

[78, 124], and the forced damped pendulum [9].

There appear to be a number of underlying universal features of transient chaos,

despite the diversity of its manifestations; see [111] for a review. The central notion

is the existence in phase space of an unstable invariant set on which the dynamics are

chaotic (e.g., in the sense of Li and Yorke [76]). Such a set is called a strange repeller or

chaotic saddle, since the instability is typically of saddle type. Except for its instability,

this set plays a role similar to that of a strange attractor: the dynamics on the repeller

are closely related to the irregularity of nearby trajectories.

The generally accepted model of the phase space dynamics underlying transient chaos

is as follows. A typical initial phase point is attracted, under the system dynamics,

along the stable manifold of the chaotic saddle. The trajectory subsequently wanders

in a neighborhood of the saddle for some time, during which it exhibits the dynamics

associated with the saddle. Eventually it exits along the saddle’s unstable manifold, and

arrives asymptotically at one of the system’s attractors (typically a periodic orbit or

equilibrium point, but possibly a chaotic attractor). Because the saddle is the dynamical

invariant that determines the behavior of trajectories during their transient phase, its

structure and the dynamics on it are the objects of primary interest in the analysis of

transient chaos.

To date there has been no published account of transient chaos in delay differential

equations.1 However, a number of published results would suggest that transient chaos

occurs in some DDEs. The results that motivated the present study were the observations

in [81] and [1]2 of fractal basins of attraction (a hallmark of transient chaos [111]) in delay

1[70] references unpublished work by P. Grassberger and I. Procaccia.

2In the DDE studied in [1] fractal basins are present even in the absence of a delay. Our primary
interest here is in systems where the chaotic dynamics are “delay induced”, i.e., arise only in the presence
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equations. Transverse homoclinic orbits, which imply the existence of a chaotic saddle

and Yorke-type chaos [51], have been proved to exist in some DDEs [5, 7, 121]. Hale and

Sternberg [54] found numerical evidence of transverse homoclinic orbits in the Mackey-

Glass equation [86]. These results have all been presented amid discussions of attracting

chaos, whereas transient chaos in DDEs has not been specifically investigated.

Aside from the importance of delay equations in describing natural and industrial

processes, transient chaos in DDEs has special relevance to the study of infinite dimen-

sional dynamical systems. Because numerical integration of DDEs is relatively easy as

compared, for example, with partial differential equations, Farmer [42] pointed out that

DDEs make convenient prototypical models for the study of attractors of infinite dimen-

sional systems. In the same spirit, DDEs could serve as simple models for the study of

transient chaos in infinite dimensional systems.

The following section provides numerical evidence of transient chaos in delay equations

of the form

x′(t) = −αx(t) + F
(

x(t− 1)
)

. (6.1)

We extend the results of [81] and show how the existence of fractal basins of attraction can

be used to find solutions with long-lived chaotic transients in a first-order DDE having

only periodic attractors. In addition (and in contradiction with the negative result of [81])

we find parameter sets of the Mackey-Glass equation that yield fractal basins of attraction,

and we illustrate the existence of long-lived chaotic transients for this system.

Numerical analysis of transient chaos (e.g., approximation of the saddle, its dimension,

Lyapunov exponents, entropy, etc.) requires a method for computing trajectories on (or

very near) the chaotic saddle. Various methods have been proposed and applied to finite-

dimensional systems [9, 70, 90, 110]. There are no published accounts of attempts to apply

these methods to infinite dimensional systems such as DDEs. In section 6.4 we develop an

adaptation of the “stagger-and-step” method [110] and apply it to the DDEs for which we

have found evidence of transient chaos. Having constructed a numerical approximation

of the saddle, we illustrate graphical methods for visualizing the saddle, and characterize

its geometry quantitatively using standard methods for estimating ergodic parameters

such as Lyapunov exponents and fractal dimensions.

of an intrinsic delay in the dynamics.



158 CHAPTER 6. TRANSIENT CHAOS

6.2 Evidence of Transient Chaos

6.2.1 Fractal basins of attraction

The (necessarily open) set of all initial phase points eventually asymptotic to a given

attractor is called that attractor’s basin of attraction. In a system with multistability,

i.e. one that possesses more than one attractor, the points that do not lie in any basin

of attraction constitute the basin boundary. The basin boundary is necessarily invariant

under the system dynamics. If this set is fractal (i.e. has non-integer capacity dimen-

sion) then the dynamics in a neighborhood of the boundary exhibits sensitivity to initial

conditions [87], hence transient chaos. This happens, for example, if there is a “horse-

shoe” [71, 109] in the dynamics (e.g. if there is a transverse homoclinic orbit [51]); in

this case the basin boundary has a Cantor-like structure. However, multistability and

existence of a fractal basin boundary are not necessary for transient chaos: e.g. the Hénon

map [56] for some parameter values exhibits transient chaos but has only a single attractor

(at infinity) [91].

Unstable invariant sets such as unstable fixed points and chaotic saddles and their

stable manifolds must lie within the basin boundary, since they are not in any basin of

attraction. The basin boundary can consist entirely of the stable manifolds of unstable

invariant sets, but this need not be the case [87].

Multistability and fractal basin boundaries for delay differential equations are re-

ported in [1, 81]. However, the connection of this observation to the possible existence of

transient chaos has not been investigated. In the following we reproduce the fractal basin

boundaries for the DDE considered in [81], and also provide evidence of fractal basins in

the much-studied Mackey-Glass equation [86].

DDE with piecewise-constant feedback

In [81], Losson et al. studied the delay equation

x′(t) = −αx(t) + F
(

x(t− 1)
)

,

F (x) =







c if x ∈ [x1, x2]

0 otherwise.

(6.2)
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Figure 6.1: Four coexisting attracting periodic solutions (including the trivial solution)
of the delay equation (6.2) with parameters α = 3.25, c = 20.5, x1 = 1 and x2 = 2.

For parameters α = 3.25, c = 20.5, x1 = 1 and x2 = 2, they found3 three coexisting

attracting periodic solutions. Figure 6.1 illustrates these solutions, together with the

zero solution which is also attracting, found by numerically integrating4 equation (6.2)

to large t with different initial functions.

Recall that the phase space of equation (6.2), considered as a dynamical system {St :

t ≥ 0} (cf. Chapter 3), is the space C of continuous real-valued functions on the interval

[−1, 0]. The phase point xt ∈ C at time t is the solution history,

xt(s) = x(t+ s), s ∈ [−1, 0]. (6.3)

Each of the solutions shown in Figure 6.1 corresponds to a periodic orbit in Γ ⊂ C. Each
such Γ has a corresponding basin of attraction, which is the set of initial functions in C

that are asymptotic to Γ under the action of St as t → ∞. Thus basins of attraction

for DDEs are subsets of the infinite dimensional space C. Consequently, visualizing the

basins of attraction and their boundaries is problematic.

One possibility for visualizing the basins of attraction of the DDE (6.2) is to visualize

“cross-sections” through C. Consider for example the subspace of C spanned by the

3There seems to be an error in [81], which gives α = 3.75.

4Using the Fortran code DKLAG6 [25].
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functions s 7→ 1 and s 7→ s, that is, functions of the form

φ(s) = A+Bs, s ∈ [−1, 0]. (6.4)

These constitute a two-dimensional subspace Σ of C, parametrized by coordinates (A,B) ∈
IR2. For a given attracting periodic orbit Γ of (6.2), the intersection of its basin of attrac-

tion with Σ can be approximated numerically and visualized by the following method.

For a given point in the (A,B)-plane, numerically integrate (6.2) with the corresponding

initial function φ of the form (6.4). If the resulting orbit is asymptotic to Γ then φ is

in the basin of attraction of Γ, so plot the point (A,B). Repeating this procedure for

a grid of points in the (A,B)-plane yields a picture approximating part of the basin of

attraction’s intersection with Σ.

If a different color is associated with each of the various basins of attraction then

all four basins of attraction can be visualized on a single graph, as in Figure 6.2. This

figure shows the results of the procedure above, carried out for the delay equation (6.2).

Here we have made a slight change from equation (6.4) and taken initial functions on the

interval [0, 1] of the form

x(t) = A+Bt, t ∈ [0, 1], (6.5)

or equivalently

φ(s) = A+B(s+ 1), s ∈ [−1, 0]. (6.6)

Figure 6.2 corresponds to Figure 11 of [81], except for a different choice of axes. As

already pointed out in [81], the resulting image suggests that the basin boundary is a

fractal set with Cantor-like structure. This is supported by evidence given in [54] of the

presence of a transverse homoclinic orbit, and implies the existence of transiently chaotic

solutions. Indeed in section 6.2.2 we are able, with the help of Figure 6.2, to find solutions

of (6.2) that exhibit long chaotic transients.

To illustrate that there is nothing very special about the subspace Σ spanned by

functions of the form (6.4), Figure 6.3 shows basins of attraction for the DDE (6.2) for

initial functions of the form

x(t) = A cos(2πt) +B sin(2πt), t ∈ [0, 1]. (6.7)

This figure exhibits a fractal structure similar to that seen in Figure 6.2.
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Figure 6.2: Basins of attraction for the delay equation (6.2) for initial functions of the
form t 7→ A + Bt, t ∈ [0, 1]. The basin colors are those of the corresponding solutions
shown in Figure 6.1. The second image shows an enlargement, by a factor of 10, of part
of the first image.
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Figure 6.3: As Figure 6.2, except with initial functions of the form t 7→ A sin(2πt) +
B cos(2πt). The second image shows an enlargement, by a factor of 10, of part of the
first image (the granularity is a result of limited numerical accuracy).
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Figure 6.4: Four coexisting attracting periodic solutions of the Mackey-Glass equa-
tion (6.8) with parameters α = 1/0.1625, β = 12/0.1625.

Mackey-Glass equation

The Mackey-Glass delay differential equation [86],

x′(t) = −αx(t) + β
x(t− 1)

1 + x(t− 1)10
, (6.8)

was originally introduced to model oscillations in neutrophil populations. It has subse-

quently been the subject of much study because of the variety of dynamical phenomena

it exhibits.

Losson et al. [81] found multistability (coexistence of two attracting periodic orbits) in

the DDE (6.8), but for the parameter sets they considered they found basins of attraction

with only simple, non-fractal boundaries. We have made a more thorough search of

parameter space, sampling the rectangle [0.5, 10] × [0, 200] in (α, β)-space at 20 × 20

resolution. For each sample, 100 different numerical solutions of (6.8) were computed. In

this way we found numerous parameter values for which equation (6.8) has higher-order

multi-stability and basins of attraction with apparently fractal boundaries. For example,

at α = 1/0.1625, β = 12/0.1625, there are the four coexisting attracting periodic solutions

shown in Figure 6.4. These solutions occur in symmetric positive and negative pairs, due

to the invariance of equation (6.8) under the transformation x(t) 7→ −x(t).
Figure 6.5 shows the basins of attraction for equation (6.8), or rather, part of the

intersection of these basins with the subspace of C spanned by functions of the form (6.4).

Also shown is a sequence of magnifications, spanning four orders of magnitude, that
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suggest the basin boundaries are fractal sets with Cantor-like structure. The reflection

symmetry in the first figure is due to invariance of the DDE under the transformation

x(t) 7→ −x(t), or equivalently (A,B) 7→ (−A,−B).
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Figure 6.5: Basins of attraction of the Mackey-Glass equation (6.8) for initial functions of
the form t 7→ A+Bt, t ∈ [0, 1]. The basin colors are those of the corresponding solutions
shown in Figure 6.4. A sequence of magnifications over 4 orders of magnitude is shown
to highlight the fractal structure of the basin boundaries.
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Figure 6.6: A transient chaotic solution of the delay equation (6.2), corresponding to the
initial function x(t) = 0.0131614 + 1.870858t, t ∈ [0, 1].

6.2.2 Chaotic transients

If transient chaos does occur in the delay equations (6.2) and (6.8) then it should be

possible to find solutions with long chaotic transients. If there is a chaotic saddle, the

basin boundary will contain the saddle and its stable manifold. Thus chaotic transients

should be found for initial functions close to the basin boundary. Such initial functions, of

the form x(t) = A+Bt, t ∈ [0, 1], can simply be read off Figures 6.2 and 6.5 by choosing

a point (A,B) near a boundary between basins of attraction. This point can be refined,

using a bisection algorithm, to obtain a point (A,B) and corresponding initial function

φ arbitrarily close (within numerical precision) to the basin boundary. Integration of the

DDE forward from this initial function is then expected to yield a solution with a long

chaotic transient.

Figure 6.6 shows a numerical solution of equation (6.2) corresponding to an initial

function found in this way. This solution does indeed appear to exhibit aperiodic be-

havior for a considerable duration (about 50 time units) before settling down to one of

the attracting periodic solutions. Figure 6.7 shows a solution of the Mackey-Glass equa-

tion 6.8 obtained in the same manner, also with a long chaotic transient that settles down

to an attracting periodic orbit after about 50 time units.

The observation of long chaotic transients, together with the existence of seemingly

fractal basins of attraction, suggests the presence of chaotic saddles in the delay equa-

tions (6.2) and (6.8). It is of interest to approximate these saddles numerically. This

problem is considered in the following sections.
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Figure 6.7: A transient chaotic solution of the Mackey-Glass equation (6.8), corresponding
to the initial function x(t) = 0.482417− 0.599163t, t ∈ [0, 1].

6.3 Numerical Analysis

Analysis of transient chaos—that is, finding a numerical approximation of the saddle and

characterizing it quantitatively, e.g. in terms of ergodic properties such as Lyapunov ex-

ponents and fractal dimensions—requires a method for computing arbitrarily long orbits

on or very near the chaotic saddle. Because the saddle is unstable, this is not straightfor-

ward: rather than being attracted to the saddle, any numerical trajectory starting near

the saddle, no matter how close, will eventually depart from it.

A variety of algorithms have been developed for computing numerical trajectories

very near a chaotic saddle, including the “straddle-orbit”[9], “PIM” (Proper Interior

Maximum) [90], and “stagger-and-step” [110] methods. Each of these algorithms uses

the following strategy. Starting with an initial phase point near the saddle (or its stable

manifold), evolve this point forward under the system dynamics, occasionally applying a

perturbation of size less than ε to keep the trajectory within a small neighborhood of the

saddle. By construction the resulting trajectory {xn} satisfies

|xn+1 − S(xn)| < ε, (6.9)

so {xn} is an ε-pseudo-orbit of S. It is presumed that if ε is sufficiently small then {xn}
approximates a true orbit on the saddle (e.g. by the Shadowing Lemma, cf. Section 2.6).

The important differences between the various algorithms, which we outline below, lie in

the methods used to find appropriate perturbations.

Throughout the following, let {Sn : n ∈ Z+} be a discrete-time dynamical system

defined by iterates of a transformation S : X → X.
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6.3.1 Straddle orbit method

The goal of the straddle orbit method is to construct a perturbed orbit {xn} that follows
the basin boundary. Between iterates of S, the straddle orbit method [9] employs a

bisection algorithm to perturb an orbit to within a small neighborhood of the basin

boundary. The algorithm is as follows.

1. Choose phase points xA, xB ∈ X that lie in different basins.

2. Let xC be the midpoint of the segment xAxB; determine which basin

xC is in, e.g. by iteration of S.

3. If xC is in the same basin as xA, let xA := xC , else let xB := xC .

4. If |xA − xB| ≥ ε, return to 2.

5. Let xA := S(xA), xB := S(xB).

6. If |xA − xB| ≥ ε, return to 2, else return to 5.

The perturbation phase of the algorithm is carried out in steps 2–4, which use a

bisection algorithm to isolate the basin boundary between points xA and xB separated

by a distance less than ε. Points xA and xB are both evolved under iterates of S, and

the bisection algorithm is repeated whenever xA and xB differ by more than ε.

The straddle orbit {xn} is the sequence of points xA (alternatively xB) obtained

from step 5. By construction, the straddle orbit remains within distance ε of the basin

boundary. It is presumed that for ε sufficiently small the straddle orbit approximates

an orbit on the boundary. If the boundary consists of the stable manifold of the chaotic

saddle then the straddle orbit should follow this stable manifold and, after an initial

transient phase, should remain with ε of the saddle itself.

6.3.2 PIM method

The goal of the PIM method [90, 91] is to construct a perturbed orbit {xn} that remains

indefinitely within some neighborhood R of the chaotic saddle. This is done by perturbing

the orbit so as to increase the escape time T (xn), which is the number of iterates of S

required to take xn out of R.
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Suppose the dynamical system S : X → X has a chaotic saddle Λ. Let R ⊂ X be

a transient region, such that Λ ⊂ R and R contains no attractor. For x ∈ R, define the

escape time T (x) by

T (x) = min{n > 0 : Sn(x) /∈ R}
( =∞ if Sn(x) ∈ R ∀n > 0).

(6.10)

In the following, an ordered set (xa, xb, xc) of points xa, xb, xc ∈ X is said to be a PIM

triple if xb lies on the segment xaxc and T (xb) > max
(

T (xa), T (xc)
)

.

1. Choose a PIM triple (xa, xb, xc) such that xa and xc lie in different

basins.

2. Choose N equally spaced points on the segment xaxc. From these

choose a PIM triple (x̄a, x̄b, x̄c) such that the segment x̄ax̄c is a proper

subset of the segment xaxb.

3. Let xa := x̄a, xc := x̄c.

4. If |xa − xc| ≥ ε, return to 2.

5. Let xa := S(xa), xc := S(xc).

6. If |xa − xc| ≥ ε, return to 2, else return to 5.

The PIM orbit {xn} is the sequence of points xa (alternatively xb) obtained from step

5. By construction the PIM orbit {xn} satisfies T (xn) > 0 for all n, so {xn} remains

within the transient region R for all time.

6.3.3 Stagger-and-step method

The stagger-and-step method [110] is also based on seeking perturbations that increase

the escape time of the orbit, but perturbations are not restricted to a particular line

segment. Let the escape time T (x) be defined as in the PIM method above, and let

T∗ > 0 (the minimum allowed escape time). Then a stagger-and-step trajectory {xn}
results from iterating the following algorithm.



170 CHAPTER 6. TRANSIENT CHAOS

1. Choose x0 ∈ X with T (x0) > T∗.

2. If T (xn) ≤ T∗, find a random perturbation r ∈ X, |r| < ε, such that

T (xn + r) > T∗, and let xn := xn + r.

3. Let xn+1 := S(xn).

4. Return to 2.

6.4 Application to Delay Equations

6.4.1 Approximate discrete-time map

The algorithms described above are formulated in the context of discrete-time dynamical

systems. For a continuous-time system they can be applied to an appropriate discretized

version of the dynamics, for example iterates of the time-one map. In the case of a delay

equation (6.1) the time-one map is a transformation S = S1 : C → C. In a numerical

simulation this transformation cannot be represented exactly, and we must resort to

a finite dimensional approximation. For this purpose the phase point xt ∈ C can be

represented by the vector u(t) =
(

u0(t), . . . , uN (t)
)

of values

ui(t) = xt(si) = x(t+ si), (6.11)

that xt takes on a uniform grid

si = −1 + i/N, i = 0, . . . , N, (6.12)

typically with N of the order 102 or 103. The time-one map S(φ) can be carried out by

constructing a numerical solution x with initial function φ to time t = 1, and evaluating

the vector of solution values ui = x(1 + si), i = 0, . . . , N .

To be more precise, in numerical integration of the DDE (6.1) with time step 0 <

h¿ 1, u(t+ h) is approximated by

u(t) 7→ u(t+ h) ≈ T
(

u(t)
)

(6.13)

for some transformation T : IRN+1 → IRN+1, the details of which depend on the choice
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of integration scheme. With h = 1/N we have

u(t+ 1) = u(t+Nh)

≈ TN
(

u(t)
)

,
(6.14)

so that

S̃ = TN (6.15)

approximates the time-one map S. The transformation S̃ : IRN+1 → IRN+1 is readily

implemented using any of the various codes available for numerical integration of DDEs.5

6.4.2 Computing escape times

Implementing the PIM and stagger-and-step methods requires a method of computing

the escape time function T . This in turn requires a practical method of describing the

transient region R. One method is to define R to be the set

R = {x ∈ X : dist(x,Ai) > δ ∀i}, (6.16)

for some δ > 0, where the Ai are the attractors of the system. Presumably these are

already known or approximated, so that dist(x,Ai) can be computed. This approach was

used in [90] for low-dimensional systems.

Although it has not received mention elsewhere, it seems clear that the Ai must also

include periodic orbits whose stability is of saddle type. Otherwise, the presence of such

an orbit implies the existence of trajectories with arbitrarily large escape times, but which

do not lie near the chaotic saddle (e.g., trajectories that follow the stable manifold of the

unstable periodic orbit). If a particular such orbit A is not counted among the Ai then

the PIM and stagger-and-step methods fail, with the trajectory {xn} converging to A.6

In this case the resulting trajectory {xn} automatically yields an approximation of A,

which can then be included among the Ai and the method applied again.

5Throughout this chapter, numerical integration is performed using the Fortran code DKLAG6 [25]
interfaced with the R language [60].

6As a side-effect that might be exploited, the PIM and stagger-and-step methods appear to be novel
ways to find and approximate saddle type periodic orbits.
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Figure 6.8: An unstable (saddle type) periodic solution of the delay equation (6.2).

6.4.3 Failure of existing algorithms

In principle, any of the methods in [9, 90, 110] could be used to approximate the chaotic

saddle (if one exists) for the finite dimensional map S̃ : IRN+1 → IRN+1 defined in

Section 6.4.1. We have implemented all of these methods and applied them to the delay

equations (6.2) and (6.8) for which we have found evidence of transient chaos. We find

that each of these methods does in fact generate an aperiodic trajectory of some duration,

but that eventually this trajectory converges to an unstable (saddle type) periodic orbit,

regardless of the method used. The unstable periodic solutions found in this way for

equations (6.2) and (6.8) are shown in Figures 6.8 and 6.9, respectively. This mode of

failure is interesting since it has not been reported before.

There is a simple plausible explanation for the failure of the straddle orbit method.

For each of the DDEs under consideration there appears to be a saddle type periodic

orbit. The stable manifold of any such orbit is contained within the basin boundary.

A straddle orbit, which by construction lies close to the basin boundary, is eventually

perturbed onto (or near) this stable manifold. The orbit thereafter follows this stable

manifold rather than the stable manifold of the chaotic saddle, and consequently the

straddle orbit is asymptotic to the periodic orbit.

In both the PIM and stagger-and-step methods the unstable periodic orbit can be

avoided by excluding it from the transient region R, as described in the previous section.
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Figure 6.9: Unstable (saddle type) periodic solutions of the Mackey-Glass equation (6.8).

This prevents these methods from converging to the periodic orbit, since an orbit that

enters a neighborhood of an unstable periodic orbit is deemed to have left the transient

region. However, with this provision both algorithms eventually stall at a point where

they are unable to find a perturbation that yields an increased escape time. The reason

for this failure seems to be the mechanism illustrated in Figure 6.10. Here the orbit

through the phase point x exits the transient region R by entering a neighborhood Ω of

an unstable periodic orbit, represented by the point P . The orbit through the perturbed

phase point x̃ narrowly misses Ω, so that T (x̃) > T (x). Since it increases the escape

time of the trajectory, x̃ is taken as a “successful” perturbation in either the PIM or

stagger-and-step method. However, this perturbation is spurious since x̃ is carried by

successive iterations of S into a region where further successful perturbations, spurious

or otherwise, do not exist. Both algorithms come to a halt when the trajectory through

x̃ reaches a point where all phase points within distance ε exit R via Ω, and all have the

same escape time.

It has been pointed out [110] that the PIM method is expected to fail if the chaotic sad-

dle has more than one unstable direction. This would suggest an alternative explanation

for the failure of the method here. However, the results of Section 6.5.2 provide evi-

dence that the chaotic saddle has only one unstable direction, for both of the DDEs (6.2)

and (6.8). Therefore the failure of the method does not seem to be caused by the presence

of multiple unstable directions.
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Figure 6.10: Mechanism of failure of the PIM and stagger-and-step methods. The phase
point x exits the transient region R via a neighborhood Ω of an unstable periodic orbit
P . The perturbed phase point x̃ just misses Ω, so T (x̃) > T (x).

6.4.4 Modified stagger-and-step method

The following slight modification of the stagger-and-step method circumvents the diffi-

culty described above, and proves effective for the delay equations considered here. Before

applying it to DDEs, we present the modified algorithm in its general form.

The idea behind the method is to make a more aggressive search for a “successful

stagger”, i.e. a perturbation that moves xn onto a nearby trajectory that remain within

a neighborhood of the saddle for a longer period of time T (xn). In the original stagger-

and-step method a perturbation is sought only when T (xn) = T∗. For T (xn) > T∗, xn
is simply iterated forward under S until T (xn) = T∗. In our modification, up to N > 0

random perturbations are selected in an attempt to find a successful stagger at each

iteration.

For a given T∗ > 0 (the minimum allowed escape time) and small ε > 0, a trajectory

{xn} results from iteration of the following algorithm.
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1. Choose x0 ∈ X with T (x0) > T∗.

2. Set j := 1.

3. Choose a random perturbation r ∈ X, |r| < ε.

4. If T (xn + r) > T (xn) then set xn := xn + r and go to 6.

5. If T (xn) ≤ T∗ or j < N then set j := j + 1 and return to 3.

6. Let xn+1 := S(xn).

7. Return to 2.

Thus each iteration consists of a possible successful stagger of the current phase point,

followed by an iteration of S. Because T (xn) ≥ T∗ > 0 for all n, we have xn ∈ R for

all time; that is, the trajectory never leaves the transient region. If the trajectory is

aperiodic, it is taken (after removal of an initial transient where it follows the stable

manifold of the chaotic saddle) as an approximation of the chaotic saddle.

The parameters ε, T∗ and N are adjustable. As discussed in [110], the success of the

stagger-and-step method can depend on a careful choice of T∗; this observation applies

also to the modified algorithm. If T∗ is outside a range of suitable values, a very large and

possibly infinite number of “stagger attempts” are necessary before a successful stagger

(one that increases T (xn) above T∗) is found.

Parameter N is the maximum number of “stagger attempts” at each iteration if

T (xn) > T∗. The original stagger-and-step method is similar but not identical to the case

N = 1. In this case only one stagger attempt is made for phase points with T (xn) > T∗.

Usually this attempt fails. After each such failure T (xn) decreases by one, until T (xn) =

T∗ where an exhaustive search for a successful stagger is made.

In applying the method to delay equations we find, regardless of the choice of T∗, that

very frequently a successful stagger cannot be found when T (xn) = T∗, and the algorithm

“gets stuck”. This phenomenon appears to be related to the instability of trajectories

in a neighborhood of the saddle: under iteration of S̃, the potential successful staggers

within an ε-ball at xn quickly diverge to a distance greater than ε from the current phase

point. If this divergence occurs in fewer than the number of iterations required for T (xn)

to fall to T∗, a successful stagger will fail to exist when T (xn) = T∗ is reached. With
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our modification, taking N > 1 (N = 5 has worked well in practice) greatly reduces the

frequency of this outcome, since a more thorough search for a successful stagger is made

at each iteration.

Even with this approach it occasionally happens that a phase point is reached where

T (xn) = T∗ and where it is impossible to find a successful stagger. In such cases an

effective remedy is to revert to a previous iteration, make a thorough search until a

successful stagger is found, and continue the algorithm from this point.

6.5 Numerical Analysis Results

6.5.1 Visualizing the saddle and its invariant measure

The stagger-step algorithm described above, when applied to the approximate discrete-

time map S̃ as defined for the delay equations (6.2) and (6.8), yields a numerical trajectory

{u(n) ∈ IRN+1 : n = 0, 1, 2, . . .} that approximates a trajectory in C near the presumed

chaotic saddle. The corresponding solution of the DDE can be constructed from equa-

tion (6.11). Figures 6.11 and 6.12 show chaotic solutions, computed in this manner, for

the delay equations (6.2) and (6.8), respectively.

With the trajectory {u(n)} in hand, it is possible to visualize and otherwise charac-

terize the geometry of the saddle. The phase space dimension of this trajectory is finite

but large, so that visualizing it (and hence the chaotic saddle it approximates) is difficult.

As discussed in Sections 5.2.1 and 5.2.5, one way to visualize an object in the infinite

dimensional phase space C is to plot its image under a suitable “trace map”

π : C → IRM . (6.17)

For delay equations like those considered here, a common practice is to use the map

π : u 7→
(

u(−1), u(0)
)

, (6.18)

i.e. to plot x(t) vs. x(t− 1). With respect to the finite-dimensional vector u that approx-

imates u, π acts according to

π : u 7→ (u0, uN ). (6.19)

Figure 6.13 shows a two-dimensional image, computed in the manner described above,

of the chaotic saddle for the delay equation (6.2). Similarly, Figure 6.15 presents an
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Figure 6.11: A segment of a numerical solution near the chaotic saddle of the delay
equation (6.2), computed using the modified stagger-and-step algorithm.
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Figure 6.12: A segment of a numerical solution near the chaotic saddle of the Mackey-
Glass equation (6.8), computed using the modified stagger-and-step algorithm.
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image of the chaotic saddle of the Mackey-Glass equation (6.8). These images provide

a “flattened” view of a trajectory on the saddle. Of course, the trajectory itself lives in

the phase space C (or, at least, the numerical approximation of the trajectory lives in

IRN+1).

The asymptotic statistics of a trajectory on the saddle induces an invariant measure.

That is, for a given initial phase point u ∈ C on the saddle, the measure µ on C defined

by

µ(A) = lim
M→∞

1

M

M
∑

n=1

1A
(

Sn(u)
)

, (6.20)

provided the limit exists, is invariant under the dynamics S (cf. Section 2.4.2). Using a

stagger-step trajectory {u(n) : n = 1, 2, . . . ,M} of large length M , this measure can be

approximated by the measure

µ̃(A) =
1

M

M
∑

n=1

1A
(

u(n)
)

. (6.21)

on IRN+1.

As discussed in Section 5.2.5, it is possible to visualize µ̃ by computing its two-

dimensional image under the trace map π (equation (6.19)). This amounts to simply

computing a two-dimensional histogram (i.e., density) of pairs (u0, uN ) along the nu-

merical trajectory {u(n)}. The resulting images of the invariant measures for the delay

equations (6.2) and (6.8) are shown in Figures 6.14 and 6.16, respectively.

In principle there may be an uncountable number of distinct invariant measures on

the saddle. In practice, however, any stagger-step trajectory appears to yield the same

approximate invariant measure, for both of the delay equations considered here. This

suggests the existence of a unique “natural” invariant measure for these systems, analo-

gous to SRB measure in that it is the invariant measure naturally selected by numerical

simulations and (presumably) physical experiments. See [34, 35] and references therein

for discussion of how the notion of natural invariant measure should be defined in the

context of transient chaos.

In terms of the solution x(t), the asymptotic statistics on the chaotic saddle are

described by the measure ν on IR given by

ν(A) = lim
T→∞

1

T

∫ T

0
1A

(

x(t)) dt, (6.22)
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Figure 6.13: Two-dimensional projection, under the trace map (6.18), of part of a trajec-
tory on the chaotic saddle of the delay equation (6.2).

Figure 6.14: Two-dimensional projection, under the trace map (6.18), of the natural
invariant measure on the chaotic saddle of the delay equation (6.2).
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Figure 6.15: Two-dimensional projection, under the trace map (6.18), of part of a trajec-
tory on the chaotic saddle of the Mackey-Glass equation (6.8).

Figure 6.16: Two-dimensional projection, under the trace map (6.18), of the natural
invariant measure on the chaotic saddle of the Mackey-Glass equation (6.8). Density is
indicated by grayscale intensity.



182 CHAPTER 6. TRANSIENT CHAOS

0 1 2 3 4 5

0.
00

0.
15

0.
30

x

de
ns

ity

Figure 6.17: One-dimensional invariant density for the chaotic saddle of the delay equa-
tion (6.2).

or in terms of the discrete-time map S,

ν(A) = lim
M→∞

1

M

M
∑

n=1

1A((S
nu)(1)). (6.23)

This is just the one-dimensional projection, under the trace map π : u 7→ u(0), of the

natural invariant measure µ. The measure ν has the practical significance of describing

where a solution on the saddle spends most of its time. It is more intuitively understood

in terms of its density (the so-called “invariant density”), which can be approximated by

a histogram of values x(t) along a long solution near the saddle. Invariant densities found

in this way for the delay equations (6.2) and (6.8) are shown in Figures 6.17 and 6.18,

respectively.

6.5.2 Quantitative characterization: Ergodic parameters

It is considered de rigeur, whenever a new chaotic invariant set is found, to characterize

its geometry and the dynamics on it by computing its fractal dimensions and Lyapunov

exponents, and possibly other ergodic parameters (cf. Section 2.5). For the chaotic saddles

of the delay equations considered here, for which we are able to compute arbitrarily long

numerical trajectories {u(n)} approximating the saddle, these quantities can be found by
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Figure 6.18: One-dimensional invariant density for the chaotic saddle of the Mackey-Glass
equation (6.8).

straightforward computation using the algorithms referenced in Section 2.5.

Table 6.1 summarizes the results of computations of the largest five Lyapunov expo-

nents λi [12, 13], the Lyapunov dimension [43]

dL = j +

∑j
i=1 λi
|λj+1|

where j = max
k

k
∑

i=1

λi > 0, (6.24)

and the correlation dimension [48] of the chaotic saddles for each of the delay equa-

tions (6.2) and (6.8). Both DDEs have a zero Lyapunov exponent. This is to be expected

for continuous-time systems in general, with the zero Lyapunov exponent corresponding

to neutral expansion along the direction tangent to the flow [52].

Note that both DDEs exhibit just a single positive Lyapunov exponent. The existence

of a positive exponent confirms that there is sensitivity to initial conditions in a neigh-

borhood of the saddle. The fact that there is only one single positive exponent suggests

that the saddle has only one unstable direction. Thus the failure of the PIM method for

these DDEs cannot be due to the presence of multiple unstable directions.
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System Parameters Lyapunov spectrum (bits/time) Lyapunov
dimension

Correlation
dimension

λ1 λ2 λ3 λ4 λ5

F (x) =

{

c if x ∈ [x1, x2]

0 otherwise



















α = 3.25

c = 20.5

x1 = 1

x2 = 2

0.54 0.00 −1.5 −8.2 −12 2.36 1.96

F (x) = β
x

1 + x10

{

α = 1/0.1625

β = 12/0.1625

0.60 0.00 −0.50 −3.1 −3.8 3.03 2.24

Table 6.1: Lyapunov exponents and fractal dimensions for chaotic saddles of delay differential equations having the
form x′(t) = −αx(t) + F

(

x(t− 1)
)

.
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6.6 Conclusions

Transient chaos in delay differential equations, although anticipated by numerous pub-

lished results [1, 5, 7, 54, 81, 121], has not specifically been investigated before. Multi-

stability with fractal basins of attraction, a key signature of transient chaos, has been

reported previously for the delay equation (6.2). We have also found multistability and

fractal basins in the Mackey-Glass equation (6.8). Existence of fractal basins suggests

the existence of transiently chaotic trajectories and the presence of a chaotic saddle [87].

Indeed, by computing basins of attraction for these two delay equations we have been

able to illustrate, numerically, the existence of solutions with long chaotic transients.

The published methods for approximating chaotic saddles fail when applied to the

delay equations considered here. The PIM method [90] in particular is expected to fail

if the saddle has more than one unstable direction [110]. However, our computations

of Lyapunov exponents point to the presence of only a single unstable direction, so this

explanation is inadequate. Instead, the failure of the known methods stems from the

presence of saddle type unstable periodic orbits, to which each of the methods eventually

converge. This mode of failure has not been observed before.

A slightly modified version of the stagger-and-step method (Section 6.4.4) avoids

unstable periodic orbits, and appears to be an effective method for approximating chaotic

saddles for delay equations. Using this method we are able to compute chaotic numerical

solutions of arbitrarily long duration, for both of equations (6.2) and (6.8).

Despite the fact that the saddle is embedded in an infinite dimensional phase space

(or at least a finite- but high-dimensional phase space used for numerical approxima-

tion), it is possible to go some way toward visualizing it by graphing its projections onto

two dimensions. We have done this for the delay equations considered here, projecting

the numerical approximation of the chaotic saddle onto two dimensions by applying a

particular “trace map” commonly used for visualizing the dynamics of delay equations.

The distribution of orbits on the chaotic saddle can be characterized by an invariant

measure. This too can be approximated numerically from a stagger-and-step trajectory

for a given DDE, and projected onto two dimensions for the purpose of visualization.

Chaotic invariant sets are typically characterized in terms of their ergodic parame-

ters such as Lyapunov exponents and dimensions. These can be found by the standard

algorithms, involving straightforward computations on the numerical trajectory resulting

from the stagger-and-step algorithm. For each of the delay equations (6.2) and (6.8) we
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have applied these techniques to the numerical trajectory approximating the saddle, and

thereby estimated its Lyapunov spectrum, Lyapunov dimension, and correlation dimen-

sion, the results of which are summarized in Table 6.1. Two interesting results follow.

Firstly, despite the infinite dimensionality of the phase space of the delay equation, the

saddle itself has quite low dimension, of the order 2 ∼ 3. The same observation has been

made with regard to chaotic attractors of delay equations [42]. Second, for both of the

DDEs considered the saddle has only one positive Lyapunov exponent, hence only one

unstable direction. This lends support to our hypothesis that the previously published

algorithms for approximating the saddle fail for some reason other than the existence of

multiple unstable directions.
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7.1 Summary of Conclusions

The probabilistic approach to evolutionary delay differential equations suffers from the

chief difficulty, encountered in various guises throughout this thesis, that the phase space

of a delay equation is infinite dimensional. This difficulty might explain the absence in

the literature of a thorough discussion of how such an approach might be developed. In

Chapter 3 we have attempted to bridge this gap.

The phase space that arises naturally in the formulation of delay equations as dy-

namical systems is the space C of continuous functions from the interval [−1, 0] into
IRn. Any solution of a given DDE can be identified with the evolution of a correspond-

ing phase point in C. Within this context Chapter 3 develops the basic framework for

the application of ergodic concepts to delay equations, and explores the implications of

this framework. Its main conclusions, mostly negative, are consequences of the infinite

dimensionality of C.

An ergodic approach to delay equations entails an adequate theory of probability

on the phase space C, for which measure theoretic probability provides a sufficiently

187
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abstract setting. However, there are peculiarities of probability in infinite dimensions

that make an ergodic approach to DDEs problematic. The main analytical tool of applied

ergodic theory is the Perron-Frobenius operator [74], which prescribes the evolution of

probability densities under the action of a dynamical system. The Perron-Frobenius

operator formalism has been very successful in the analysis of finite dimensional systems.

However, infinite dimensional systems cannot be expected to have well-defined densities,

owing to singularity of the evolution operator (Section 3.6.2). Consequently one cannot

define a Perron-Frobenius operator corresponding to a delay equation. The absence of

a well-defined Perron-Frobenius operator precludes the application of the major part of

the ergodic theoretic toolbox, e.g. in [74].

An ergodic approach to delay equations will also require a theory of integration with

respect to measures on C. For example, the Birkhoff Ergodic Theorem (cf. Section 2.4.3)

allows one to express a time average in terms of an integral (i.e. spatial average or

expectation) with respect to an ergodic measure. The evaluation of such integrals requires

an adequate theory of integration on function space. This theory is lacking, except in the

special case of Wiener measure. Because Wiener measure is invariant under the quantum

field equations, the theory of integration with respect to Wiener measure has been well

developed in the physics literature. However, we cannot expect invariance of Wiener

measure under delay differential equations, except perhaps in special cases. The lack of

a general theory of integration on function space is a serious barrier to developing an

ergodic theory of delay equations.

In the application of ergodic concepts to physical systems, the notion of SRB measure

plays a central role. An SRB measure characterizes the asymptotic statistics of almost

every orbit of a dynamical system. For finite dimensional systems Lebesgue measure

provides a natural and essentially unique translation-invariant notion of “almost every”.

However, in infinite dimensions there is no measure analogous to Lebesgue measure.

In particular, there is no non-trivial translation-invariant measure on C to provide the

requisite notion of “almost every”. Consequently the definition of SRB measure for delay

equations is ambiguous. One way to resolve this ambiguity is to substitute the notion of

prevalence [58] in place of “Lebesgue almost every” in the definition of SRB measure. This

is consistent with the present definition of SRB measure for finite dimensional systems

and therefore provides a natural extension to the infinite dimensional case.

The difficulties associated with the infinite dimensionality of DDEs can be avoided

either by finite dimensional approximation or by removing the requirement that DDEs
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be treated in a dynamical systems context (thereby precluding any discussion of ergodic

concepts, since the notion of an evolution semigroup underlies all of ergodic theory).

Despite the infinite dimensionality of the phase space, a delay equation nevertheless

prescribes the evolution of some finite dimensional quantity x(t) ∈ IRn. In Chapter 4

we have investigated probabilistic approaches to this evolution problem. In order that a

DDE prescribes a finite dimensional evolutionary process, it is necessary to restrict the

set of allowable initial functions to some finite dimensional subset of C, e.g. the subspace

of constant functions. If the set of allowable initial functions is n-dimensional then one

can define a family of solution maps St : IR
n → IRn. For some simple DDEs for which

the solution map can be found analytically, one can derive an explicit formula for the

Perron-Frobenius operator corresponding to St and thereby analytically solve the density

evolution problem (Section 4.2). For more complicated equations this method is imprac-

tical, due both to the difficulty of finding St analytically and to the non-invertibility of

St once it has been found. In particular this method fails to provide an analytical ap-

proach to the evolution of densities for chaotic delay equations with interesting statistical

properties.

In the absence of a generally applicable analytical method, it is desirable to have an

effective computational approach to the evolution of densities for DDEs. Of the numer-

ical methods considered, the simplest is the “brute force” method of simulating large

ensembles of solutions and compiling histograms to approximate densities (Section 4.3).

Because this method relies on adequate statistical sampling to obtain accurate results

it is computationally intensive, to the point of being impractical for many applications.

Nevertheless, due to general results on the reliability of statistics computed from numer-

ical simulations [11], one has reason to hope that ensemble simulation is a robust means

of estimating ensemble densities.

As an alternative to ensemble simulation we have developed a numerical method for

computing the evolution of densities for DDEs, based on piecewise linear approximation

of the solution map (Section 4.4). This approximate solution map is easily inverted, and

leads to an approximate version of the analytical approach considered in Section 4.2.

This method is much more efficient for computing the evolution of densities. However,

its effectiveness is limited for DDEs with chaotic dynamics, for which the solution map

for large times can be extremely complex and difficult to approximate. Thus for chaotic

DDEs this numerical approach is not suitable for evolving densities to arbitrarily large

times.
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The method of steps, frequently used to find analytical solutions of delay equations,

can be used to express a delay equation as a sequence of ordinary differential equations.

With appropriate modifications to this method, a DDE can be expressed as a system of

simultaneous ODEs. One can then formulate the density evolution problem for a DDE in

terms of a corresponding ODE system, and use methods for ODEs to write an evolution

equation for the density (Section 4.5). For simple DDEs this equation can be solved

analytically by the method of characteristics, reproducing the analytical results obtained

in Section 4.2. For more complicated equations an analytical solution is not possible, but

the method retains some intuitive appeal because it provides a model for the evolution

of densities for DDEs, in terms of the transportation of a line mass by a flow in IRN . A

numerical implementation of this model provides geometrical insight into the results of

our other numerical approaches to density evolution (Section 4.5.4). However, the model

has limited utility when densities are evolved to large time, both because the dimension N

increases with time, and, for chaotic DDEs, the solution map becomes very complicated

and the resulting distribution of the line mass in IRN becomes difficult to approximate

and in any case loses its intuitive appeal.

For a variety of delay differential equations, numerically computed solution ensembles

appear to converge to a unique asymptotic distribution, characterized by an asymptotic

probability measure η∗, with density ρ∗, on IRn (Section 5.1). The same density is ob-

served if one constructs a histogram of solution values along a single solution of the

DDE. This phenomenon can be understood in terms of (hypothetical) ergodic properties

of the associated infinite dimensional dynamical system {St} on C (Section 5.2). In the

examples considered, {St} is known to possess a compact attractor Λ: any ensemble of

trajectories starting in the basin of attraction of Λ will, asymptotically, be distributed

on Λ. The numerical evidence supports the existence of a natural invariant probability

measure (i.e., an SRB measure) µ∗ supported on Λ. The asymptotic measure η∗ can be

interpreted as the image of µ∗ under a suitable projection from C into IRn.

The practical and theoretical importance of invariant measures, and SRB measures

especially, makes the computation of asymptotic measures for DDEs a desirable goal.

The simplest approach to this problem is to evolve an initial density forward in time until

the asymptotic statistics become apparent. However, of the methods discussed above for

computing the evolution of densities for DDEs, none is well suited to evolving densities to

large times except the “brute force” ensemble simulation method. The increase in time

of both the complexity of the solution map and the dimension of the system are funda-
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mental obstacles to evolving densities to large times. In Chapter 5 we have investigated

alternative approaches to estimating asymptotic densities.

For some DDEs we have hypothesized the existence of an SRB measure, since a

histogram of a single solution reproduces the asymptotic density found by ensemble sim-

ulation. For DDEs with this property the asymptotic density can be approximated more

efficiently by simulating a single long solution, rather than the many (e.g. 106) different

solutions required for ensemble simulation (Section 5.2.4). While this approach can be

used to quickly estimate the asymptotic density, it falls into the class of “brute force”

methods that provide no insight into underlying the mechanism.

Ulam’s method [119]—the most widely known technique for estimating invariant

measures—can be formulated for DDEs so that it yields an approximation of the asymp-

totic measure η∗ (Section 5.3). However, this approximation turns out to be identical (by

definition) to the histogram of a time series generated by a typical solution of the given

DDE, because our construction is somewhat circular. Thus, at least in our formulation,

Ulam’s method does not provide an independent estimate of the invariant density.

The “self-consistent Perron-Frobenius operator” method of [69, 75] is a promising

approach to estimating asymptotic densities for DDEs. A suitable discretization of a

given DDE yields a discrete-time system to which this method can be applied. However,

a straightforward implementation (Section 5.4) fails to generate the desired approxi-

mate invariant density. Instead, the method converges to an unstable fixed point of the

DDE. This failure can be explained, in part, by the fact that in the delay equations we

consider, the instability (hence chaotic behavior and nontrivial statistical properties) is

delay-induced, i.e. is not present in the absence of a non-zero delay. In the systems con-

sidered in [75], chaotic behavior is present even in the case of zero delay. Adapting the

approach of [75] to systems with delay-induced instability remains an open problem.

A solution to the problem of estimating asymptotic densities for DDEs remains elusive.

Previously published methods of estimating invariant measures for dynamical systems do

not adapt well to delay equations. At present the only effective methods are based on

computing statistics on numerical solutions.

Transient chaos in delay differential equations, although anticipated by a number of

publications, has not been investigated before. We have found multistability with frac-

tal basins of attraction, a key signature of transient chaos, in a delay equation with

piecewise-constant nonlinearity (also reported in [81]) as well as the Mackey-Glass equa-

tion (Section 6.2). Existence of fractal basins suggests the existence of transiently chaotic
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trajectories and the presence of a chaotic saddle. Indeed, by computing basins of at-

traction for these two delay equations we have been able to illustrate, numerically, the

existence of solutions with long chaotic transients.

Previously published numerical methods for approximating unstable chaotic sets (i.e.

chaotic saddles) all fail when applied to the delay equations considered here. The PIM

method [90] in particular is expected to fail if the saddle has more than one unstable

direction. However, our calculations of Lyapunov exponents point to the presence of only

a single unstable direction, so this explanation is inadequate. Instead, the failure of the

known algorithms appears to stem from the presence of saddle type unstable periodic

orbits, to which each of the algorithms eventually converge. This mode of failure has not

been observed before.

We have developed a modified version of the stagger-and-step method (Section 6.4.4),

aimed at avoiding unstable periodic orbits. With this method, aperiodic numerical trajec-

tories of arbitrarily long duration can be found for both of the delay equations considered

in our examples. It is presumed that such a trajectory approximates the chaotic saddle.

Despite the fact that the saddle is embedded in an infinite dimensional phase space (or

at least a finite- but high-dimensional phase space used for numerical approximation), it

is possible to go some way toward visualizing the saddle by graphing its projections onto

two dimensions. We have done this for the delay equations considered here, projecting

the numerical approximation of the chaotic saddle onto two dimensions by applying a

particular “trace map” commonly used for visualizing the dynamics of delay equations

(Section 6.5.1).

The distribution of orbits on the chaotic saddle can be characterized by an invariant

measure. This too can be approximated numerically from a stagger-and-step trajectory,

and projected onto two dimensions for the purpose of visualization.

Chaotic invariant sets are typically characterized in terms of their ergodic parame-

ters such as Lyapunov exponents and dimensions. These can be found using standard

algorithms, involving straightforward computations on the numerical trajectory result-

ing from the stagger-and-step algorithm. For each of the delay equations considered we

have applied these techniques and thereby estimated the Lyapunov spectrum, Lyapunov

dimension, and correlation dimension of the respective chaotic saddles (Section 6.5.2).

Despite the infinite dimensionality of the phase space of the delay equation, the saddle

itself has quite low dimension, of the order 2 ∼ 3. The same observation has been made

with regard to chaotic attractors of delay equations [42]. For both of the DDEs con-
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sidered, the saddle has only one positive Lyapunov exponent, hence only one unstable

direction. This lends support to our hypothesis that the previously published algorithms

for approximating the saddle fail for some reason other than the existence of multiple

unstable directions.

7.2 Directions for Further Research

A number of the investigations undertaken in this thesis suggest avenues for further

research. Some of the more promising directions are outlined below, along with some

new ideas that have not been sufficiently developed to warrant inclusion in the foregoing.

In Section 3.6 we showed that the notion of physical or SRB measure is problematic

for infinite dimensional systems such as DDEs, owing to the lack (or ambiguity) of an

appropriate notion of “almost every” in infinite dimensions. Prevalence [58] is one such

notion that appears not to have been investigated in the context of physical measures. Its

translation invariance makes prevalence a good candidate for what might be considered a

“natural” sense of almost every, which is what we desire in the identification of a natural

or physical invariant measure. Since prevalence is equivalent to “Lebesgue almost every”

in finite dimensional spaces, using prevalence in the definition of SRB measure would be

consistent with the already-accepted but inadequate definition. Prevalence of a given set

also happens to be relatively easy to prove, thanks to a number of results established

in [58]. Especially as SRB measure is expected to play an important role in an ergodic

theoretic understanding of such infinite dimensional phenomena as e.g. turbulence in

fluids, further investigation of the definition of SRB measure for infinite dimensional

systems, and the potential role of the notion of prevalence in particular, is warranted.

Many results in ergodic theory are expressed in terms of integrals over the phase

space. For this reason it is argued above that an ergodic theoretic understanding of

delay equations will require a theory of integration on the function space C. Such a

theory has been developed if the measure of integration is Wiener measure, but we have

argued that this is inadequate for an understanding of delay equations because, in general,

Wiener measure is not expected to be invariant under a given DDE. This position is

dissatisfying, if only because the physics literature has amassed such a wealth of theory

and tools (e.g. Feynman diagrams) for integrating functionals with respect to Wiener

measure. The possibility of exploiting these tools in the context of delay equations has

not been adequately explored. One avenue, for example, might follow the approach



194 CHAPTER 7. CONCLUSION

of [17, 99, 100, 101], where exactness is proved for a class of partial differential equations

by establishing a conjugacy with a certain dynamical system for which Wiener measure

is invariant. It would be interesting to seek a class of delay equations for which a similar

argument could be made. This would provide the first rigorous result on strong ergodic

properties of a delay equation as a dynamical system in C.

In Section 4.4 we develop a numerical method for approximating the evolution of

densities, based on piecewise-linear approximation of the solution map for a given DDE.

The method itself is not limited to delay equations, and could be applied to any system

for which a solution map can be approximated. It would be interesting, for example, to

apply this approach to estimating invariant densities for ordinary differential equations.

Ulam’s method may yet turn out to be an effective approach to estimating asymptotic

densities for delay equations. The Euler discretization with time step h, considered in

Section 5.4, defines a discrete-time dynamical system S : IRN → IRN . For some delay

equations S is known to have strong ergodic properties [80], making it a good candidate for

the application of Ulam’s method. That is, Ulam’s method might be used to approximate

the N -dimensional natural S-invariant measure. This would require a partition A of IRN

and the definition of a transition probability matrix relative to A (equation (5.40), with

Lebesgue measure λ on IRN ). At first this seems impractical, since even a relatively coarse

partition would contain on the order of 100N cells (with N large, say N & 100, so that

the discretization accurately models the DDE). However, attractors for delay equations

have generally been found to be low-dimensional (e.g., D ≈ 3) [42], and therefore should

be resolvable with a carefully chosen partition containing on the order of 1003 cells.

This is within the limits of practical computation. An “automatic refinement” method

for choosing an optimal partition, coupled with efficient construction of the transition

matrix P , has recently been implemented in the software package GAIO [32, 33, 67].

Some exciting recent developments in this area show that numerical simulations can be

used to prove rigorous results about dynamical systems [116, 117] and infinite dimensional

systems in particular [29]. It seems reasonable that this software could be applied to the

estimation of invariant measures for delay equations.

In Section 5.4 we attempted to develop a method for estimating asymptotic densities

for DDEs, based on the ideas in [69, 75]. The results of this investigation were disappoint-

ing and somewhat surprising. Using the same ideas, the authors of [69] and [75] have

successfully estimated “collapsed” (i.e., one- and two-dimensional) invariant densities for

some other high-dimensional systems. We have hypothesized that this discrepancy is
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due to the fact that for the systems considered in [75], chaotic behavior occurs even in

the absence of an explicit delay in the dynamics, whereas for the DDEs we consider the

instability is inherently delay-induced. This explanation is not entirely satisfactory. It

seems that some variation on this theme should be effective for delay differential equa-

tions. In particular, the second-order method outlined in Section 5.4.4 warrants further

investigation.

In Chapter 6, previously published algorithms for approximating chaotic saddles failed

when applied to the delay equations we have considered. This failure is apparently due

to the presence of saddle type periodic orbits, which capture the numerical trajectory

that would otherwise approximate the saddle. This mechanism should not be specific to

delay equations. It would be interesting to investigate the behavior of these algorithms

for simpler (e.g. finite dimensional) systems that also possess saddle-type periodic orbits,

both to test our hypotheses regarding this mode of failure and to investigate more effective

remedies.

Our modification of the stagger-and-step method [110] successfully avoids the difficulty

that otherwise occurs in the presence of saddle type periodic orbits. An obvious extension

of this work would be an attempt at a similar modification of the PIM method. Our

numerical results suggest that the chaotic saddle has only one unstable direction, at least

for the DDEs we have considered. Thus in principle the PIM method [90] should be

applicable, but for the difficulty presented by the presence of saddle type periodic orbits.

A successful modification of this method would be a valuable tool not just for delay

equations but for the numerical analysis of transient chaos in general.

A theme that arises in various contexts throughout this thesis is that the analysis

of DDEs is complicated by their infinite dimensionality. Chaos in infinite-dimensional

systems is not a new subject: the field has a rich literature, with a focus mainly on

chaotic partial differential equations (PDEs). However, little has been said about PDEs

in an ergodic theoretic context; consequently this thesis provides only scant discussion of

the PDE literature. Nevertheless, a number of fruitful avenues for further research are

suggested by the problem of adapting and applying to DDEs the techniques that have

been developed for PDEs.

One such collection of techniques is motivated by the possible existence of inertial

manifolds for DDEs. An inertial manifold (IM), a subset of phase space, is a smooth,

finite-dimensional invariant manifold that exponentially attracts all trajectories in a cer-

tain neighborhood (see e.g. [112, 113, 114] and references therein). Inertial manifolds
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have been shown to exist for a broad class of dissipative dynamical systems including

some PDEs. If an inertial manifoldM exists then any global attractor will be contained

in M; thus the subsystem obtained by restricting the original dynamical system to M
faithfully reproduces the asymptotic dynamics. This subsystem is itself equivalent to a

certain finite system of ordinary differential equations. This drastic simplification makes

it possible to analyze the asymptotic dynamics using methods for finite dimensional sys-

tems. This approach has led, for example, to rigorous bounds on the dimension of the

attractor for some PDEs [63]. Techniques have also been developed for approximating in-

ertial manifolds numerically, and results have been obtained on the persistence of inertial

manifolds under perturbation and numerical approximation [31, 62, 64, 65, 66].

We are unaware of any investigations of inertial manifolds for chaotic DDEs (in the

case of a DDE we are interested in finite-dimensional invariant manifolds in the function

space C). However, the observations in [42] and elsewhere of low-dimensional attractors

for some DDEs suggest the presence of an inertial manifold. In a preliminary investigation

in this direction, we have considered the special case of seeking a flat inertial manifold,

i.e. an attracting invariant linear subspace of C. If such an invariant subspace exists

it should be readily observable, e.g. by employing a Gram-Schmidt procedure to show

(numerically) the existence of a finite basis for points on the attractor. We have carried

out this procedure for the chaotic DDEs considered in Section 5.1, with results indicat-

ing that there is no finite basis for the attractor, hence no flat inertial manifold. The

possible existence of curved inertial manifolds warrants further investigation. The finite

dimensional reduction such an invariant manifold would afford might be instrumental in

circumventing some of the difficulties encountered in this thesis.

As mentioned in Section 3.2, delay differential equations are a special case of a more

general class of retarded functional differential equations (RFDEs). Throughout this

thesis we have restricted our attention to delay equations having the particular form of

equation (3.1) (e.g. with a single, fixed delay). At times we have been able to exploit

the relative simplicity of the special form of this equation (e.g. Section 4.5) to obtain a

desired result. However, many of the results of this thesis do not rely on the special form

of this equation. An interesting and obvious avenue for further research is to extend the

present work, where possible, to more general RFDEs.
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Nomenclature

¿ ν ¿ µ means measure ν is absolutely continuous with respect to µ, page 22

1A indicator function of a set A, page 20

A σ-algebra, page 16

C([a, b]) space of continuous functions from [a, b] into IRn, with sup norm, page 43

C space of continuous functions from [−τ, 0] into IRn, with sup norm, page 44

C space of continuous functions from [−1, 0] into IRn, with sup norm, page 47

D(X) set of densities on a phase space X, a subset of L1(X), page 23

φ initial function for a delay differential equation, page 43

Λ Attractor of a dynamical system, page 123

λ Lebesgue measure on IRn, page 18

Lp Lp space of functions, page 22

µ(A) measure of a set A, page 17

µf probability measure with density functional f , page 22

P Perron-Frobenius operator, page 24

Pt Perron-Frobenius operator corresponding to St, page 24

IR+ the set {x ∈ IR : x ≥ 0}, page 15

σ(B) σ-algebra generated by a class B of sets, page 17
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S−1(A) pre-image of a set A under a transformation S, page 19

St dynamical system or semigroup of transformations, page 15

t time variable (∈ IR+ or Z+) for a dynamical system, page 14

X phase space, page 15

(X,A) measurable space, page 16

(X,A, µ) measure space or probability space, page 17

x(t) solution of a delay differential equation, page 43

xt phase point in X at time t for a dynamical system, page 14

Z+ the set {x ∈ Z : x ≥ 0} = {0, 1, 2, . . .}, page 15


