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ABSTRACT

We develop the theory for a broadband constant-beamwidth transducer (CBT) formed by a continuous circular-arc
isophase line source. Appropriate amplitude shading of the source distribution leads to a far-field radiation pattern
that is constant above a cutoff frequency determined by the prescribed beam width and arc radius. We derive two
shading functions, with cosine and Chebyshev polynomial forms, optimized to minimize this cutoff frequency
and thereby extend constant-beamwidth behavior over the widest possible band. We illustrate the theory with
simulations of magnitude responses, full-sphere radiation patterns and directivity index, for example designs with
both wide- and narrow-beam radiation patterns.

1 Introduction

There is considerable interest in the design of acoustic
sources with broadband constant directivity, i.e. a radi-
ation pattern that is independent of frequency. Much
of this interest stems from work by Toole and others
(see [1] and references therein) showing that constant
directivity is correlated with subjective perception of
quality in stereo reproduction. Constant directivity
beamforming also has much broader application to both
sensor and transducer arrays for use in audio, broad-
band sonar, ultrasound imaging, and radar and other
remote sensing applications [2, 3, 4].

Keele [5, 6, 7, 8] has reported extensively on a constant-
beamwidth transducer (CBT) formed by a circular-
arc array of source elements with amplitude shading.
Keele’s work is based on that of Rogers and Van Bu-
ren [2], who showed that a transducer with constant
beam pattern can be formed by a spherical cap with
frequency-independent amplitude shading based on a
Legendre function. Rather fortuitously, when Legen-
dre shading is employed in a circular-arc array a sub-
stantially frequency-independent radiation pattern re-
sults [6].

Despite the many advantages of circular-arc CBT line
arrays, an adequate theory does not appear in the liter-
ature. Keele’s previous work in this area is empirical.
Legendre shading in particular has been given only
post hoc justification; shading functions adapted to cir-
cular arrays have not been developed. While circular
arrays are discussed extensively in the literature on
electromagnetic antennas (see [9, 10, 11] for a review),
there they are widely regarded as narrow-band trans-
ducers only. Except in the literature on microphone
arrays [12, 13, 14, 15] their potential for broadband
constant directivity appears to be unknown.

The aims of the present work are twofold: to establish
a theoretical foundation to account for the observed
constant directivity behavior of circular-arc arrays, and
to derive improved shading functions adapted to these
arrays. The paper is structured as follows. In the follow-
ing section we develop the theory for acoustic radiation
from an amplitude-shaded circular arc. We then use
this theory to derive conditions on the shading function
that guarantee a frequency-independent radiation pat-
tern. On this basis we develop two suitable families of
optimal shading functions. Finally, we present results
of simulations that illustrate and confirm several key
aspects of our theory.

2 Radiation from a Circular Array

Consider a time-harmonic line source in the form of
a circle of radius a, in free space, as shown in Fig. 1.
We adopt a coordinate system in which the circle is
oriented vertically, in the xz-plane, with its center at
the origin. We take the x-axis (θ = φ = 0) to be the
primary “on-axis” direction of the resulting radiation
pattern. We assume the source distribution is continu-
ous and iso-phase, with amplitude that varies with polar
angle α according to a dimensionless and frequency-
independent “shading function" S(α) (also sometimes
called the amplitude taper or aperture function).

Referring to Fig. 1, the pressure at O due to a unit point
source at Q is e−ikR/R (up to a multiplicative constant)
where k is the wave number [16, p. 311]. Summing the
continuous distribution of point-source contributions
around the circle gives the total (complex) pressure p
via the Rayleigh integral

p(r,θ ,φ) =
∫ 2π

0
S(α)

e−ikR

R
dα (1)
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Fig. 1: Circular line source geometry. The shaded arc
is the active part of the array considered in the
balance of the paper.

where

R =
√

a2 + r2−2ar cosφ cos(θ −α)

≈ r−acosφ cos(θ −α) (r� a). (2)

On making the usual far-field (r� a) approximations
and the change of variables u = α−θ , eq. (1) gives

p =
e−ikr

r

∫ 2π

0
S(u+θ)eikacosφ cosu du. (3)

Assuming the shading function S(α) is even, it can then
be expressed as a Fourier cosine series

S(α) =
∞

∑
n=0

an cos(nα). (4)

(In the antenna literature on circular arrays, this is called
an expansion in “amplitude modes”, or circular harmon-
ics, as opposed to the “phase modes” einα [17].) We
refer to each term in eq. (4) as a shading mode. On
substitution into eq. (3) this gives

p =
e−ikr

r

∞

∑
n=0

an fn(kacosφ)cos(nθ) (5)

with the “mode amplitudes” fn given by

fn(x) = 2πinJn(x) (6)

where Jn is a Bessel function of the first kind [18].
Eq. (5) gives the far-field pressure radiated by our cir-
cular array.

Remarks

• Eq. (5) shows that each circular harmonic shading
mode gives rise to a far-field radiation mode of
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Fig. 2: Mode amplitudes: on-axis far-field pressure,
as function of dimensionless frequency ka, for
radiation from a circular array with cos(nθ)
amplitude shading.

the same polar form. The amplitude of each radi-
ation mode is determined by a factor fn(kacosφ)
that depends only on φ and the dimensionless fre-
quency ka.

• Therefore, for a full-circle array with single-mode
shading S(α) = cos(nα), the far-field polar pat-
tern in any vertical plane through the origin (con-
stant φ ) is identical to the shading function at all
frequencies.

• However, for any single shading mode, destructive
interference between opposite sides of the array
creates a series of nulls in the frequency response
(similar to comb filtering), as illustrated in Fig. 2
which plots the mode amplitudes as a function
of frequency. Eqs. (5)–(6) show that these nulls
occur when kacosφ coincides with a root of the
Bessel function Jn.

• Owing to these response nulls, no full-circle array
with single-mode shading can produce a usable
broadband response: at any point in the far field
there are frequencies at which the radiated pres-
sure is zero. (This is the “mode stability” problem
in the antenna literature [11].)

We can obtain an approximation valid at low frequency
by using the asymptotic form [18]

Jn(x)≈
1
n!

( x
2

)n
(x� 1) (7)

in (5) to give

p≈ e−ikr

r

∞

∑
n=0

an ·
2πin(ka)n

2nn!
cosn

φ cos(nθ). (8)

From eq. (8) we see that amplitude of the the nth mode
falls off at 6n dB/oct at low frequency (ka→ 0), as
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Fig. 2 confirms. All shading modes above n = 0 radiate
very inefficiently at low frequency; the limiting radia-
tion pattern is therefore determined by the first non-zero
term in (8). If a0 6= 0 then the low-frequency radiation
pattern is omni-directional: the array radiates like a
point source at the origin. If a0 = 0 but a1 6= 0 then the
array exhibits dipole radiation at low frequency.

3 Conditions for Constant Directivity

Here we derive conditions on the shading function S(α)
such that the radiation pattern of eq. (5) is independent
of frequency. Using the asymptotic form [18]

Jn(x)≈
√

2
πx

cos(x−n π

2 − π

4 ) (x� n) (9)

in (6) gives, after some algebra,

fn(x)≈
√

8π

x

{
cos(x− π

4 ) n even
isin(x− π

4 ) n odd.
(10)

Thus, provided x≡ kacosφ � n for all non-negligible
terms in (5) we obtain

p≈ e−ikr

r

√
8π

x

[
Se(θ)cos(x− π

4 )+ iSo(θ)sin(x− π

4 )

]
(11)

where

So(θ) = ∑
n odd

an cos(nθ), (12)

Se(θ) = ∑
n even

an cos(nθ). (13)

Eq. (11) gives the pressure magnitude

|p|= 1
r

√
8π

x

√
S2

e(θ)cos2(x− π

4 )+S2
o(θ)sin2(x− π

4 ).

(14)
If |Se(θ)|= |So(θ)| for all θ then we obtain the far-field
pressure

|p|= 1
r

√
8π

ka
·
∣∣So(θ)

∣∣
√

cosφ
. (15)

Critically for our purposes, the amplitude of this ra-
diation pattern changes with frequency but its shape
does not.

Thus, the far-field radiation pattern of a circular array
will be independent of frequency provided the shading
function S(α) satisfies the following conditions:

1. S = So + Se with So, Se given by eqs. (12)–(13)
and |So|= |Se|.

2. For all non-negligible coefficients an in the cosine
series for S(α) we have kacosφ � n.

(These conditions are identical to those given in [3]
for the case of radiation from a spherical array, except
in that case the an are the coefficients of the shading
function expanded in spherical harmonics.) Several
remarks are in order:

• Condition 1 is equivalent to requiring that, for each
θ , at most one of S(θ) and S(π−θ) is non-zero.
In particular this holds if the array is active only on
a half-circle on one side of the yz-plane in Fig. 1.
In this case one can show that |So(θ)|= |S(θ)|/2,
so eq. (15) shows that the limiting beam pattern
is identical to the shading function in any vertical
plane through the origin (φ = constant).

• Condition 2 ensures a constant beam pattern
above a “cutoff frequency” determined by the re-
quirement that kacosφ � nmax where nmax is the
largest n for which the cosine series coefficient an
is non-negligible. For greater out-of-plane angles
φ the cutoff frequency is correspondingly higher.

• Together, these conditions ensure a usable broad-
band response, without the nulls apparent in Fig. 2.
Indeed, for frequencies above cutoff, eq. (15) pre-
dicts a smooth dependence of amplitude on fre-
quency everywhere in the far field, with output
falling off at 3 dB/oct. (In a practical device this
rolloff may require compensatory equalization.)

• To minimize the cutoff frequency (and thereby
achieve a constant beam pattern over the widest
possible band) we need a shading function whose
non-negligible coefficients an are of the lowest or-
der possible. In the following section we consider
how to design such a function.

• The limiting radiation pattern given by eq. (15) is
symmetric across the yz-plane, although the array
is not. The pattern is unaffected if the array is
reflected across this plane.

• Eq. (15) gives a limiting 1/
√

cosφ horizontal pat-
tern, hence amplitude peaks along the axis of the
circle, as Keele has observed [6]. These peaks are
due to the fact that radiation from all elements ar-
rives in-phase at any point on the y-axis, whereas
in the plane of the array there is some destructive
interference among sources. This interference in-
creasing with decreasing wavelength, causing the
3 dB/oct rolloff noted above.

4 Optimal Amplitude Shading

The choice of shading function is critical to achieving
broadband constant directivity from a circular-arc array.
A good shading function must have its Fourier spectrum
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Fig. 3: Shading function restricted to the arc |θ | ≤ θ0.

concentrated in its lowest-order terms, and be non-zero
only on a circular arc |θ | ≤ θ0 ≤ π

2 . The general form
of such a shading function is shown in Fig. 3.

Legendre shading, developed for spherical arrays in [2],
has been used extensively by Keele in his work on CBT
arrays [5, 6, 7, 8]. Since Legendre functions serve to
minimize the amplitude of higher-order terms when
the shading function is expanded in spherical harmon-
ics [2], which are themselves polynomials in cosθ , we
can see why Legendre shading behaves well when em-
ployed on a circular arc. However, being adapted to a
spherical rather than circular radiator, Legendre shad-
ing might not be the optimal choice. In the appendices
we develop two new shading functions, with the goal of
constant beam-width radiation over the widest possible
band.

Appendix A shows that the cosine shading

S(θ) =

{
cos
(

π

2 · θ

θ0

)
|θ | ≤ θ0

0 θ0 < |θ | ≤ π
(16)

is optimal in the sense that its cosine series coefficients
|an| are at a local minimum (as a function of θ0) for all
n & π/(2θ0).

Remarks

• The cosine shading (16) is analogous to (but much
simpler than) the Legendre function Pν(cosθ) de-
veloped in [2]; the two are identical in the case
θ0 =

π

2 .

• The parameter θ0 controls the beam width of the
array. The design equations for cosine shading
are particularly simple: we have θ0 =

3
2 θ6 where

θ6 is the desired −6 dB half-angle in the plane of
the array. By contrast, the design equations for
Legendre shading cannot be expressed in closed
form, and require numerical root-finding as well
as evaluation of the rather obscure Legendre func-
tions.

• Decreasing θ0 (i.e. narrowing the beam width)
increases the index nmax above which the cosine
series coefficients an are minimized. Since the

cutoff frequency is determined by the condition
kacosφ � nmax, we see that (for a given arc ra-
dius) a narrower beam leads to a higher cutoff
frequency.

Appendix B shows that the Chebyshev polynomial
shading

S(θ) =

{
TN

(
2 · 1+cosθ

1+cosθ0
−1
)
|θ | ≤ θ0

0 θ0 < |θ | ≤ π,
(17)

where TN is the Nth Chebyshev polynomial, is optimal
in the sense that it is very close to a degree-N poly-
nomial in cosθ . Together, the parameters N and θ0
control the beam width and arc coverage. For a given
angle θ0, increasing N results in a narrower beam. As
we illustrate below, this shading function is in many
ways superior to both cosine and the Legendre function
shading used in [5].

5 Examples

To confirm and illustrate the key aspects of our theo-
retical results above, here we present simulations of
two particular circular-arc arrays designed to achieve
broadband constant directivity, but with different beam
widths. One is a wide-beam array with the cosine shad-
ing

S(θ) =

{
cos
( 9

7 θ
)
|θ | ≤ 70◦

0 |θ |> 70◦
(18)

which gives a −6 dB half-angle of 47◦. The other is a
narrow-beam array with the degree-6 Chebyshev poly-
nomial shading

S(θ) =

{
T6
(
2 · 1+cosθ

1+cos52◦ −1
)
|θ | ≤ 52◦

0 |θ |> 52◦
(19)

which gives a −6 dB half-angle of 25◦.

The shading functions in eqs. (18)–(19) are plotted
in Fig. 4, together with other shading functions that
achieve the same beam widths. Chebyshev shading,
especially with higher polynomial degree, gives a more
gradual taper near the end of the arc. This results in
smoother frequency response (see Fig. 7 below) at the
expense of requiring greater arc coverage for a given
beam width.

5.1 Magnitude Response

Fig. 5 shows the raw (unequalized) far-field magnitude
responses at various angles θ in the plane of an ar-
ray (φ = 0) with the narrow-beam shading of eq. (19).
These were calculated by numerical quadrature (via
an adaptive Simpson’s rule) of the Rayleigh integral
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Fig. 4: Shading functions with−6 dB beam half-angles
of 25◦ and 47◦, via cosine shading [solid] and
Chebyshev shading [dashed]. The degree-6
Chebyshev polynomial (19) was used for the
narrow beam; a degree-2 polynomial was used
for the wider beam.
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Fig. 5: Far-field (unequalized) magnitude response at
various angles θ in the plane of an array with
the Chebyshev shading (19).

in eq. (3). The responses are plotted against the di-
mensionless frequency ka. (For reference, an array of
radius a = 1 m has ka = 1 at 54 Hz.)

Fig. 5 confirms several aspects of the theory devel-
oped above. There is a clear cutoff frequency (ka≈ 10)
above which the radiation pattern transitions from omni-
directional to a frequency-independent pattern deter-
mined by the shading function. Above cutoff the level
rolls off at 3 dB/oct at all off-axis angles, as predicted
by eq. (15). In marked contrast with a full-circle array
(Fig. 2), the shaded circular-arc array provides a usable
response at all frequencies, without nulls or significant
ripples.

For both the wide-beam cosine shading (18) and
narrow-beam Chebyshev shading (19), Fig. 6 shows the
far-field magnitude responses at various angles θ in the
plane of the array, this time normalized to the on-axis
(θ = 0) response. In agreement with our theory, above
the cutoff frequency (ka≈ 2 for the wide-beam exam-
ple; ka≈ 20 for the narrow-beam case) the normalized

response becomes constant at all angles, indicating a
constant beam pattern.

To illustrate the benefits of Chebyshev versus Legendre
function shading, Fig. 7 shows the far-field magnitude
response at various angles in the plane of the array,
for two arrays shaded to achieve a −6 dB beam half-
angle of 25◦: one with Legendre function shading as
in [5], the other with the degree-6 Chebyshev shading of
eq. (19). The Legendre-shaded array exhibits response
ripples of several dB, while the Chebyshev-shaded ar-
ray has a ripple-free response at all off-axis angles.
Moreover, with increasing frequency the Chebyshev-
shaded arrays settles more quickly into a frequency-
independent radiation pattern, particularly at angles
beyond 30◦.

5.2 Full-Sphere Radiation Patterns

For the two shading functions considered above, Fig. 8
shows the full 3D radiation patterns (polar balloons),
calculated at several frequencies via numerical quadra-
ture of the integral in eq. (3), and normalized to the
on-axis response. As expected, in both cases there is
a transition from monopole radiation at low frequency
to a frequency-independent radiation pattern above the
cutoff frequency. Above cutoff the full radiation pat-
tern is remarkably constant in both cases, except near
the y-axis where the pattern settles down only at the
highest frequencies. In agreement with eq. (15), the lim-
iting vertical pattern is determined by the shading func-
tion, while the horizontal pattern has a broad 1/

√
cosφ

shape with corresponding amplitude peaks on the y-
axes. At all frequencies the radiation patterns are sym-
metric front-to-back (i.e. across the yz-plane).

5.3 Directivity Index

The directivity index [19] characterizes the directivity
of a radiation pattern p(r,θ ,φ) in terms of the ratio of
the on-axis intensity to that of a point source radiating
the same total power. For the coordinate system of
Fig. 1 the directivity index is given by

DI = 10log10
4π|p(r,0,0)|2∫ 2π

0
∫ π/2
−π/2 |p(r,θ ,φ)|2 cosφ dφ dθ

.

(20)
For both our wide- and narrow-beam examples, Fig-
ure 9 shows the directivity index as a function of di-
mensionless frequency ka, calculated by numerical
quadrature of (20) with the radiation pattern given by
eq. (3). As expected, both arrays exhibit 0 dB directivity
(monopole radiation) at low frequency, with increas-
ing directivity in a transition band around the cutoff
frequency of the array, above which the directivity is
constant and determined by the array shading. For the
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Fig. 6: Far-field magnitude responses at various angles θ in the plane of the array, normalized to the on-axis (θ = 0)
response, for (a) a wide-beam array with the cosine shading of eq. (18), and (b) a narrow-beam array with
the Chebyshev shading of eq. (19).
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Fig. 7: Far-field magnitude responses at various angles
θ in the plane of the array, normalized to the
on-axis (θ = 0) response, for arrays with−6 dB
beam half-angle of 25◦ via Legendre function
shading [solid] and the Chebyshev shading (19)
[dashed].

wide-beam array in particular the directivity index is
remarkably constant, varying by less then 3 dB over all
frequencies.

6 Discrete Arrays

Our theory to this point is based on an idealized contin-
uous circular source distribution. However, a practical
implementation will involve a finite number of conven-
tional drivers, with strengths determined by sampling
the continuous shading function. (Keele [5, 6, 7, 8]
has reported experimental results of using various sam-
pling procedures.) This will cause deviations from the
theoretical behavior, due to sampling of the shading
function, as well as directionality of the sources.

A complete treatment of these effects is beyond the
scope of this paper. However, from the relevant theory
developed in [10, 11] we can draw some practical con-
clusions. For a discrete circular array of equally-spaced
point sources, for all wavelengths greater than twice
the source spacing, errors introduced by sampling the
shading function are insignificant, provided there are at
least two point sources per spatial period corresponding
to the highest-order non-negligible term in the cosine
series (4) (this result is analogous to the Nyquist sam-
pling theorem). When the source spacing exceeds a
half-wavelength, spatial aliasing (due to destructive in-
terference between finitely-spaced sources) causes a
highly irregular response, and the discrete array is a
poor approximation of the continuous ideal. In prac-
tical terms, this means the example arrays considered
here can be well-approximated by discrete arrays of
as few as 10 point sources, up to the frequency where
spatial aliasing ensues.

The effect of physical sources’ departure from ideal
point-source behavior is more difficult to treat, particu-
larly since for circular arrays there is no simple theory
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Fig. 8: 3D radiation patterns (polar balloons) for circular-arc arrays with the wide-beam cosine shading of eq. (18)
and narrow-beam Chebyshev shading of eq. (19). The array is oriented as shown in Fig. 1. All plots are
normalized on-axis.
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Fig. 9: Directivity index for arrays with the wide-beam
cosine shading of eq. (18) [solid] and narrow-
beam Chebyshev shading of eq. (19) [dashed].

analogous to the product theorem for linear arrays of di-
rectional sources. For circular arrays, the mathematical
treatment of directional elements is covered in [10, 11].
Its effects on our theory of constant directivity circular-
arc arrays will be the subject of future work.

7 Conclusion

We have developed a theory that accounts for the ob-
served [5, 6, 7, 8] constant directivity behavior of
amplitude-shaded circular-arc line arrays. The key to
understanding and optimizing such arrays is to express
the shading function (amplitude taper) in terms of an
expansion in circular harmonics (cosine series). The
conclusions that follow are remarkably parallel to those
for an amplitude-shaded spherical cap, as developed
in [2, 3]:

• The radiation pattern becomes asymptotically
frequency-independent above a cutoff frequency
determined by the arc radius and the order of the
highest-order non-negligible term in the shading
function’s cosine series. The cutoff frequency is
inversely proportional to the arc radius and pre-
scribed beam width.

• Above cutoff the constant radiation pattern is a
product of a vertical pattern (i.e. in the plane of
the array) that agrees with the shading function,
and a horizontal pattern that has a broad 1/

√
cosφ

form that gives a high amplitude peak within a
small solid angle around the axis of the circular
arc. Above cutoff the frequency response rolls off
at 3 dB/oct.

• Below cutoff, directivity control is lost: the ra-
diation pattern becomes omni-directional, with
constant frequency response.

These theoretical results are corroborated by Keele’s
earlier measurements and simulations [6, 7], as well as
the simulations presented here.

Our theory indicates how to design the amplitude shad-
ing so as to achieve constant directivity over the widest
band possible: the Fourier spectrum of the shading
function must be concentrated in its lowest-order terms.
This explains Keele’s observations that shading with a
Legendre function (borrowed from [2]) behaves very
well, but it also opens the way to designing better shad-
ing functions. Here we have developed two new shad-
ing functions adapted to circular-arc arrays: one based
on a simple cosine form, the other based on Cheby-
shev polynomials. Cosine shading has the advantage
of being quite simple, and allows for the widest beam
pattern. Chebyshev polynomial shading gives a better-
controlled frequency response, at the expense of requir-
ing greater arc coverage for a given beam width.

Practical implementation of our theory is beyond the
scope of this paper. Several engineering issues arise, in-
cluding spatial aliasing due to finite (rather than contin-
uous) spacing of sources, departure of source elements
from ideal point-source behavior, mutual coupling be-
tween source elements, and physical implementation
of the shading function via a resistive network. Many
of these issues have been addressed at length by Keele
elsewhere [7, 8].

A major benefit of CBT spherical-cap arrays, shown
theoretically in [2], is that both the near- and far-field
radiation pattern agree with the shading function, and
thus there is no essential difference between the near-
and far-field behaviors. Unfortunately the (far-field)
theory presented here does not account for this im-
portant aspect of circular-arc line arrays; we plan to
address this issue in future work.
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Appendix A. Cosine Shading

To derive an optimal shading for circular-arc arrays,
here we adapt the technique that was used in [2] to
derive Legendre function shading for a spherical cap.
We seek an even shading function

S(θ) =

{
f (θ) |θ | ≤ θ0

0 θ0 < |θ | ≤ π
(21)

where the arc half-angle θ0 ≤ π

2 is given and f is a
function to be determined. From eq. (4) the cosine
series coefficients are then

an =
2
π

∫
θ0

0
f (θ)cos(nθ)dθ (n > 0). (22)

To concentrate the shading function’s Fourier spectrum
in its lowest-order terms, our strategy is to determine
f so that a2

n is minimized (as a function of θ0) for all
n > N, while the a2

n are maximized for n≤ N.

Making all the an stationary with respect to θ0 requires
that

0 =
dan

dθ0
=

2
π
· f (θ0)cos(nθ0). (23)

Satisfying this equation for all n requires f (θ0) = 0, i.e.
f should have a root at the arc endpoint θ0. We take
this to be the smallest such root, since the beam pattern
would otherwise have undesirable side-lobes. We can
then assume without loss of generality that f (θ) > 0
for 0 < θ < θ0.

To distinguish whether the a2
n are maximized or mini-

mized as a function of θ0 we employ the second deriva-
tive test; to this end we evaluate

d2a2
n

dθ 2
0

=
4
π

an f ′(θ0)cos(nθ0). (24)
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Let N be the integer such that for all n≤ N the smallest
root of cos(nθ) is greater than θ0, while for n > N′ the
smallest root is less than θ0. Thus,

N = bπ/(2θ0)c (25)

where b·c denotes the integer part. Then for n≤ N we
have cos(nθ)> 0 on [0,θ0], hence an > 0 by eq. (22).
Assuming f ′(θ0)< 0 gives d2a2

n/dθ 2
0 < 0, so that each

of the a2
n (n≤ N) is indeed a local maximum as a func-

tion of θ0.

Now we need to ensure that a2
n is a local minimum as

a function of θ0 for all n > N, which would require
d2a2

n/dθ 2
0 > 0. Thus, from eq. (24) we require

cos(nθ0)
∫

θ0

0
f (θ)cos(nθ)dθ < 0 (n > N). (26)

This gives the shading function

f (θ) = cos
(

π

2 · θ

θ0

)
. (27)

as one possible choice that satisfies (26) together with
our various other assumptions. Indeed, we have

cos(nθ0)
∫

θ0

0
f (θ)cos(nθ)dθ

=

(
π

2θ0

)2(
π

2θ0

)2−n2
· cos2(nθ0)< 0 (28)

when n > N = bπ/(2θ0)c so that (26) is satisfied and
a2

n is indeed a local minimum, as a function of θ0, for
all n > N. Thus the cosine function (27) is (in one
particular sense) an optimal choice of shading function.

Appendix B. Chebyshev Shading

Here we take a different (and in many ways better)
approach to optimally shading a circular-arc array to
achieve broadband constant directivity. Again we seek
a shading function S(θ) of the form (21). We employ
the following strategy to obtain a function whose co-
sine series is concentrated in the lowest-order terms:
we let f (θ) be a low-order polynomial in cosθ , chosen
so that f (θ) vanishes, as nearly as possible, throughout
the interval [θ0,π]. When we form S(θ) by truncating
f (θ) to zero on this interval, as in (21), its cosine se-
ries coefficients an will change very little, and so will
remain concentrated in the lowest orders.

To this end, let S(θ) be given by (21) where

f (θ) = P(cosθ) (29)

and P is a polynomial of degree N. We want the maxi-
mum of |P(x)| to be as small as possible for x∈ [−1,x0]
where x0 = cosθ0. This criterion uniquely determines

that P(x) is a Chebyshev polynomial [20]. (Alterna-
tively we could seek to minimize P(x) in the least-
squares sense, in which case P is a Legendre polyno-
mial. This gives a shading function that is only slightly
different.)

The first few Chebyshev polynomials TN(u) are given,
up to a multiplicative constant, by

T1(u) = u T3(u) = 4u3−3u

T2(u) = u2−1 T4(u) = 8u4−8u2 +1.
(30)

Each TN is the monic polynomial of degree N whose
maximum absolute value on [−1,1] is a minimum [20,
p. 36]. Moreover, each |TN(u)| maximizes its values
(relative to this minimum) outside the interval [−1,1].

To obtain the polynomial P(x) that vanishes as nearly
as possible on [−1,x0] we form P(u(x)) where u(x) is a
linear function that takes x ∈ [−1,x0] to u ∈ [−1,1] [20,
p. 37]. This gives the shading function

f (θ) =P
(
u(cosθ)

)
= TN

(
2 · 1+ cosθ

1+ cosθ0
−1
)
. (31)
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