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ABSTRACT

We develop the theory for a broadband constant-beamwidth transducer (CBT) formed by a conformal circular-arc
line array of dipole elements. Appropriate amplitude shading of the source distribution leads to a far-field radiation
pattern that is constant above a cutoff frequency determined by the prescribed beam width and arc radius. We
illustrate the theory with examples, including numerical simulations of magnitude responses, full-sphere radiation
patterns and directivity index. Unlike a circular-arc array of monopole elements, a dipole CBT maintains directivity
control at low frequency. We give an example of one such array that achieves just 1 dB variation in directivity index
over all frequencies.

1 Introduction

Taylor and Keele in [1] developed a comprehensive
theory for constant directivity circular-arc (CBT) line
arrays. There the arrays were assumed to be formed
by a continuous line source of monopole (point source)
elements in a circular arc. With appropriate frequency-
independent amplitude shading, such an array provides
a far-field radiation pattern that is constant above a
certain cutoff frequency. The cutoff frequency is deter-
mined by the arc radius and the prescribed beam width
of the radiation pattern in the plane of the array.

However, it was determined that the array’s behav-
ior below the cutoff frequency does not provide any
directivity control whatsoever (an observation also
corroborated by Keele’s earlier simulations and mea-
surements [2, 3]). This is due to the inherent omni-
directional behavior of the monopole source elements
forming the array. At frequencies significantly lower
than the cutoff frequency, where the acoustic wave-
length becomes larger than the array dimensions, the
radiation pattern approaches the omni-directional char-
acteristic of the source elements (hence a directivity
index of 0 dB).

This paper considers a modified form of circular-arc
line array that is composed not of monopole point
source elements but of directional dipole source ele-
ments. In this situation, it is assumed that the orienta-
tion of the dipole elements conforms to the circular arc,
with each element aiming outwards from the arc’s cen-
ter of curvature, as illustrated later in Fig. 1. The use of
dipole elements to form the array provides significant
and usable array directivity at low frequencies, which is
due to the inherent broadband directivity (4.7 dB direc-
tivity index) of the individual dipole elements’ radiation
pattern.

In other words, this paper builds on the CBT concept
by forming a broadband constant-directivity shaded
circular-arc source based on dipole sources. The con-
ventional CBT array analyzed in [1] is not broadband
because it provides significant directivity only above
its cutoff frequency. By contrast, a dipole CBT array
provides directivity control at all frequencies.

The aim of this paper is to develop a theory for the
dipole CBT concept and explore its possibilities. The
paper is structured as follows. In the next section we
consider the general theory of radiation from a confor-
mal circular array of dipoles. We derive an expression
for the far-field radiation pattern of such an array, in
terms of an expansion of the shading function in circu-
lar harmonics, and note that a full-circle dipole array
cannot produce a usable broadband response. We then
use this theory to derive conditions on the amplitude
shading that guarantees a frequency-independent beam
pattern and constant directivity, which is possible if the
radiating portion of the circle is restricted to an arc of
180◦ or less.

As in our previous paper [1] we explore further two
classes of optimized shading functions, adapted to
circular-arc arrays, that achieve broadband constant
directivity with control over beam width. One is based
on a simple cosine function and the other a Chebyshev
polynomial. Both shading functions provide excellent
beamwidth control.

Finally we present results and simulations that illus-
trate the application of our theory to the design of both
narrow- and wide-beam arrays. We illustrate and com-
pare the performance of two different arrays with mag-
nitude response graphs at different angles and with
full-sphere radiation patterns comparing arrays with
both monopole and dipole elements.

We further note that a CBT array composed of dipole el-
ements completely eliminates the monopole CBT array
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Fig. 1: Geometry of a circular line source of dipoles.

problem of response peaks on either side of the plane
of the array, because each dipole element presents a
null along this axis. This is a great advantage of the
dipole CBT array over the monopole CBT array.

2 Circular Array of Dipoles: Theory

Consider a time-harmonic line source in the form of
a circle of radius a, in free space, as shown in Fig. 1.
The source elements are taken to be radially-oriented
dipoles. (Such an array is said to be conformal [4], in
that the element orientation changes with the orienta-
tion of the array surface.) We adopt a coordinate system
in which the circle lies in the xz-plane, with its center
at the origin. We take the x-axis (θ = φ = 0) to be the
primary “on-axis” direction of the resulting radiation
pattern. We assume the source distribution is iso-phase
and continuous, with strength that varies with polar
angle α according to a dimensionless and frequency-
independent “shading function" S(α) (sometimes also
called the amplitude taper).

Referring to Fig. 1, the pressure at O in the far field due
to a dipole source at Q, with unit acceleration amplitude,
is given (up to a multiplicative constant) by

cosφ cos(θ −α) · ke−ikR

R
(1)

where k is the wave number [5, p. 312]. Summing such
source contributions around the circle gives the total
(complex) pressure p via the Rayleigh integral

p(r,θ ,φ) =
∫ 2π

0
S(α)cosφ cos(θ −α)

ke−ikR

R
·adα

(2)
where

R =
√

a2 + r2−2ar cosφ cos(θ −α)

≈ r−acosφ cos(θ −α) (r� a). (3)
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Fig. 2: Mode amplitudes: on-axis far-field pressure,
as a function of dimensionless frequency ka,
for radiation from a circular array of dipole
elements with cos(nθ) amplitude shading.

On making the usual far-field (r� a) approximations
and the change of variables u = α−θ , eq. (2) gives

p =
e−ikr

r
kacosφ

∫ 2π

0
S(u+θ)cosueikacosφ cosu du.

(4)

We assume the shading function S(α) is even, so it can
be expressed as a Fourier cosine series

S(α) =
∞

∑
n=0

an cos(nα) (5)

(sometimes called an expansion in circular harmonics).
We refer to each term in eq. (5) as a shading mode. On
substitution into eq. (4) this gives the far-field radiation
pattern

p =
e−ikr

r
kacosφ

∞

∑
n=0

an fn(kacosφ)cos(nθ) (6)

with
fn(x) = 2πinJ′n(x) (7)

where Jn is a Bessel function of the first kind [6].

Remarks

• Eq. (6) shows that each circular harmonic shading
mode radiates a corresponding far-field pattern
of the same polar form. The amplitude of each
radiation mode is given by a factor fn(kacosφ)
(the “mode amplitude”) that depends only on φ

and the dimensionless frequency ka.

• Therefore, for a full-circle array of dipoles with
single-mode amplitude shading S(α) = cos(nα),
the far-field radiation pattern in any vertical plane
through the origin (constant φ ) is identical to the
shading function, at all frequencies.
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• For any single shading mode, destructive interfer-
ence between opposite sides of the array causes a
series of nulls in the frequency response, as illus-
trated in Fig. 2 which plots the mode amplitudes
as a function of frequency. Eqs. (6)–(7) show that
these nulls occur when kacosφ coincides with an
extremum of Jn(x).

• Owing to these frequency response nulls, a full-
circle dipole array with single-mode shading can-
not produce a usable broadband response. Ev-
erywhere in the far field, there are frequencies at
which the array radiates zero pressure amplitude.

2.1 Low Frequency Limit

If a1 6= 0 then using the asymptotic form [6]

Jn(x)≈
1
n!

( x
2

)n
(x� 1) (8)

in eq. (6) gives, to leading order in ka,

p≈ a1
e−ikr

r
πikacosφ cosθ . (9)

Thus, at low frequency the array as a whole radiates
like a single dipole at the origin, oriented along the
x-axis, with strength determined by the coefficient a1.
As Fig. 2 and eq. (6) show, all other shading modes
radiate more inefficiently; at sufficiently low frequency
their contribution to the far-field radiation is negligible.

3 Conditions for Constant Beam Pattern

Here we derive conditions on the shading function S(α)
such that the radiation pattern (4) is independent of
frequency. The Bessel functions have the asymptotic
form [6]

Jn(x)≈
√

2
πx

cos(x−n π

2 − π

4 ) (x� n), (10)

which on substitution into (7) gives, after some algebra,

fn(x)≈
√

8π

x

{
cos(x+ π

4 ) n even
isin(x+ π

4 ) n odd.
(11)

Thus, provided

x≡ kacosφ � n (12)

for all non-negligible terms in (6), we obtain

p≈ e−ikr

r

√
8πx
[

Se(θ)cos(x+ π

4 )+ iSo(θ)sin(x+ π

4 )

]
(13)

where

Se(θ) = ∑
n even

an cos(nθ),

So(θ) = ∑
n odd

an cos(nθ).
(14)

Eq. (13) gives the pressure magnitude

|p|=
√

8πx
r

√
S2

e(θ)cos2(x+ π

4 )+S2
o(θ)sin2(x+ π

4 ).

(15)
If |Se(θ)|= |So(θ)| for all θ then we obtain the far-field
pressure

|p|= 1
r

√
8πkacosφ

∣∣So(θ)
∣∣. (16)

Note that the amplitude of this radiation pattern
varies with frequency, but its shape does not.

Thus, the far-field radiation pattern of an amplitude-
shaded circular array of dipoles will be independent of
frequency, provided the shading function S(α) satisfies
the following conditions:

1. S = So + Se with So, Se given by eq. (14) and
|So(α)|= |Se(α)| for all α .

2. For all non-negligible coefficients an in the cosine
series (5) for S(α) we have kacosφ � n.

These conditions are identical to those discussed in [1]
for a circular array of monopole elements. Hence, the
same conclusions follow. The most important of these
are as follows:

• Condition 1 is satisfied if the array is active only
on a half-circle on one side of the yz-plane in
Fig. 1, i.e. if S(α) = 0 for |α| > π

2 . In this case
the vertical radiation pattern given by eq. (16) is
|S(θ)|/2 and thus is identical to the shading func-
tion in any vertical plane through the origin (con-
stant φ ).

• Condition 2 ensures a constant radiation pattern
above a cutoff frequency determined by the re-
quirement that kacosφ � nmax where nmax is the
largest n for which the cosine series coefficient
an is non-negligible. This condition results in a
higher cutoff frequency at greater off-axis angles.

• For frequencies above cutoff, eq. (16) predicts that
the far-field pressure decreases at 3 dB/oct with
decreasing frequency. Importantly, the response
nulls seen for single-mode shading (Fig. 2) are
absent.

• The limiting radiation pattern given by eq. (16) is
symmetric across the vertical (yz) plane, although
the array is not.
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4 Optimal Shading

To minimize the cutoff frequency (and thereby achieve
a constant radiation pattern over the widest possible
band) we require that condition (12) be satisfied down
to the lowest frequencies possible. Thus we require
a shading function whose Fourier spectrum is concen-
trated in its lowest-order terms. This criterion is identi-
cal to that encountered for circular arrays of monopole
elements [1], so that shading functions for that case are
equally suitable here.

In [1] we derived circular-arc shading functions of the
form

S(θ) =

{
f (θ) |θ |< θ0

0 otherwise
(17)

where θ0 is the given half-angle of the circular arc on
which the array is active. To concentrate the cosine se-
ries coefficients an in the lowest-order terms, we found
that good candidates for the function f (θ) are

f (θ) = cos
(

π

2
· θ

θ0

)
(18)

and

f (θ) = TN

(
2 · 1+ cosθ

1+ cosθ0
−1
)

(19)

where TN is a Chebyshev or Legendre polynomial of
degree N. The parameters θ0 and N determine the arc
coverage and the beam width in the plane of the array.

For the special case θ0 = π

2 , Jarzynski and Trott [7]
showed that the shading function

S(θ) = n
2n+1 cosn

θ + cosn+1
θ + n+1

2n+1 cosn+2
θ (20)

is also a good candidate. Here the parameter n controls
the beam width.

5 Examples

Here we illustrate our theory by investigating the radia-
tion patterns of circular-arc arrays based on two partic-
ular shading functions. One is the degree-6 Chebyshev
polynomial shading

S(θ) =

{
T6
(
2 · 1+cosθ

1+cos52◦ −1
)
|θ | ≤ 52◦

0 |θ |> 52◦
(21)

which has a −6 dB half-angle of 25◦ in the plane of the
array. The other is the cosine shading

S(θ) =

{
cos
( 9

7 θ
)
|θ | ≤ 70◦

0 |θ |> 70◦
(22)

which has a fairly wide −6 dB half-angle of 47◦.
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Fig. 3: Far-field magnitude response at various angles
θ in the plane of a dipole array with the Cheby-
shev shading of eq. (21).

Below we present numerical simulations of the radia-
tion patterns that result in these two cases. To facilitate
comparison with previous work on CBT arrays of point
sources [1, 2, 3, 8, 9], we present results for arrays of
both monopole and dipole source elements with identi-
cal shading. For the dipole case we have calculated the
radiation patterns by numerical quadrature (adaptive
Simpson’s rule) of the Rayleigh integral in eq. (4). For
the monopole case we used eq. (3) of [1].

5.1 Magnitude Response

Fig. 3 shows the raw (unequalized) far-field magni-
tude responses at various angles θ in the plane of a
circular-arc array of dipole elements, with the narrow-
beam Chebyshev shading of eq. (21). The responses
are plotted against the dimensionless frequency ka (for
reference, an array of radius a = 1 m has ka = 1 at
54 Hz). Fig. 3 confirms several aspects of the theory
outlined above:

• There is a clear cutoff frequency (near ka ≈ 10)
above which the radiation pattern transitions from
a dipole pattern to a frequency-independent pat-
tern determined by the shading function.

• Below cutoff the level drops at 6 dB/oct toward
low frequency, as predicted by eq. (9).

• Above cutoff the level rises at 3 dB/oct, as pre-
dicted by eq. (16).

• As expected, the cutoff frequency is higher at
greater off-axis angles. On-axis the transition band
between low- and high-frequency regimes spans
about one octave; at greater off-axis angles the
transition band is wider.

Page 4 of 9



Taylor, Manke and Keele Circular-Arc Dipole Line Arrays

In sharp contrast with the single-mode responses of
Fig. 2, there are no nulls or even significant ripples
in the far-field responses shown in Fig. 3. The array
provides a usable broadband response, albeit one that
requires significant equalization.

The raw response of a dipole CBT line array is quite
different from that of a CBT array of monopole ele-
ments, for which the response is 0 dB/oct below cut-
off and −3 dB/oct above cutoff [1]. The difference
is 6 dB/oct across all frequencies, as might be antici-
pated in going from monopole to dipole elements. The
required equalization curves are correspondingly differ-
ent: whereas an array of monopole elements requires
+3 dB/oct equalization above cutoff, the corresponding
dipole array requires −3 dB/oct equalization together
with a low-frequency dipole equalization of 6 dB/oct.

For both monopole and dipole source elements, Fig. 4
shows far-field magnitude responses normalized to
the on-axis (θ = 0) response, for circular-arc arrays
with the narrow-beam Chebyshev shading (21). Above
ka ≈ 10 the constant magnitude responses indicate a
frequency-independent beam pattern in the plane of
the array; this pattern is the same for both monopole
and dipole cases, and is determined by the shading
function. Fig. 4 also confirms that, as expected, at low
frequency the array of monopole elements tends to an
omni-directional pattern while the array of dipole ele-
ments tends to a dipole pattern (−6 dB at 60◦ off-axis).

Fig. 5 shows the corresponding responses in the case of
the wide-beam cosine shading of eq. (22). The cutoff
frequency ka≈ 3 is now lower, and there is some ripple
(about ±1 dB) in the transition band. In the case of
dipole elements, this ripple is much reduced. In all
other respects the response curves in Fig. 5 are exactly
as as our theory predicts.

5.2 Full-Sphere Radiation Patterns

To further illustrate the differences between circular-
arc arrays of dipole vs. monopole source elements,
Fig. 6 shows the full-sphere radiation patterns (polar
balloons), normalized on-axis, for arrays with the wide-
beam cosine shading of eq. (22). Fig. 6 illustrates sev-
eral key aspects of the theory developed here and in [1]:

• At low frequency the array of monopole elements
exhibits a monopole pattern; the array of dipole
elements radiates in a dipole pattern.

• Above cutoff (ka≈ 5) both arrays transition to a
frequency-independent pattern, which is the prod-
uct of a vertical pattern determined by the shad-
ing function and a horizontal pattern of the form
1/
√

cosφ (monopole case) or
√

cosφ (dipole

case). At greater off-axis angles the pattern takes
longer to settle down.

• The response peaks along the y-axes in the
monopole case (due to in-phase superposition of
radiation from all source elements) are absent in
the dipole case, since in the far field each dipole
element presents a null along the y-axes.

• As a result, in the dipole case the radiation pattern
is much more consistent between the high- and
low-frequency regimes, which leads to much less
variation in directivity.

5.3 Directivity Index

The directivity index characterizes the directivity of a
radiation pattern p(r,θ ,φ) in terms of the ratio of the
on-axis intensity to that of a point source radiating the
same total power [10]. For the coordinate system of
Fig. 1 the directivity index is given by

DI = 10log10
4π|p(r,0,0)|2∫ 2π

0
∫ π/2
−π/2 |p(r,θ ,φ)|2 cosφ dφ dθ

.

(23)

For both our narrow- and wide-beam shading exam-
ples, and for both monopole and dipole source ele-
ments, Fig. 7 shows the directivity index as a function
of dimensionless frequency ka, calculated by numerical
quadrature of eq. (23). In the dipole case eq. (4) was
used for the radiation pattern; in the monopole case we
used equation (3) from [1].

As expected, at low frequency the monopole arrays
exhibit 0 dB directivity (monopole radiation) while the
dipole arrays have 4.7 dB directivity (dipole radiation).
All four examples show increasing directivity in a tran-
sition band around the cutoff frequency, above which
the directivity becomes constant as determined by the
shading function. For both shading functions the dipole-
element case comes closer to achieving constant di-
rectivity, since there is less loss of directivity at low
frequency.

Our cosine-shaded dipole array (Fig. 8, solid line)
in particular exhibits remarkably constant directivity
(±0.5 dB) across all frequencies. For this array there
is very little difference between the radiation patterns
above and below cutoff; a slight widening in the hor-
izontal pattern is compensated by a narrowing in the
vertical pattern (see Fig. 6).
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Fig. 4: Far-field magnitude responses at various angles θ in the plane of the array, normalized to the on-axis (θ = 0)
response, for a circular-arc array of (a) a monopole sources, and (b) dipole sources. The shading in both
cases is the narrow-beam Chebyshev shading of eq. (21).
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Fig. 5: Far-field magnitude responses at various angles θ in the plane of the array, normalized to the on-axis (θ = 0)
response, for circular-arc arrays of (a) a monopole sources, and (b) dipole sources. The shading in both
cases is the wide-beam cosine shading of eq. (22).
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Monopole Elements Dipole Elements

ka = 1:

ka = 5:

ka = 10:

ka = 20:

ka = 50:

Fig. 6: 3D radiation patterns for circular-arc arrays of both monopole and dipole elements, with the wide-beam
cosine shading of eq. (22). The array is oriented as shown in Fig. 1. All plots are normalized on-axis.
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Fig. 7: Directivity index vs. frequency for circular-arc arrays with (a) the narrow-beam Chebyshev shading of
eq. (21), and (b) the wide-beam cosine shading of eq. (22). In both cases, results are shown for arrays of
both dipole [solid] and monopole [dashed] source elements.

6 Conclusion

We have shown that a constant-directivity source can be
formed by a circular-arc array of dipole source elements
with frequency-independent amplitude shading. The
theory developed here is a natural extension of that pre-
sented in [1] for circular arrays of monopole elements,
which in turn is an adaptation of the corresponding
theory for spherical-cap arrays [7, 11]. An appropriate
choice of shading function leads to constant-directivity
behavior. Several suitable shading functions appear in
the literature, giving the designer access to a variety of
beam shapes and widths. The shading function directly
determines the radiation pattern in the plane of the array
and, together with the arc radius, also determines the
cutoff frequency above which a frequency-independent
radiation pattern is achieved.

In terms of managing directivity, a dipole CBT ar-
ray has several advantages over previous CBT designs
based on monopole elements [1, 2, 3, 8, 9]. A conven-
tional CBT array becomes omnidirectional below its
cutoff frequency (when the array arc is smaller than
the acoustic wavelength). This necessitates very large
arrays if constant directivity is to be achieved over
the whole audio band. By contrast, a CBT array of
dipole elements radiates with a dipole pattern (hence
with 4.7 dB greater directivity) at low frequency. This
makes it possible to achieve broadband constant direc-
tivity with small arrays.

At high frequency, a conventional CBT array presents
a strong amplitude peak (tens of dB relative to on-axis)
along the axis of the circular arc. Although this peak
radiates into a small solid angle, and so has little effect
on overall directivity, it may nevertheless be undesir-
able in some applications. A dipole CBT avoids this
issue, by placing the dipole null of individual source
elements where these peaks would otherwise occur.

Dipole sources are very inefficient radiators, with a
response that falls off at 6 dB/oct at low frequency. In
a practical implementation this must be compensated
by equalization, together with a large radiating area
(e.g. in the case of electrostatic panels) and/or large
linear displacement (e.g. in the case of conventional
piston drivers in an open baffle). This leads to consider-
able engineering challenges, since large displacement
typically incurs high distortion, while to maintain a
frequency-independent radiation pattern one requires
that the source be acoustically small. CBT dipole ar-
rays address both these issues: being acoustically large
by design, a dipole CBT provides a scalable way to
increase radiating area without compromising the ra-
diation pattern. Indeed, making a CBT array larger
actually increases the bandwidth over which constant
directivity is achieved.

The low-frequency roll-off of a dipole CBT array must
be compensated by equalization if the goal is a flat
magnitude response. A naked dipole requires 6 dB/oct
equalization at low frequency, which quickly runs into
practical limits on driver excursion and signal head-
room. However, the raw responses shown in Fig. 3
give an indication of the milder equalization required
by a dipole CBT array: above cutoff the slope is only
3 dB/oct. Only below cutoff does the slope increase
to 6 dB/oct; with larger arrays the bandwidth of this
more demanding regime is reduced. The equalization
required for a dipole CBT is quite different from that
for an array of monopole elements, which requires only
a +3 dB/oct boost above cutoff.

A practical device implementing our theory could be
formed by a discrete array of conventional drivers,
much like that in [3] but with an open baffle. Such
a device would necessarily be an approximation of the
continuous line source considered here. Several engi-
neering issues arise that are beyond the scope of the
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present work. These include effects of discrete sam-
pling of the continuous shading function, spatial alias-
ing due to finite source spacing, the finite size of both
source and baffle, mutual coupling, and the departure
of radiating elements from ideal dipole behavior. Much
of the relevant theory is presented in [4], and we plan
to address these practical issues in subsequent work.
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