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Questions:

» Two musical instruments playing the same note still sound
different. Why?

» Some musical intervals sound consonant (“good”?), others
dissonant (“bad”?). Why?
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Sound

» Pressure disturbances in air propagate as waves

» Air pressure (within a given frequency band) incident on the
ear’s basilar membrane is perceived as sound

» Music is organized sound
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Musical Tones

» periodic sound pressure is perceived as a musical tone:

" N e

>

period T = % = %’T

> the frequency f [Hz = cycles/sec] is perceived as pitch

higher f < higher pitch

» a pure tone of frequency f is sinusoidal:

P(t) = Asin(2rft + ¢)
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Frequency and Pitch

» Pitch perception is logarithmic in frequency:

pitch: p=logf

» So translation in pitch is multiplication in frequency:

p=p1+p&f=HhHh

» An pitch interval Ap = p1 — p» corresponds to a ratio of
frequencies f1 : f.
» A sequence of equally spaced pitches (musical scale)

{po, po + Ap, po + 2Ap, po + 3Ap, ...}

is a geometric sequence in frequency:

{fo, afy, a®fy, afy, ...}
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C major scale (equal temperament)
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Subset of the 12-tone chromatic scale:

f, = 440-2"'2 (p=—5—4, ...

pitch  frequency f, [Hz]

261.6
293.6
329.6
349.2
392.0
440.0
493.8
523.2
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Limits of Hearing

Hearing Ranges in Various Species

dolphin [ ]
bat |
mouse [ |
rat [ |
cat [
dog [ |
rabbit [ |
human . |
sparrow
pigeon [ |
frog [ |
goldfish [ |
turtle |

10t 10% 10° 10* 10°

frequency f [Hz]

Source: R.Fay, Hearing in Vertebrates: A Psychoacoustics Databook. Hill-Fay Associates, 1988.
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Vibrations in Musical Instruments

» Sound waves are made by a vibrating body (plucked string,
hammered block, etc).

> A freely vibrating body is described by the partial differential
equation (wave equation)

d%u

92 = c2V2u (with initial & boundary conditions)

u(x, t) = displacement from rest at time t at point x € R".
0%u
Ox?
0%u . 0%u
Ox2 ~ 0y?

on R
V? = Laplacian operator =

on R?



Vibrations in Musical Instruments

Example: string fixed at both ends.
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Vibrations in Musical Instruments

Example: string fixed at both ends.

i

u(z,t)

Y

*u_ o
a2~ © ox2
u(0,t) = u(L, t)

=0
u(x,0) = f(x),  ue(x,0) = g(x)

(boundary conditions)
(initial conditions)
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Wave equation: Separation of variables

d%u

92 = c*V2u (with initial & boundary conditions)

Assume u(x, t) = X(x) T (t):
2
= gtg — V2

= XT" - 2TV?X

0

17" VX
2T, X
~—— ~—
indep of x indep of t

=\ (constant)



Wave equation: Separation of variables

17 VX

27~ x



Wave equation: Separation of variables

1T VX
2T X
T+ AT =0

= T(t) = Asin(VAct +¢) (A ¢ € R)



Wave equation: Separation of variables

1T VX
2T X
T+ AT =0

= T(t) = Asin(VAct +¢) (A ¢ € R)

V2X = AX (+ boundary conditions)
— ) is an eigenvalue of V?



Wave equation: Separation of variables

1T VX
2T X
T+ AT =0

= T(t) = Asin(VAct +¢) (A ¢ € R)

V2X = AX (+ boundary conditions)
— ) is an eigenvalue of V?

By linearity:
u(x,t) = Z Apsin(v/Anct + ¢n)fa(x)
n=1

where A, are eigenvalues, f, are eigenfunctions of V2.
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Vibrations in Musical Instruments

Summary: motion of a freely vibrating body is
u(x,t) =Y Ansin(y/Anc t + ¢n)fa(x).
n=1 w

Key points:
» Superposition of vibrational modes (pure tones)

wn = v/ AncC

A, are eigenvalues of V2 (for given domain & bc's)

» Frequencies are

» Amplitudes A, determined by initial conditions

» Smallest A\, gives the fundamental tone; other modes give
upper partials



Example: string with fixed ends
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u(z,t)

Y



Example: string with fixed ends

| L

Eigenvalue problem V2f = Af in 1-D becomes

ﬁ =AM = f(x) = Asin(V/Ax) + B cos(V/Ax)
dx? ‘

Ry



Example: string with fixed ends

Ry

| L

Eigenvalue problem V2f = Af in 1-D becomes
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f(x) = Asin(vVAx).



Example: string with fixed ends

Ry

| L

Eigenvalue problem V2f = Af in 1-D becomes

ﬁ =AM = f(x) = Asin(V/Ax) + B cos(V/Ax)
dx? ‘

Boundary condition f(0) = 0 implies B = 0 so
f(x) = Asin(vVAx).
Boundary condition f(L) = 0 gives

0=Asin(VAL) = /AL=nr (n=0,1,2,...)
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Example: string with fixed ends

Frequencies of vibrational modes are given by
n’m? nmc
A”:7L2 éwn:\/AnC:T (n:172,3,...)
The eigenfunctions (modes) themselves look like

. nmXx

fo(x) = .
»(x) = sin T




Example: string with fixed ends

Frequencies of vibrational modes are given by
n’m? nmc
A= = wn=VAe=—— (n=1,23,..)
The eigenfunctions (modes) themselves look like
nmx
T
n=1 n=2 n=3

" " N

fa(x) = sin

| |
| L L

The string’s motion is a superposition of these:

u(x, t) = Z Apsin(wnt + ¢n)fa(x)
n=1
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» What we hear is a superposition of pure tones:
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(the harmonic series).
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Example: string with fixed ends

» What we hear is a superposition of pure tones:

P(t) = Apsin(wnt + ¢n)
n=1

at discrete frequencies

(the harmonic series).
» Frequencies w, are integer multiples of the fundamental w;.

» Sound perception is independent of the phase ¢,,.



Example: string with fixed ends

For a guitar string playing the note A (440 Hz) we hear:
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Example: string with fixed ends

For a guitar string playing the note A (440 Hz) we hear:

) n=1
=
i<y n=2
% | n=3 5,4 n=5
g | I I I
440 880 1320 1760 frequency (Hz)
fundamental upper partials......
First 7 upper partials for low C:
7 b
)4
Y 4\
[ fan P
VvV ~
[y, =

N
o




Timbre

timbre: the quality or tone distinguishing voices or instruments



Timbre

timbre: the quality or tone distinguishing voices or instruments

Timbres of different instruments are distinguished primarily by the
frequencies and amplitudes of their spectra:

o Violin
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'” n=1 n=2 n=3 n=4n=>5 freq
m Clarinet

=

>,
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2

3

*é 1 . | . | | 1

n=1 n=2 n=3 n=4n=>5 freq
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Amn = nt" root of J,(A), the Bessel function of order m



Timbre

Eigenvalues of V? for various instruments:
» Strings:
An=n
» Wind instruments:

An = n? or (2n+ 1)? (depending on bc's)

» Circular drums:

Amn = nt" root of J,(A), the Bessel function of order m
» Vibrating bars: (e.g. xylophone, marimba)

{)\,, = (2n+1)* (transverse virbations)
2

Am=m (longitudinal vibrations)
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Consonance & Dissonance

» A musical interval is a given difference in pitch (hence
frequency ratio f; : f;) between two tones.

» Some intervals sound consonant (“good”?), others
dissonant (“bad"?)

» Pythagoras: an interval is consonant if the frequencies are in a
simple integer ratio:
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i:h=1:2 fi:h=2:3 fi:h=4:3

» But why??



Consonance & Dissonance

A wrong explanation (Galileo and many others):
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Consonance & Dissonance
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Consonance & Dissonance

“The pulses delivered by the two tones ... shall be
commensurable in number, so as not to keep the
ear-drum in perpetual torment. .. "
Galileo Galilei
Dialogues Concerning Two New Sciences (1638)
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Galileo Galilei
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Consonance & Dissonance

“The pulses delivered by the two tones ... shall be
commensurable in number, so as not to keep the
ear-drum in perpetual torment..."
Galileo Galilei
Dialogues Concerning Two New Sciences (1638)

» However. .. for pure tones a mis-tuned interval isn't dissonant!

» The reality: dissonance comes from upper partials.
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A better explanation:
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Consonance & Dissonance

A better explanation:
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Consonance & Dissonance

A better explanation:
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Consider spectra of upper partials for these tones:

fi: 220 Hz, 440 Hz, 660 Hz, 880 Hz, 1100 Hz, 1320 Hz, ...
f>: 440Hz, 880 Hz, 1320Hz, 1760Hz, ...

n=1

n=2
| n=3p,=4

n=1 n=2 n=3n=4 req (Hz)

intensity (dB)




Consonance & Dissonance
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» Upper partials coincide and reinforce each other.
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» Upper partials coincide and reinforce each other.

» The effect is one of altered timbre.



Consonance & Dissonance

3
I
—_

= n=

— I Y S N R
n=1 n=2 n=3n=4 freq (HZ)

intensity (dB)
\
[N

| n=3 4

» Upper partials coincide and reinforce each other.
» The effect is one of altered timbre.

» Invidividual tones are difficult to distinguish.
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Consonance & Dissonance

Similarly for a perfect fifth:
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Again, some of the upper partials coincide:

n=1

intensity (dB)
Il
Do

n=1 n=2 n=3

at common multiples of the fundamentals.
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» If the fundamentals are in the ratio
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upper partials coincide for every common multiple of m, n.

» Lowest common multiple is mn. The n'th partial of f;
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» Simple integer ratios emerge as intervals with strongest
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Consonance & Dissonance

So generally. ..

» If the fundamentals are in the ratio
fi:h=m:n

upper partials coincide for every common multiple of m, n.

» Lowest common multiple is mn. The n'th partial of f;
coincides with the m'th partial of f.

» Effect is more audible if the product mn is smaller.

» Simple integer ratios emerge as intervals with strongest
mutual reinforement.

» But this doesn't really explain dissonance of other intervals.
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Consonance & Dissonance

An even better explanation:

4
)" 4
’I’|‘\ O
AN V4
J o
C c
fi:h=1:2

Consider spectra for a slightly mistuned octave:

= n=1

=

B n=2

z || n=3 5=y

< | | Y I T

=] I freq (H
a n=1 n=2 n=3 n=4 req (H2)

Previously coincident partials now differ.
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Similarly for the perfect fifth:
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Consonance & Dissonance

Similarly for the perfect fifth:

intensity (dB)

n=1
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)" 4
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C G
fi:Hh=3:2
n =

=9 .
| | n=3, -4

n=1 ' n=2

n=3 n=4

freq (Hz)
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Beats

If two pure tones of nearly equal frequency are sounded
simultaneously, beats are heard:

Mo b s a L n
' ""V ""' ""' "'
sin(wyt) + sin(wat) = 2 cos <w1;w2t) sin <w1—2ﬂd2t)

slow modulating term

beat frequency: fheat = |1 — f2|
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fbeat = |f1 - f2’

> fheat S 10Hz = slow modulation (tremolo), not unpleasant

> fheat =, 50Hz = beat frequency becomes an audible tone



Beats

‘V\/\A AN A AN A A
WY SVY Y VY VY TV

fbeat = |f1 - f2’

> fheat S 10Hz = slow modulation (tremolo), not unpleasant
> fheat =, 50Hz = beat frequency becomes an audible tone

» 10Hz < fhear < 50 Hz gives a “rough”, unpleasant feeling
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Beats

» Maximum dissonance occurs for |f; — f| ~ 30Hz

» Dissonance d depends (subjectively) on |fi — f|:

dh

»
L

30 Hz

(Plomp & Levelt, 1965)
» We can model this with:

d(x) =

60 Hz

(x/30)

(1+ 3(x/30)2)*

|fi = fa



Consonant Intervals

» When two notes are sounded, dissonance potentially arises
from beating between every pair of partials.

n=1

=2
| | n=3 5,4

|| [ I T I
! ! fi H
n=1 n=2 n=3 n=4 req (Hz)

intensity (dB)
S
I



Consonant Intervals

» When two notes are sounded, dissonance potentially arises
from beating between every pair of partials.

) n=1

=

= n=2

Y
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= n=1 n=2 n=3 nI:4 o freq (Hz)
» Mistuned fifth (f; : f, = 3:2) with 4 = 220 Hz and

f, = 335 Hz:

fi: 220 Hz, 440 Hz, , 880 Hz, 1100Hz, 1320 Hz, ...

f>: 335 Hz, , 1005 Hz, 1340 Hz, 1675Hz, ...



Consonant Intervals

» When two notes are sounded, dissonance potentially arises
from beating between every pair of partials.

) n=1

=

= n=2

Y

= ] ] | | ] 1

= n=1 n=2 n=3 nI:4 o freq (Hz)
» Mistuned fifth (f; : f, = 3:2) with 4 = 220 Hz and

f» = 335 Hz:

fi: 220 Hz, 440 Hz, , 880 Hz, 1100Hz, 1320 Hz, ...

f>: 335 Hz, , 1005 Hz, 1340 Hz, 1675Hz, ...

» Near-concidence of upper partials causes beating:

670 —660 = 10Hz and 1340 — 1320 = 20 Hz.
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A simple model for relative consonance of intervals:

» Two notes with fundamental frequencies f; and f,, hence two
sequences of partials
{f,2f,3A,...} ={mA:m=1,2,...}
{f,2f,3h,...} ={nfa:n=1,2,...}



Consonant Intervals

A simple model for relative consonance of intervals:

» Two notes with fundamental frequencies f; and f,, hence two
sequences of partials

{f,2f,3A,...} ={mA:m=1,2,...}
{f,2f,3h,...} ={nfa:n=1,2,...}

» Sum dissonances over all pairs of partials:

total dissonance = Z Z d(|mfi — nf|)

(x/30)
(1+ 3(x/30)2)*

d(x) =



Consonant Intervals

Fix f; and calculate dissonance as a function of f:

total dissonance = Z Z d(|mfy — nf|)
—_——

m . .
dissonance of pair m, n

Summing over the first 7 partials:

dissonance




Consonant Intervals

Fix f; and calculate dissonance as a function of f:

total dissonance = ZZ d(|mfy — nf|)
— —

m n . .
dissonance of pair m, n

Summing over the first 7 partials:

dissonance
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Consonant Intervals

Fix f; and calculate dissonance as a function of f:

total dissonance = Z Z d(|mfi — nf|)
—_—

m . .
dissonance of pair m, n

Summing over the first 7 partials:
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Consonant Intervals
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» Consonant intervals are local minima of dissonance.
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» Consonant intervals are local minima of dissonance.

» Including more partials introduces more local minima.
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» Consonant intervals are local minima of dissonance.
» Including more partials introduces more local minima.

» Strongest consonances are lowest minima.



Consonant Intervals

o]
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=
2
=
8
wn
.2
= L1 I -
9 65 4 3 5
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» Consonant intervals are local minima of dissonance.
» Including more partials introduces more local minima.
» Strongest consonances are lowest minima.

» Depth of each minimum determines how well characterized
each consonance is (i.e. relative to adjacent intervals).
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» Consonant intervals are local minima of dissonance.
» Including more partials introduces more local minima.
» Strongest consonances are lowest minima.

» Depth of each minimum determines how well characterized
each consonance is (i.e. relative to adjacent intervals).

» Dissonance curve is a consequence of the underlying timbre
(spectrum) of the instrument.
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