# Mathematics and Music: <br> Timbre and Consonance 

Richard Taylor

Thompson Rivers University
Jan 26, 2010

Introduction \& Terminology

Vibrations in Musical Instruments (Timbre)

Consonance \& Dissonance

## Introduction

Questions:

- Two musical instruments playing the same note still sound different. Why?


## Introduction

Questions:

- Two musical instruments playing the same note still sound different. Why?
- Some musical intervals sound consonant ("good"?), others dissonant ("bad"?). Why?



## Sound

- Pressure disturbances in air propagate as waves


## Sound

- Pressure disturbances in air propagate as waves
- Air pressure (within a given frequency band) incident on the ear's basilar membrane is perceived as sound



## Sound

- Pressure disturbances in air propagate as waves
- Air pressure (within a given frequency band) incident on the ear's basilar membrane is perceived as sound

- Music is organized sound


## Musical Tones

- periodic sound pressure is perceived as a musical tone:



## Musical Tones

- periodic sound pressure is perceived as a musical tone:

- the frequency $f[\mathrm{~Hz}=$ cycles $/ \mathrm{sec}]$ is perceived as pitch
higher $f \Leftrightarrow$ higher pitch


## Musical Tones

- periodic sound pressure is perceived as a musical tone:

- the frequency $f[\mathrm{~Hz}=$ cycles $/ \mathrm{sec}]$ is perceived as pitch
higher $f \Leftrightarrow$ higher pitch
- a pure tone of frequency $f$ is sinusoidal:

$$
P(t)=A \sin (2 \pi f t+\phi)
$$

## Frequency and Pitch

- Pitch perception is logarithmic in frequency:
pitch: $\quad p=\log f$


## Frequency and Pitch

- Pitch perception is logarithmic in frequency:

$$
\text { pitch: } \quad p=\log f
$$

- So translation in pitch is multiplication in frequency:

$$
p=p_{1}+p_{2} \Leftrightarrow f=f_{1} f_{2}
$$

## Frequency and Pitch

- Pitch perception is logarithmic in frequency:

$$
\text { pitch: } \quad p=\log f
$$

- So translation in pitch is multiplication in frequency:

$$
p=p_{1}+p_{2} \Leftrightarrow f=f_{1} f_{2}
$$

- An pitch interval $\Delta p=p_{1}-p_{2}$ corresponds to a ratio of frequencies $f_{1}: f_{2}$.


## Frequency and Pitch

- Pitch perception is logarithmic in frequency:

$$
\text { pitch: } \quad p=\log f
$$

- So translation in pitch is multiplication in frequency:

$$
p=p_{1}+p_{2} \Leftrightarrow f=f_{1} f_{2}
$$

- An pitch interval $\Delta p=p_{1}-p_{2}$ corresponds to a ratio of frequencies $f_{1}: f_{2}$.
- A sequence of equally spaced pitches (musical scale)

$$
\left\{p_{0}, p_{0}+\Delta p, p_{0}+2 \Delta p, p_{0}+3 \Delta p, \ldots\right\}
$$

## Frequency and Pitch

- Pitch perception is logarithmic in frequency:

$$
\text { pitch: } \quad p=\log f
$$

- So translation in pitch is multiplication in frequency:

$$
p=p_{1}+p_{2} \Leftrightarrow f=f_{1} f_{2}
$$

- An pitch interval $\Delta p=p_{1}-p_{2}$ corresponds to a ratio of frequencies $f_{1}: f_{2}$.
- A sequence of equally spaced pitches (musical scale)

$$
\left\{p_{0}, p_{0}+\Delta p, p_{0}+2 \Delta p, p_{0}+3 \Delta p, \ldots\right\}
$$

is a geometric sequence in frequency:

$$
\left\{f_{0}, \alpha f_{0}, \alpha^{2} f_{0}, \alpha^{3} f_{0}, \ldots\right\}
$$

C major scale (equal temperament)


## C major scale (equal temperament)



Subset of the 12-tone chromatic scale:

$$
f_{n}=440 \cdot 2^{n / 12} \quad(n=-5,-4, \ldots, 2)
$$

## C major scale (equal temperament)



Subset of the 12-tone chromatic scale:

$$
f_{n}=440 \cdot 2^{n / 12} \quad(n=-5,-4, \ldots, 2)
$$

| pitch | frequency $f_{n}[\mathrm{~Hz}]$ |
| :---: | :---: |
| C | 261.6 |
| D | 293.6 |
| E | 329.6 |
| F | 349.2 |
| G | 392.0 |
| A | 440.0 |
| B | 493.8 |
| C | 523.2 |

## Limits of Hearing

Hearing Ranges in Various Species


Source: R.Fay, Hearing in Vertebrates: A Psychoacoustics Databook. Hill-Fay Associates, 1988.

## Vibrations in Musical Instruments

- Sound waves are made by a vibrating body (plucked string, hammered block, etc).


## Vibrations in Musical Instruments

- Sound waves are made by a vibrating body (plucked string, hammered block, etc).
- A freely vibrating body is described by the partial differential equation (wave equation)

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u \quad \text { (with initial \& boundary conditions) }
$$

$u(\mathbf{x}, t)=$ displacement from rest at time $t$ at point $\mathbf{x} \in \mathbb{R}^{n}$.

## Vibrations in Musical Instruments

- Sound waves are made by a vibrating body (plucked string, hammered block, etc).
- A freely vibrating body is described by the partial differential equation (wave equation)

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u \quad \text { (with initial \& boundary conditions) }
$$

$u(\mathbf{x}, t)=$ displacement from rest at time $t$ at point $\mathbf{x} \in \mathbb{R}^{n}$.

$$
\nabla^{2}=\text { Laplacian operator }= \begin{cases}\frac{\partial^{2} u}{\partial x^{2}} & \text { on } \mathbb{R} \\ \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & \text { on } \mathbb{R}^{2}\end{cases}
$$

## Vibrations in Musical Instruments

Example: string fixed at both ends.


## Vibrations in Musical Instruments

Example: string fixed at both ends.


$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
u(0, t)=u(L, t)=0 \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)
\end{array}\right.
$$

(boundary conditions)
(initial conditions)

## Wave equation: Separation of variables

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u \quad \text { (with initial \& boundary conditions) }
$$

## Wave equation: Separation of variables

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u \quad \text { (with initial \& boundary conditions) }
$$

Assume $u(\mathbf{x}, t)=X(\mathbf{x}) T(t)$ :

$$
0=\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \nabla^{2} u
$$

## Wave equation: Separation of variables

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u \quad \text { (with initial \& boundary conditions) }
$$

Assume $u(\mathbf{x}, t)=X(\mathbf{x}) T(t)$ :

$$
\begin{aligned}
0 & =\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \nabla^{2} u \\
& =X T^{\prime \prime}-c^{2} T \nabla^{2} X
\end{aligned}
$$

$$
\Longrightarrow \frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}=\frac{\nabla^{2} X}{X}
$$

## Wave equation: Separation of variables

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u \quad \text { (with initial \& boundary conditions) }
$$

Assume $u(\mathbf{x}, t)=X(\mathbf{x}) T(t)$ :

$$
\begin{aligned}
0 & =\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \nabla^{2} u \\
& =X T^{\prime \prime}-c^{2} T \nabla^{2} X
\end{aligned}
$$

$$
\Longrightarrow \underbrace{\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}}_{\text {indep of } x}=\underbrace{\frac{\nabla^{2} x}{X}}_{\text {indep of } t}
$$

## Wave equation: Separation of variables

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u \quad \text { (with initial \& boundary conditions) }
$$

Assume $u(\mathbf{x}, t)=X(\mathbf{x}) T(t)$ :

$$
\begin{aligned}
0 & =\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \nabla^{2} u \\
& =X T^{\prime \prime}-c^{2} T \nabla^{2} X
\end{aligned}
$$

$$
\Longrightarrow \underbrace{\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}}_{\text {indep of } \mathrm{x}}=\underbrace{\frac{\nabla^{2} X}{X}}_{\text {indep of } t}=\lambda \quad \text { (constant) }
$$

Wave equation: Separation of variables

$$
\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}=\frac{\nabla^{2} X}{X}=\lambda
$$

## Wave equation: Separation of variables

$$
\begin{gathered}
\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}=\frac{\nabla^{2} X}{X}=\lambda \\
T^{\prime \prime}+c^{2} \lambda T=0 \\
\Longrightarrow T(t)=A \sin (\sqrt{\lambda} c t+\phi) \quad(A, \phi \in \mathbb{R})
\end{gathered}
$$

## Wave equation: Separation of variables

$$
\begin{gathered}
\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}=\frac{\nabla^{2} X}{X}=\lambda \\
T^{\prime \prime}+c^{2} \lambda T=0 \\
\Longrightarrow T(t)=A \sin (\sqrt{\lambda} c t+\phi) \quad(A, \phi \in \mathbb{R}) \\
\nabla^{2} X=\lambda X \quad(+ \text { boundary conditions }) \\
\Longrightarrow \lambda \text { is an eigenvalue of } \nabla^{2}
\end{gathered}
$$

## Wave equation: Separation of variables

$$
\begin{gathered}
\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}=\frac{\nabla^{2} X}{X}=\lambda \\
T^{\prime \prime}+c^{2} \lambda T=0 \\
\Longrightarrow T(t)=A \sin (\sqrt{\lambda} c t+\phi) \quad(A, \phi \in \mathbb{R}) \\
\nabla^{2} X=\lambda X \quad(+ \text { boundary conditions }) \\
\Longrightarrow \lambda \text { is an eigenvalue of } \nabla^{2}
\end{gathered}
$$

By linearity:

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\sqrt{\lambda_{n}} c t+\phi_{n}\right) f_{n}(x)
$$

where $\lambda_{n}$ are eigenvalues, $f_{n}$ are eigenfunctions of $\nabla^{2}$.

## Vibrations in Musical Instruments

Summary: motion of a freely vibrating body is

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin (\underbrace{\sqrt{\lambda_{n}} c}_{\omega_{n}} t+\phi_{n}) f_{n}(x) .
$$

## Vibrations in Musical Instruments

Summary: motion of a freely vibrating body is

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin (\underbrace{\sqrt{\lambda_{n}} c}_{\omega_{n}} t+\phi_{n}) f_{n}(x) .
$$

Key points:

- Superposition of vibrational modes (pure tones)


## Vibrations in Musical Instruments

Summary: motion of a freely vibrating body is

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin (\underbrace{\sqrt{\lambda_{n}} c}_{\omega_{n}} t+\phi_{n}) f_{n}(x) .
$$

Key points:

- Superposition of vibrational modes (pure tones)
- Frequencies are

$$
\omega_{n}=\sqrt{\lambda_{n}} c
$$

$\lambda_{n}$ are eigenvalues of $\nabla^{2}$ (for given domain \& bc's)

## Vibrations in Musical Instruments

Summary: motion of a freely vibrating body is

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin (\underbrace{\sqrt{\lambda_{n}} c}_{\omega_{n}} t+\phi_{n}) f_{n}(x) .
$$

Key points:

- Superposition of vibrational modes (pure tones)
- Frequencies are

$$
\omega_{n}=\sqrt{\lambda_{n}} c
$$

$\lambda_{n}$ are eigenvalues of $\nabla^{2}$ (for given domain \& bc's)

- Amplitudes $A_{n}$ determined by initial conditions


## Vibrations in Musical Instruments

Summary: motion of a freely vibrating body is

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin (\underbrace{\sqrt{\lambda_{n}} c}_{\omega_{n}} t+\phi_{n}) f_{n}(x) .
$$

Key points:

- Superposition of vibrational modes (pure tones)
- Frequencies are

$$
\omega_{n}=\sqrt{\lambda_{n}} c
$$

$\lambda_{n}$ are eigenvalues of $\nabla^{2}$ (for given domain \& bc's)

- Amplitudes $A_{n}$ determined by initial conditions
- Smallest $\lambda_{n}$ gives the fundamental tone; other modes give upper partials

Example: string with fixed ends


## Example: string with fixed ends



Eigenvalue problem $\nabla^{2} f=\lambda f$ in 1-D becomes

$$
\frac{d^{2} f}{d x^{2}}=\lambda f \Longrightarrow f(x)=A \sin (\sqrt{\lambda} x)+B \cos (\sqrt{\lambda} x)
$$

## Example: string with fixed ends



Eigenvalue problem $\nabla^{2} f=\lambda f$ in 1-D becomes

$$
\frac{d^{2} f}{d x^{2}}=\lambda f \Longrightarrow f(x)=A \sin (\sqrt{\lambda} x)+B \cos (\sqrt{\lambda} x)
$$

Boundary condition $f(0)=0$ implies $B=0$ so

$$
f(x)=A \sin (\sqrt{\lambda} x)
$$

## Example: string with fixed ends



Eigenvalue problem $\nabla^{2} f=\lambda f$ in 1-D becomes

$$
\frac{d^{2} f}{d x^{2}}=\lambda f \Longrightarrow f(x)=A \sin (\sqrt{\lambda} x)+B \cos (\sqrt{\lambda} x)
$$

Boundary condition $f(0)=0$ implies $B=0$ so

$$
f(x)=A \sin (\sqrt{\lambda} x)
$$

Boundary condition $f(L)=0$ gives

$$
0=A \sin (\sqrt{\lambda} L) \Longrightarrow \sqrt{\lambda_{n}} L=n \pi \quad(n=0,1,2, \ldots)
$$

## Example: string with fixed ends

Frequencies of vibrational modes are given by

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} \Longrightarrow \omega_{n}=\sqrt{\lambda_{n}} c=\frac{n \pi c}{L} \quad(n=1,2,3, \ldots)
$$

## Example: string with fixed ends

Frequencies of vibrational modes are given by

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} \Longrightarrow \omega_{n}=\sqrt{\lambda_{n}} c=\frac{n \pi c}{L} \quad(n=1,2,3, \ldots)
$$

The eigenfunctions (modes) themselves look like

$$
f_{n}(x)=\sin \frac{n \pi x}{L}
$$

## Example: string with fixed ends

Frequencies of vibrational modes are given by

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} \Longrightarrow \omega_{n}=\sqrt{\lambda_{n}} c=\frac{n \pi c}{L} \quad(n=1,2,3, \ldots)
$$

The eigenfunctions (modes) themselves look like

$$
f_{n}(x)=\sin \frac{n \pi x}{L}
$$

$$
n=1
$$

$$
n=2
$$

$$
n=3
$$





The string's motion is a superposition of these:

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\omega_{n} t+\phi_{n}\right) f_{n}(x)
$$

## Example: string with fixed ends

- What we hear is a superposition of pure tones:

$$
P(t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\omega_{n} t+\phi_{n}\right)
$$

at discrete frequencies

$$
\omega_{n}=\frac{n \pi c}{L}=n \omega_{1} \quad(n=1,2,3, \ldots)
$$

(the harmonic series).

## Example: string with fixed ends

- What we hear is a superposition of pure tones:

$$
P(t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\omega_{n} t+\phi_{n}\right)
$$

at discrete frequencies

$$
\omega_{n}=\frac{n \pi c}{L}=n \omega_{1} \quad(n=1,2,3, \ldots)
$$

(the harmonic series).

- Frequencies $\omega_{n}$ are integer multiples of the fundamental $\omega_{1}$.


## Example: string with fixed ends

- What we hear is a superposition of pure tones:

$$
P(t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\omega_{n} t+\phi_{n}\right)
$$

at discrete frequencies

$$
\omega_{n}=\frac{n \pi c}{L}=n \omega_{1} \quad(n=1,2,3, \ldots)
$$

(the harmonic series).

- Frequencies $\omega_{n}$ are integer multiples of the fundamental $\omega_{1}$.
- Sound perception is independent of the phase $\phi_{n}$.


## Example: string with fixed ends

For a guitar string playing the note $\mathrm{A}(440 \mathrm{~Hz})$ we hear:


## Example: string with fixed ends

For a guitar string playing the note $\mathrm{A}(440 \mathrm{~Hz})$ we hear:


First 7 upper partials for low C:


## Timbre

timbre: the quality or tone distinguishing voices or instruments

## Timbre

timbre: the quality or tone distinguishing voices or instruments
Timbres of different instruments are distinguished primarily by the frequencies and amplitudes of their spectra:




Clarinet


## Timbre

Eigenvalues of $\nabla^{2}$ for various instruments:

## Timbre

Eigenvalues of $\nabla^{2}$ for various instruments:

- Strings:

$$
\lambda_{n}=n^{2}
$$

## Timbre

Eigenvalues of $\nabla^{2}$ for various instruments:

- Strings:

$$
\lambda_{n}=n^{2}
$$

- Wind instruments:

$$
\lambda_{n}=n^{2} \text { or }(2 n+1)^{2} \text { (depending on bc's) }
$$

## Timbre

Eigenvalues of $\nabla^{2}$ for various instruments:

- Strings:

$$
\lambda_{n}=n^{2}
$$

- Wind instruments:

$$
\lambda_{n}=n^{2} \text { or }(2 n+1)^{2} \text { (depending on bc's) }
$$

- Circular drums:
$\lambda_{m n}=n^{\text {th }}$ root of $J_{m}(\lambda)$, the Bessel function of order $m$


## Timbre

Eigenvalues of $\nabla^{2}$ for various instruments:

- Strings:

$$
\lambda_{n}=n^{2}
$$

- Wind instruments:

$$
\lambda_{n}=n^{2} \text { or }(2 n+1)^{2} \text { (depending on bc's) }
$$

- Circular drums:
$\lambda_{m n}=n^{\text {th }}$ root of $J_{m}(\lambda)$, the Bessel function of order $m$
- Vibrating bars: (e.g. xylophone, marimba)

$$
\begin{cases}\lambda_{n}=(2 n+1)^{4} & \text { (transverse virbations) } \\ \lambda_{m}=m^{2} & \text { (longitudinal vibrations) }\end{cases}
$$

## Consonance \& Dissonance

- A musical interval is a given difference in pitch (hence frequency ratio $f_{1}: f_{2}$ ) between two tones.


## Consonance \& Dissonance

- A musical interval is a given difference in pitch (hence frequency ratio $f_{1}: f_{2}$ ) between two tones.
- Some intervals sound consonant ("good"?), others dissonant ("bad"?)


## Consonance \& Dissonance

- A musical interval is a given difference in pitch (hence frequency ratio $f_{1}: f_{2}$ ) between two tones.
- Some intervals sound consonant ("good"?), others dissonant ("bad"?)
- Pythagoras: an interval is consonant if the frequencies are in a simple integer ratio:

$f_{1}: f_{2}=1: 2$

$f_{1}: f_{2}=2: 3$

$f_{1}: f_{2}=4: 3$
- But why??


## Consonance \& Dissonance

A wrong explanation (Galileo and many others):


$$
f_{1}: f_{2}=1: 2
$$



## Consonance \& Dissonance



$$
f_{1}: f_{2}=3: 2
$$



## Consonance \& Dissonance

"The pulses delivered by the two tones ... shall be commensurable in number, so as not to keep the ear-drum in perpetual torment...

Galileo Galilei
Dialogues Concerning Two New Sciences (1638)

## Consonance \& Dissonance

"The pulses delivered by the two tones ... shall be commensurable in number, so as not to keep the ear-drum in perpetual torment...

> Galileo Galilei
> Dialogues Concerning Two New Sciences (1638)

- However. . . for pure tones a mis-tuned interval isn't dissonant!


## Consonance \& Dissonance

"The pulses delivered by the two tones ... shall be commensurable in number, so as not to keep the ear-drum in perpetual torment...

> Galileo Galilei
> Dialogues Concerning Two New Sciences (1638)

- However. . . for pure tones a mis-tuned interval isn't dissonant!
- The reality: dissonance comes from upper partials.


## Consonance \& Dissonance

A better explanation:


## Consonance \& Dissonance

A better explanation:


$$
f_{1}: f_{2}=1: 2
$$

Consider spectra of upper partials for these tones:
$f_{1}: 220 \mathrm{~Hz}, 440 \mathrm{~Hz}, 660 \mathrm{~Hz}, 880 \mathrm{~Hz}, 1100 \mathrm{~Hz}, 1320 \mathrm{~Hz}, \ldots$
$f_{2}: 440 \mathrm{~Hz}, 880 \mathrm{~Hz}, 1320 \mathrm{~Hz}, 1760 \mathrm{~Hz}, \ldots$

## Consonance \& Dissonance

A better explanation:


$$
f_{1}: f_{2}=1: 2
$$

Consider spectra of upper partials for these tones:
$f_{1}: 220 \mathrm{~Hz}, 440 \mathrm{~Hz}, 660 \mathrm{~Hz}, 880 \mathrm{~Hz}, 1100 \mathrm{~Hz}, 1320 \mathrm{~Hz}, \ldots$
$f_{2}: 440 \mathrm{~Hz}, 880 \mathrm{~Hz}, 1320 \mathrm{~Hz}, 1760 \mathrm{~Hz}, \ldots$


## Consonance \& Dissonance



- Upper partials coincide and reinforce each other.


## Consonance \& Dissonance



- Upper partials coincide and reinforce each other.
- The effect is one of altered timbre.


## Consonance \& Dissonance



- Upper partials coincide and reinforce each other.
- The effect is one of altered timbre.
- Invidividual tones are difficult to distinguish.


## Consonance \& Dissonance

Similarly for a perfect fifth:


## Consonance \& Dissonance

Similarly for a perfect fifth:


$$
f_{1}: f_{2}=3: 2
$$

Again, some of the upper partials coincide:

at common multiples of the fundamentals.

## Consonance \& Dissonance

So generally...

- If the fundamentals are in the ratio

$$
f_{1}: f_{2}=m: n
$$

upper partials coincide for every common multiple of $m, n$.

## Consonance \& Dissonance

So generally...

- If the fundamentals are in the ratio

$$
f_{1}: f_{2}=m: n
$$

upper partials coincide for every common multiple of $m, n$.

- Lowest common multiple is $m n$. The $n$ 'th partial of $f_{1}$ coincides with the $m$ 'th partial of $f_{2}$.


## Consonance \& Dissonance

So generally...

- If the fundamentals are in the ratio

$$
f_{1}: f_{2}=m: n
$$

upper partials coincide for every common multiple of $m, n$.

- Lowest common multiple is $m n$. The $n$ 'th partial of $f_{1}$ coincides with the $m$ 'th partial of $f_{2}$.
- Effect is more audible if the product $m n$ is smaller.


## Consonance \& Dissonance

So generally...

- If the fundamentals are in the ratio

$$
f_{1}: f_{2}=m: n
$$

upper partials coincide for every common multiple of $m, n$.

- Lowest common multiple is $m n$. The $n$ 'th partial of $f_{1}$ coincides with the $m$ 'th partial of $f_{2}$.
- Effect is more audible if the product $m n$ is smaller.
- Simple integer ratios emerge as intervals with strongest mutual reinforement.


## Consonance \& Dissonance

So generally...

- If the fundamentals are in the ratio

$$
f_{1}: f_{2}=m: n
$$

upper partials coincide for every common multiple of $m, n$.

- Lowest common multiple is $m n$. The $n$ 'th partial of $f_{1}$ coincides with the $m$ 'th partial of $f_{2}$.
- Effect is more audible if the product $m n$ is smaller.
- Simple integer ratios emerge as intervals with strongest mutual reinforement.
- But this doesn't really explain dissonance of other intervals.


## Consonance \& Dissonance

An even better explanation:


## Consonance \& Dissonance

An even better explanation:


Consider spectra for a slightly mistuned octave:


Previously coincident partials now differ.

## Consonance \& Dissonance

Similarly for the perfect fifth:


$$
f_{1}: f_{2}=3: 2
$$

## Consonance \& Dissonance

Similarly for the perfect fifth:


$$
f_{1}: f_{2}=3: 2
$$



## Beats

If two pure tones of nearly equal frequency are sounded simultaneously, beats are heard:

## Beats

If two pure tones of nearly equal frequency are sounded simultaneously, beats are heard:


## Beats

If two pure tones of nearly equal frequency are sounded simultaneously, beats are heard:

$$
\begin{aligned}
& \text { An } A \wedge A \cap A \underbrace{\cos \left(\frac{\omega_{1}-\omega_{2}}{2} t\right)}_{\text {slow modulating term }} \sin \left(\frac{\omega_{1}+\omega_{2}}{2} t\right)
\end{aligned}
$$

## Beats

If two pure tones of nearly equal frequency are sounded simultaneously, beats are heard:


$$
\sin \left(\omega_{1} t\right)+\sin \left(\omega_{2} t\right)=2 \underbrace{\cos \left(\frac{\omega_{1}-\omega_{2}}{2} t\right)}_{\text {slow modulating term }} \sin \left(\frac{\omega_{1}+\omega_{2}}{2} t\right)
$$

beat frequency: $f_{\text {beat }}=\left|f_{1}-f_{2}\right|$

## Beats



$$
f_{\text {beat }}=\left|f_{1}-f_{2}\right|
$$

## Beats



- $f_{\text {beat }} \lesssim 10 \mathrm{~Hz} \Longrightarrow$ slow modulation (tremolo), not unpleasant


## Beats



- $f_{\text {beat }} \lesssim 10 \mathrm{~Hz} \Longrightarrow$ slow modulation (tremolo), not unpleasant
- $f_{\text {beat }} \gtrsim 50 \mathrm{~Hz} \Longrightarrow$ beat frequency becomes an audible tone


## Beats



- $f_{\text {beat }} \lesssim 10 \mathrm{~Hz} \Longrightarrow$ slow modulation (tremolo), not unpleasant
- $f_{\text {beat }} \gtrsim 50 \mathrm{~Hz} \Longrightarrow$ beat frequency becomes an audible tone
- $10 \mathrm{~Hz} \lesssim f_{\text {beat }} \lesssim 50 \mathrm{~Hz}$ gives a "rough", unpleasant feeling


## Beats

- Maximum dissonance occurs for $\left|f_{1}-f_{2}\right| \approx 30 \mathrm{~Hz}$


## Beats

- Maximum dissonance occurs for $\left|f_{1}-f_{2}\right| \approx 30 \mathrm{~Hz}$
- Dissonance $d$ depends (subjectively) on $\left|f_{1}-f_{2}\right|$ :

(Plomp \& Levelt, 1965)


## Beats

- Maximum dissonance occurs for $\left|f_{1}-f_{2}\right| \approx 30 \mathrm{~Hz}$
- Dissonance $d$ depends (subjectively) on $\left|f_{1}-f_{2}\right|$ :

(Plomp \& Levelt, 1965)
- We can model this with:

$$
d(x)=\frac{(x / 30)^{2}}{\left(1+\frac{1}{3}(x / 30)^{2}\right)^{4}}
$$

## Consonant Intervals

- When two notes are sounded, dissonance potentially arises from beating between every pair of partials.



## Consonant Intervals

- When two notes are sounded, dissonance potentially arises from beating between every pair of partials.

- Mistuned fifth $\left(f_{1}: f_{2}=3: 2\right)$ with $f_{1}=220 \mathrm{~Hz}$ and $f_{2}=335 \mathrm{~Hz}:$
$f_{1}: 220 \mathrm{~Hz}, 440 \mathrm{~Hz}, 660 \mathrm{~Hz}, 880 \mathrm{~Hz}, 1100 \mathrm{~Hz}, 1320 \mathrm{~Hz}, \ldots$ $f_{2}: 335 \mathrm{~Hz}, 670 \mathrm{~Hz}, 1005 \mathrm{~Hz}, 1340 \mathrm{~Hz}, 1675 \mathrm{~Hz}, \ldots$


## Consonant Intervals

- When two notes are sounded, dissonance potentially arises from beating between every pair of partials.

- Mistuned fifth $\left(f_{1}: f_{2}=3: 2\right)$ with $f_{1}=220 \mathrm{~Hz}$ and $f_{2}=335 \mathrm{~Hz}:$
$f_{1}: 220 \mathrm{~Hz}, 440 \mathrm{~Hz}, 660 \mathrm{~Hz}, 880 \mathrm{~Hz}, 1100 \mathrm{~Hz}, 1320 \mathrm{~Hz}, \ldots$ $f_{2}: 335 \mathrm{~Hz}, 670 \mathrm{~Hz}, 1005 \mathrm{~Hz}, 1340 \mathrm{~Hz}, 1675 \mathrm{~Hz}, \ldots$
- Near-concidence of upper partials causes beating:

$$
670-660=10 \mathrm{~Hz} \quad \text { and } \quad 1340-1320=20 \mathrm{~Hz} .
$$

## Consonant Intervals

A simple model for relative consonance of intervals:

## Consonant Intervals

A simple model for relative consonance of intervals:

- Two notes with fundamental frequencies $f_{1}$ and $f_{2}$, hence two sequences of partials

$$
\begin{aligned}
& \left\{f_{1}, 2 f_{1}, 3 f_{1}, \ldots\right\}=\left\{m f_{1}: m=1,2, \ldots\right\} \\
& \left\{f_{2}, 2 f_{2}, 3 f_{2}, \ldots\right\}=\left\{n f_{2}: n=1,2, \ldots\right\}
\end{aligned}
$$

## Consonant Intervals

A simple model for relative consonance of intervals:

- Two notes with fundamental frequencies $f_{1}$ and $f_{2}$, hence two sequences of partials

$$
\begin{aligned}
& \left\{f_{1}, 2 f_{1}, 3 f_{1}, \ldots\right\}=\left\{m f_{1}: m=1,2, \ldots\right\} \\
& \left\{f_{2}, 2 f_{2}, 3 f_{2}, \ldots\right\}=\left\{n f_{2}: n=1,2, \ldots\right\}
\end{aligned}
$$

- Sum dissonances over all pairs of partials:

$$
\begin{gathered}
\text { total dissonance }=\sum_{m} \sum_{n} d\left(\left|m f_{1}-n f_{2}\right|\right) \\
d(x)=\frac{(x / 30)^{2}}{\left(1+\frac{1}{3}(x / 30)^{2}\right)^{4}}
\end{gathered}
$$

## Consonant Intervals

Fix $f_{1}$ and calculate dissonance as a function of $f_{2}$ :

$$
\text { total dissonance }=\sum_{m} \sum_{n} \underbrace{d\left(\left|m f_{1}-n f_{2}\right|\right)}_{\text {dissonance of pair } m, n}
$$

Summing over the first 7 partials:


## Consonant Intervals

Fix $f_{1}$ and calculate dissonance as a function of $f_{2}$ :

$$
\text { total dissonance }=\sum_{m} \sum_{n} \underbrace{d\left(\left|m f_{1}-n f_{2}\right|\right)}_{\text {dissonance of pair } m, n}
$$

Summing over the first 7 partials:


## Consonant Intervals

Fix $f_{1}$ and calculate dissonance as a function of $f_{2}$ :

$$
\text { total dissonance }=\sum_{m} \sum_{n} \underbrace{d\left(\left|m f_{1}-n f_{2}\right|\right)}_{\text {dissonance of pair } m, n}
$$

Summing over the first 7 partials:


## Consonant Intervals



- Consonant intervals are local minima of dissonance.


## Consonant Intervals



- Consonant intervals are local minima of dissonance.
- Including more partials introduces more local minima.


## Consonant Intervals



- Consonant intervals are local minima of dissonance.
- Including more partials introduces more local minima.
- Strongest consonances are lowest minima.


## Consonant Intervals



- Consonant intervals are local minima of dissonance.
- Including more partials introduces more local minima.
- Strongest consonances are lowest minima.
- Depth of each minimum determines how well characterized each consonance is (i.e. relative to adjacent intervals).


## Consonant Intervals



- Consonant intervals are local minima of dissonance.
- Including more partials introduces more local minima.
- Strongest consonances are lowest minima.
- Depth of each minimum determines how well characterized each consonance is (i.e. relative to adjacent intervals).
- Dissonance curve is a consequence of the underlying timbre (spectrum) of the instrument.

