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Questions:

◮ Two musical instruments playing the same note still sound
different. Why?

◮ Some musical intervals sound consonant (“good”?), others
dissonant (“bad”?). Why?
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◮ Pressure disturbances in air propagate as waves

◮ Air pressure (within a given frequency band) incident on the
ear’s basilar membrane is perceived as sound

◮ Music is organized sound
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Musical Tones

◮ periodic sound pressure is perceived as a musical tone:

P

t

period T = 1

f
= 2π

ω

◮ the frequency f [Hz = cycles/sec] is perceived as pitch

higher f ⇔ higher pitch

◮ a pure tone of frequency f is sinusoidal:

P(t) = A sin(2πft + φ)
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Frequency and Pitch

◮ Pitch perception is logarithmic in frequency:

pitch: p = log f

◮ So translation in pitch is multiplication in frequency:

p = p1 + p2 ⇔ f = f1f2

◮ An pitch interval ∆p = p1 − p2 corresponds to a ratio of
frequencies f1 : f2.

◮ A sequence of equally spaced pitches (musical scale)

{p0, p0 + ∆p, p0 + 2∆p, p0 + 3∆p, . . .}

is a geometric sequence in frequency:

{f0, αf0, α
2f0, α

3f0, . . .}
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C major scale (equal temperament)

 C  D  E  F  G  A  B  c

Subset of the 12-tone chromatic scale:

fn = 440 · 2n/12 (n = −5,−4, . . . , 2)

pitch frequency fn [Hz]

C 261.6
D 293.6
E 329.6
F 349.2
G 392.0
A 440.0
B 493.8
c 523.2



Limits of Hearing

turtle
goldfish

frog
pigeon

sparrow
human

rabbit
dog
cat
rat

mouse
bat

dolphin

Hearing Ranges in Various Species

frequency f [Hz]

101 102 103 104 105

Source: R.Fay, Hearing in Vertebrates: A Psychoacoustics Databook. Hill-Fay Associates, 1988.
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Vibrations in Musical Instruments

◮ Sound waves are made by a vibrating body (plucked string,
hammered block, etc).

◮ A freely vibrating body is described by the partial differential
equation (wave equation)

∂2u

∂t2
= c2∇2u (with initial & boundary conditions)

u(x, t) = displacement from rest at time t at point x ∈ R
n.

∇2 = Laplacian operator =







∂2u

∂x2
on R

∂2u

∂x2
+

∂2u

∂y2
on R

2
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Example: string fixed at both ends.
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Example: string fixed at both ends.

u

x

u(x, t)

L







∂2u

∂t2
= c2 ∂2u

∂x2

u(0, t) = u(L, t) = 0 (boundary conditions)

u(x , 0) = f (x), ut(x , 0) = g(x) (initial conditions)
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Wave equation: Separation of variables

1

c2

T ′′

T
=

∇2X

X
= λ

T ′′ + c2λT = 0

=⇒ T (t) = A sin(
√

λct + φ) (A, φ ∈ R)

∇2X = λX (+ boundary conditions)

=⇒ λ is an eigenvalue of ∇2

By linearity:

u(x , t) =

∞∑

n=1

An sin(
√

λnct + φn)fn(x)

where λn are eigenvalues, fn are eigenfunctions of ∇2.
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Vibrations in Musical Instruments

Summary: motion of a freely vibrating body is

u(x , t) =
∞∑

n=1

An sin(
√

λnc
︸ ︷︷ ︸

ωn

t + φn)fn(x).

Key points:

◮ Superposition of vibrational modes (pure tones)

◮ Frequencies are
ωn =

√

λnc

λn are eigenvalues of ∇2 (for given domain & bc’s)

◮ Amplitudes An determined by initial conditions

◮ Smallest λn gives the fundamental tone; other modes give
upper partials
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Example: string with fixed ends

u

x

u(x, t)

L

Eigenvalue problem ∇2f = λf in 1-D becomes

d2f

dx2
= λf =⇒ f (x) = A sin(

√
λx) + B cos(

√
λx).

Boundary condition f (0) = 0 implies B = 0 so

f (x) = A sin(
√

λx).

Boundary condition f (L) = 0 gives

0 = A sin(
√

λL) =⇒
√

λnL = nπ (n = 0, 1, 2, . . .)
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Example: string with fixed ends

Frequencies of vibrational modes are given by

λn =
n2π2

L2
=⇒ ωn =

√

λnc =
nπc

L
(n = 1, 2, 3, . . .)

The eigenfunctions (modes) themselves look like

fn(x) = sin
nπx

L
.

u

x
L

n = 1
u

x
L

n = 2
u

x
L

n = 3

The string’s motion is a superposition of these:

u(x , t) =
∞∑

n=1

An sin(ωnt + φn)fn(x)
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Example: string with fixed ends

◮ What we hear is a superposition of pure tones:

P(t) =
∞∑

n=1

An sin(ωnt + φn)

at discrete frequencies

ωn =
nπc

L
= nω1 (n = 1, 2, 3, . . .)

(the harmonic series).

◮ Frequencies ωn are integer multiples of the fundamental ω1.

◮ Sound perception is independent of the phase φn.
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Example: string with fixed ends

For a guitar string playing the note A (440 Hz) we hear:

frequency (Hz)

in
te

n
si

ty
(d

B
)

fundamental

440

n = 1

upper partials. . . . . .

880

n = 2

1320

n = 3

1760

n = 4 n = 5

First 7 upper partials for low C:
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Timbre

timbre: the quality or tone distinguishing voices or instruments

Timbres of different instruments are distinguished primarily by the
frequencies and amplitudes of their spectra:

freqin
te

n
si

ty
(d

B
)

n = 1 n = 2 n = 3 n = 4n = 5

Violin

freqin
te

n
si

ty
(d

B
)

n = 1 n = 2 n = 3 n = 4n = 5

Clarinet
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Timbre
Eigenvalues of ∇2 for various instruments:

◮ Strings:

λn = n2

◮ Wind instruments:

λn = n2 or (2n + 1)2 (depending on bc’s)

◮ Circular drums:

λmn = nth root of Jm(λ), the Bessel function of order m

◮ Vibrating bars: (e.g. xylophone, marimba)
{

λn = (2n + 1)4 (transverse virbations)

λm = m2 (longitudinal vibrations)
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Consonance & Dissonance

◮ A musical interval is a given difference in pitch (hence
frequency ratio f1 : f2) between two tones.

◮ Some intervals sound consonant (“good”?), others
dissonant (“bad”?)

◮ Pythagoras: an interval is consonant if the frequencies are in a
simple integer ratio:

 C  c

f1 : f2 = 1 : 2

 C  G

f1 : f2 = 2 : 3

 C  F

f1 : f2 = 4 : 3

◮ But why??



Consonance & Dissonance

A wrong explanation (Galileo and many others):
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f1 : f2 = 3 : 2

P
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Galileo Galilei
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Consonance & Dissonance

“The pulses delivered by the two tones . . . shall be
commensurable in number, so as not to keep the
ear-drum in perpetual torment. . . ”

Galileo Galilei
Dialogues Concerning Two New Sciences (1638)

◮ However. . . for pure tones a mis-tuned interval isn’t dissonant!

◮ The reality: dissonance comes from upper partials.
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freq (Hz)in
te

n
si

ty
(d

B
)

n = 1

n = 2
n = 3 n = 4

n = 1 n = 2 n = 3 n = 4

◮ Upper partials coincide and reinforce each other.

◮ The effect is one of altered timbre.

◮ Invidividual tones are difficult to distinguish.
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Similarly for a perfect fifth:

 C  G

f1 : f2 = 3 : 2

Again, some of the upper partials coincide:

freq (Hz)in
te

n
si

ty
(d

B
)

n = 1

n = 2
n = 3 n = 4

n = 1 n = 2 n = 3 n = 4

at common multiples of the fundamentals.
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Consonance & Dissonance

So generally. . .

◮ If the fundamentals are in the ratio

f1 : f2 = m : n

upper partials coincide for every common multiple of m, n.

◮ Lowest common multiple is mn. The n’th partial of f1
coincides with the m’th partial of f2.

◮ Effect is more audible if the product mn is smaller.

◮ Simple integer ratios emerge as intervals with strongest
mutual reinforement.

◮ But this doesn’t really explain dissonance of other intervals.
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Consonance & Dissonance

An even better explanation:

 C  c

f1 : f2 = 1 : 2

Consider spectra for a slightly mistuned octave:

freq (Hz)in
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n
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ty
(d

B
)

n = 1

n = 2
n = 3 n = 4

n = 1 n = 2 n = 3 n = 4

Previously coincident partials now differ.



Consonance & Dissonance

Similarly for the perfect fifth:

 C  G

f1 : f2 = 3 : 2



Consonance & Dissonance

Similarly for the perfect fifth:

 C  G

f1 : f2 = 3 : 2

freq (Hz)in
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n
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B
)

n = 1

n = 2
n = 3 n = 4

n = 1 n = 2 n = 3 n = 4
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Beats

If two pure tones of nearly equal frequency are sounded
simultaneously, beats are heard:

P

t

sin(ω1t) + sin(ω2t) = 2 cos

(
ω1 − ω2

2
t

)

︸ ︷︷ ︸

slow modulating term

sin

(
ω1 + ω2

2
t

)

beat frequency: fbeat = |f1 − f2|
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Beats

P

t

fbeat = |f1 − f2|

◮ fbeat . 10 Hz =⇒ slow modulation (tremolo), not unpleasant

◮ fbeat & 50 Hz =⇒ beat frequency becomes an audible tone

◮ 10 Hz . fbeat . 50 Hz gives a “rough”, unpleasant feeling
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Beats

◮ Maximum dissonance occurs for |f1 − f2| ≈ 30 Hz

◮ Dissonance d depends (subjectively) on |f1 − f2|:
d

|f1 − f2|30Hz 60Hz

(Plomp & Levelt, 1965)

◮ We can model this with:

d(x) =
(x/30)2

(1 + 1
3
(x/30)2)4



Consonant Intervals

◮ When two notes are sounded, dissonance potentially arises
from beating between every pair of partials.
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Consonant Intervals

◮ When two notes are sounded, dissonance potentially arises
from beating between every pair of partials.

freq (Hz)in
te

n
si

ty
(d

B
)

n = 1

n = 2
n = 3 n = 4

n = 1 n = 2 n = 3 n = 4

◮ Mistuned fifth (f1 : f2 = 3 : 2) with f1 = 220 Hz and
f2 = 335 Hz:

f1: 220 Hz, 440 Hz, 660 Hz, 880 Hz, 1100 Hz, 1320 Hz, . . .
f2: 335 Hz, 670 Hz, 1005 Hz, 1340 Hz, 1675 Hz, . . .
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◮ Mistuned fifth (f1 : f2 = 3 : 2) with f1 = 220 Hz and
f2 = 335 Hz:

f1: 220 Hz, 440 Hz, 660 Hz, 880 Hz, 1100 Hz, 1320 Hz, . . .
f2: 335 Hz, 670 Hz, 1005 Hz, 1340 Hz, 1675 Hz, . . .

◮ Near-concidence of upper partials causes beating:

670 − 660 = 10 Hz and 1340 − 1320 = 20 Hz.
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◮ Sum dissonances over all pairs of partials:
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∑
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Consonant Intervals

Fix f1 and calculate dissonance as a function of f2:

total dissonance =
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︸ ︷︷ ︸

dissonance of pair m, n
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◮ Consonant intervals are local minima of dissonance.
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◮ Consonant intervals are local minima of dissonance.

◮ Including more partials introduces more local minima.
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◮ Including more partials introduces more local minima.

◮ Strongest consonances are lowest minima.

◮ Depth of each minimum determines how well characterized
each consonance is (i.e. relative to adjacent intervals).
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◮ Consonant intervals are local minima of dissonance.

◮ Including more partials introduces more local minima.

◮ Strongest consonances are lowest minima.

◮ Depth of each minimum determines how well characterized
each consonance is (i.e. relative to adjacent intervals).

◮ Dissonance curve is a consequence of the underlying timbre
(spectrum) of the instrument.
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