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For each continuous function f : [0, 1] → IR let

I(f) =

∫ 1

0

(
x2f(x) − xf(x)2

)
dx.

Find the maximum value of I(f) over all such functions f .
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Could try maximizing I(f) over a family of functions, e.g.

f(x) = cx (c is a parameter).

Then I(f) =

∫ 1

0

(
x2(cx) − x(cx)2

)
dx = 1

4(c − c2).

So, restricted to this family, I(f) is
maximized with c = 1

2 .
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A Solution:

Claim: The maximum of I(f) is achieved for f(x) = x/2.

Proof. Any f can be written f(x) = x
2 + g(x). Then

I(f) =

∫ 1

0

(
x2[x2 + g(x)] − x[x2 + g(x)]2

)
dx.

=
1

16
−

∫ 1

0
xg(x)2 dx

︸ ︷︷ ︸

≥0

So the maximum of I(f), achieved with g(x) = 0, is 1
16 .
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That approach works only if you “guess” the right family of
functions (i.e., containing the optimal f(x)) . . . how to tell?

A more reliable method uses ideas from multivariable calculus:

Definition. Given a function f : IRn
→ IR, the directional derivative at x,

in the direction of a unit vector u, is

Duf(x) = lim
h→0

f(x + hu) − f(x)

h
= d

dhf(x + hu)
∣
∣
∣
h=0

Duf(x) gives the rate of change of f(x) as we move in the
direction u at unit speed. (e.g. rate of change of temperature
along a given direction).
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Some Multivariable Calculus

For f : IR2
→ IR, the graph of y = f(x) is a surface, and Duf(x)

is the slope of this surface along the direction u:

x
y

z = f(x, y)

x
u

slope = Duf(x)
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Some Multivariable Calculus

The directional derivative helps find extreme values of f(x):
Theorem. If f : IR → IRn has a local extremum at x, then Duf(x) = 0 for
every direction u.

x
y

z = f(x, y)
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Problem: Find f to maximize I(f) =

∫ 1

0

(
x2f(x) − xf(x)2

)
dx.

I(f) is a real-valued function
on the space C of continuous
functions on the interval [0, 1]. f

y

C

y = I(f)

C is an infinite-dimensional vector space (i.e. equipped with
addition and scalar multiplication, hence a notion of “direction”).

I(f) depends continuously (even differentiably) on f ∈ C.
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Directional derivative of I(f) on the function space C:

Pick a function f ∈ C and a “direction” — say, the direction of
the function g ∈ C. How quickly does I(f) change as we move f
in the direction of g?

f λg

f + λgC

The rate of change of I(f) in the g-direction is the directional or
Gâteaux derivative :

DgI(f) = lim
λ→0

I(f + λg) − I(f)

λ
= d

dλI(f + λg)
∣
∣
∣
λ=0
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Application to the Putnam Problem:

So the directional derivative of I(f) in the “direction” of the
function g is:

DgI(f) =

∫ 1

0

(
x2

− 2xf(x)
)
g(x) dx

If this derivative is to be zero for every direction g, then

x2
− 2xf(x) = 0 =⇒ f(x) =

x

2



PROCLAMATION:

“Since it is known with certainty that there is scarcely anything
which more greatly excites noble and ingenious spirits to labors
which lead to the increase of knowledge than to propose difficult
and at the same time useful problems through the solution of
which, as by no other means, they may attain to fame and build
for themselves eternal monuments among prosperity; so I
should expect to deserve the thanks of the mathematical world if
. . . I should bring before the leading analysts of this age some
problem up which as upon a touchstone they could test their
methods, exert their powers, and, in case they brought anything
to light, could communicate with us in order that everyone might
publicly receive his deserved praise from us.”

— Johann Bernoulli, Acta Eruditorum, June 1696
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x

y

y = y(x)

(x0, y0)

dx

ds

arc length: ds =
√

1 + y′(x)2 dx

speed: v =
√

−2gy(x)

Minimize total transit time:

T (y) =

∫
ds

v
=

∫ x0

0

√

1 + y′(x)2
√

−2gy(x)
dx
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Hanging Cable Problem:

Problem: Flexible cable is supported at endpoints. Find
equilibrium shape of cable.

y

x

y = y(x)

ds

dx

x0

arc length: ds =
√

1 + y′(x)2 dx

potential energy: dP = −y(x) ds = −y(x)
√

1 + y′(x)2 dx

Minimize total potential energy:

P (y) =

∫

dP = −

∫ x0

0
y(x)

√

1 + y′(x)2 dx
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Navigation Problem:

Problem: Boat cross river at constant speed relative to water.
Find route to minimize transit time from A to B.

y = y(x)

x

y

v(x)

(x0, y0)

Total transit time along route y = y(x):

T (y) =

∫ x0

0

[

α(x)2
√

1 + α(x)2y′(x)2 −
(
α(x)2v(x)y′(x)

]

dx

where α(x) =
(
1 − v(x)2

)−1/2
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Profit Maximization Problem:

Problem: A company uses a resource at a rate R(t) to produce
widgets at a rate y

(
R(t)

)
. It sells the widgets for p dollars each.

The resource costs w per unit; a cost c
(
R′(t)

)
is associated with

adjusting the use of the resource.

The company wants to find R(t) to maximize the total profit over
some time interval:

P (R) =

∫ b

a

[

p · y
(
R(t)

)

︸ ︷︷ ︸

revenue

− w · R(t)
︸ ︷︷ ︸

cost of resource

− c
(
R′(t)

)

︸ ︷︷ ︸

adjustment cost

]

dt

(while perhaps also satisfying various constraints or targets).
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A Collection of Optimization Problems:

brachistochrone: T (y) =

∫ x0

0

√

1 + y′(x)2
√

−2gy(x)
dx

hanging cable: P (y) = −

∫ x0

0
y(x)

√

1 + y′(x)2 dx

river navigation: T (y) =

∫ x0

0

[

α(x)2
√

1 + α(x)2y′(x)2

−

(
α(x)2v(x)y′(x)

]

dx

profit: P (R) =

∫ b

a
py

(
R(t)

)
− wR(t) − c

(
R′(t)

)
dt

In general: I(y) =

∫ b

a
F

(
x, y(x), y′(x)

)
dx
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∂F
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∣
∣

b

a

−

∫ b
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[
d

dx

∂F

∂y′
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