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Abstract 
 
 

There are a number of critical environmental issues associated with a changing 
atmosphere and a great deal of research and development activity is aimed at 
understanding and solving some of the problems that arise from industrial 
development. This thesis concentrates on computational studies on systems of 
environmental interest, covering aspects related to the calculation of kinetic 
parameters and excited states. 
 
Aldehydes, known to play an important role in the pollution of the troposphere, are 
emitted as primary pollutants from partial oxidation of hydrocarbon fuels and arise 
as secondary pollutants from the oxidation of volatile organic compounds. Once in 
the atmosphere, aldehydes either photolyse or react further with OH radicals 
during the day, or with NO3 radicals during the night. High-level ab initio 
calculations have been performed to examine the OH and NO3 hydrogen-
abstraction reactions from a series of aldehydes (XCHO, X = F, Cl, H, CH3). In 
addition, classical transition state theory has been applied for the calculation of the 
rate constants.  The importance of considering the reactant complex formation in 
the kinetics of some of these reactions is discussed, and new theoretical 
predictions for kinetic data are reported. 
 
Polycyclic aromatic compounds (PACs) are of great interest to the petroleum 
industry since they interfere with refining operations, and federal environmental 
regulations have been created to reduce their emission to the atmosphere. The 
characterization of PACs in petroleum-related samples is extremely difficult. 
Theoretical semi-empirical methods have been used to study the effects of methyl 
and reduced-ring substitution on the excited states of naphthalene, the smallest 
polycyclic aromatic hydrocarbon. Regularities are found and an explanation is 
given for an “anomalous” behaviour. 
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