
Chapter 3. Kinetic Calculations  

 
3.1.

3.2. 

 Introduction  

This chapter provides general background information to complement the kinetic 

calculations reported in Chapters 4 to 6. The following sections will provide an overview 

of the concepts and approximations behind transition state theory (TST), covering 

essential statistical thermodynamic topics such as the molecular partition function and its 

components, and the calculation of equilibrium constants. Tunneling calculations will 

also be covered, as a complementary part of quantum kinetic calculations on systems 

where light particles are transferred.  

 

The rate constants for chemical reactions can show different temperature dependencies. 

Some reactions are reported to have negative activation energies. Several explanations for 

this phenomenon will be discussed. The consideration of the reactant complex formation 

has been one of the ideas proposed to explain this situation.    

Essential statistical thermodynamics   

Statistical mechanics bridges the gap between the microscopic world of molecules, 

atoms, electrons and photons, and the macroscopic world of thermodynamics and the 

properties of materials. The goal of this branch of physics, in which mechanics and 

probability theory are mixed, is the understanding and prediction of macroscopic 

phenomena and the calculation of macroscopic properties from the properties of the 

individual components of the system. 

  

Statistical mechanics is based on either classical or quantum mechanics, with equilibrium 

and non-equilibrium versions. The branch dealing with thermodynamic properties is 

known as statistical thermodynamics, or more fully as equilibrium quantum statistical 

mechanics.1

 

39 
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The partition function is without any doubt the most important quantity in statistical 

thermodynamics. Once known as a function of the temperature, volume and number of 

particles in a system, all thermodynamic quantities, including heat capacities, entropies 

and equilibrium constants, can be calculated.2

 

The molecular partition function (Q) can be expressed as a sum over states (3.1), or a sum 

over energy levels, in which the degeneracy factor gi has to be considered (3.2): 
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In these expressions kB is Boltzmann’s constant, T is temperature and i is the index that 

numbers the states (3.1) or energy levels (3.2).  

 

The partition function indicates the average number of energy levels (or states) that are 

thermally accessible to a molecule at the temperature of the system. At T = 0 K only the 

ground state is accessible and Q equals g0, the degeneracy of the ground state, but at very 

high T, virtually all states are accessible, and Q is very large. 

 

Since in statistical thermodynamics different ensembles (i.e., collections of imaginary 

replications of the system) such as the canonical, microcanonical and grand canonical 

ensembles are defined for practical use, different kinds of partition functions refer to each 

of them.  

 

As mentioned in the previous chapter, the total energy of a molecule can be expressed as 

a sum of contributions from the kinetic energy (EK) of the nuclei and electrons, and the 

potential energy (EP) of nuclear, electronic and electron-nuclear interactions: 

)nucleielectrons(E)electrons(E)nuclei(E)electrons(E)(EE PPPKKT nuclei −++++=    (3.3) 
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This total energy can also be expressed by the sum of contributions from the different 

molecular modes of motion: translational (trans), rotational (rot), internal-rotational (int-

rot), vibrational (vib) and electronic (elect): 

electvibrotintrottransT EEEEEE ++++= −                                   (3.4) 

 

Strictly speaking the ground state energy of the molecule should be added to the above 

expression but it is usually excluded in standard textbooks.3 The above expression is an 

approximation since, apart from translational motion, these modes are not completely 

independent. However, in most cases this approximation is satisfactory. Approximations 

that assume that two modes of motion are not coupled, i.e., that do not interchange 

energy, are called adiabatic approximations. One such approximation, already mentioned 

in Chapter 2 (the Born-Oppenheimer approximation), allows the separation of electronic 

and vibrational motions. Another approximation of this kind is one in which the molecule 

is treated as a rigid body, permitting the separation of rotations and vibrations.  

 

By combining expressions (3.2) and (3.4), the molecular partition function can be 

rewritten as:  
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 The different contributions to the total molecular partition function (that is 

dimensionless) have magnitudes that decrease in the following order: Qtrans > Qrot >  

Qint-rot > Qvib > Qelect. Each contribution can be investigated separately and can be 

calculated, in principle, from spectroscopic data.  

3.2.1. Translational partition function 

The translational component of the total partition function must be calculated from a sum 

over all the translational energy levels available to a molecule confined to a cubic box of 
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volume V = RT/p (the molar volume of an ideal gas at temperature T and pressure p; R is 

the ideal gas constant): 
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If the translational energy levels are considered to be very close to each other, this sum 

may be approximated by an integral to obtain expression (3.7): 
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where m is the mass of the molecule and h is Planck’s constant. For the calculation of V 

the standard pressure, p0
 = 1 atm, will be used in the calculations presented in the next 

chapters. 

 

Expression (3.7) is sometimes rewritten in a different form: 
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The parameter Λ is called the thermal wavelength and is used to judge whether the 

approximation that led to the expression of  is valid. This is the case if many states 

are occupied, which requires  to be large. Λ must be small compared with the linear 

dimensions of the container. For example, for H

transQ

transQ

2 at 298 K, Λ = 71 pm and for a heavier 

molecule, O2, Λ = 18 pm. The heavier the molecule the more satisfactory the 

approximation. 

3.2.2. Rotational partition function 

A model system that approximately represents the rotation of a diatomic molecule is the 

rigid rotor. In this model the molecule is considered a central-force system consisting of 

two masses with a fixed interparticle distance. In such a model it is assumed that when 

the molecule rotates no vibration occurs, and vice versa. This model, when extended to a 

polyatomic system, is referred to as the rigid molecule (body) system. The free rotation of 
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a rigid molecule is described classically in terms of the principal moments of inertia, 

magnitudes that are calculated relative to three mutually perpendicular axes (principal 

axes) that intercept in the molecular centre of mass. In order to calculate the moments of 

inertia the mass and Cartesian coordinates of the atoms that form the molecule are 

needed. If the molecule is not considered a rigid rotor, the value of these parameters 

would be constantly changing. 

 

The free rotation of a rigid molecule is also quantized and the development of expression 

(3.9) leads to expressions (3.10), for a diatomic molecule, and (3.11), for a polyatomic 

system. 
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In these expressions, I is the moment of inertia of a diatomic molecule, and IA, IB and IC 

are the principal moments of inertia of a polyatomic molecule with respect to its principal 

axes. The constant σ is called the symmetry number, rotational symmetry number or 

external symmetry number. The inclusion of σ in the above expressions accounts for the 

fact that for symmetrical molecules less thermally accessible rotational states are 

available because of the indistinguishability of states. 

 

A formal way of obtaining the value of σ is by determining the order (number of 

elements) of the rotational subgroup of the molecule, the point group of the molecule 

with all but the identity and the rotations removed. For example, the rotational subgroup 

of HCHO, a C2v molecule, is {E, C2}, so σ = 2; the rotational subgroup of NO3 in the D3h 

point group is {E, 2C3, 3C2}, so σ = 6. 
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To obtain expressions (3.10) and (3.11), the sum derived from expression (3.9) is 

replaced by an integral (as for translations) after assuming that at high temperatures many 

rotational levels are occupied and the separation between neighbouring states is much 

smaller than kBT, the characteristic thermal energy. 

 

A useful way of expressing the temperature above which the previous approximation is 

valid, is by means of the rotational temperature, θrot, that can be calculated using 

expression (3.12). For T >> θrot, the approximation is valid; some typical values are listed 

in Table 3.1. Heavy and big molecules have large moments of inertia and thus very large 

Qrot. This situation reflects the closeness in energy (compared with kBT) of the rotational 

levels and that a large number of them are accessible at room temperature.  
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Table 3.1. Rotational and vibrational temperatures.(a) 

      
Molecule θrot/K θvib/K 

H2 88 6330 
HCl 9.4 4300 
I2 0.053 309 

                   (a) Taken from reference 2 

 

3.2.3. Vibrational partition function 

The simplest description of a vibration is given by the harmonic oscillator. Such an 

oscillation occurs when a particle experiences a restoring force (k) that is proportional to 

its displacement (x), according to Hooke’s law. The harmonic oscillator has a parabolic 

potential energy V (V ∝ x2) and the greater the curvature of the potential at the 

equilibrium position, the greater the force constant k (see Fig. 3.1): 4

0
2

2

x
Vk ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=                                                     (3.13) 

 



Chapter 3. Kinetic Calculations 45

 

 

 

 

 

 

 

 

 

 

x 

H

Low k 

igh k

V

0

Figure 3.1. Potential energy curve for a harmonic oscillator. 

 

 

The total energy computed by a geometry optimization (see Section 2.8) is the minimum 

on the potential energy curve. However, as an indirect consequence of the Heisenberg 

uncertainty principle, the molecule always has some vibrational motion, even at 0 K. This 

vibrational energy at 0 K is called the zero-point energy (ZPE) which is used to correct 

the calculated total energy of a molecule when energy differences or thermochemical data 

are to be calculated at 0 K.  If calculations at higher temperatures are to be performed, 

another correction, the thermal correction to the energy (TCE), must be considered. The 

TCE contains the ZPE plus the contributions to the total energy from vibrations at 

temperatures higher that 0 K. 

 

Following the harmonic approximation, the ZPE is calculated as: 

ν= hc
2
1ZPE                                                    (3.14) 

where c is the speed of light, and ν  is the wavenumber associated with the oscillation, 

calculated according to the following expression (µ is the reduced mass of the ‘diatomic’ 

molecule): 
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The quantized energy levels of the harmonic oscillator model are equally separated by an 

energy equal to νhc . As the bond energy increases, the force constant also increases 

together with the separation between neighbouring vibrational energy levels. 

 

The quantum mechanical description of a harmonic oscillator5 does not exactly describe 

molecular vibrations that behave somewhat anharmonically, but does provide a useful 

approximate treatment for low vibrational quantum numbers. 

 

An oscillator is mechanically anharmonic if the restoring force (k) is not strictly 

proportional to its displacement (x). It has a non-parabolic potential energy curve: the 

potential becomes less confining as x increases and the energy levels become closer 

together than in a harmonic oscillator; Fig. 3.2 shows the potential energy curves for the 

two models. Vibrations become strongly anharmonic at high excitations.  

 

The harmonic values of ν are obtained directly from the Hessian matrix (Section 2.8). 

One of the most direct ways to calculate anharmonic corrections to the vibrational 

frequencies is to compute higher-order derivatives (3rd, 4th, and so forth) of the energy 

with respect to the coordinates of the system; this requires considerably more computer 

resources.6
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Figure 3.2. Harmonic and anharmonic potential energy curves. 
Reproduced from reference 4. 
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In a polyatomic molecule with N atoms there are 3N-6 vibrational normal modes (3N-5, 

if the molecule is linear). If anharmonicities are small, these vibrational modes (each of 

which has its vibrational partition function) can be considered independent, and the total 

vibrational partition function may be expressed as: 

∏
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where Qvib(j) is the partition function of the jth normal mode. Normal modes of vibration 

may not be independent when the potential is strongly non-parabolic; the motion of one 

mode may stimulate another mode into vibration. 

 

If the harmonic oscillator energy levels are incorporated into equation (3.17), the 

vibrational partition function of the different normal modes may be calculated as 

indicated in equation (3.18): 
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The bigger the wavenumber of a vibrational mode, the lower its contribution to the total 

vibrational partition function. It is convenient to refer to the quantity νhc /kB as the 

vibrational or characteristic temperature, θvib (some examples are listed in Table 3.1). 

Two extreme cases that lead to simplifications of equation (3.18) can be identified. When 

θvib is large compared with T, the fraction of molecules in vibrational excited states is 

small and Qvib ≈ 1. At temperatures higher than θvib, Qvib can be calculated as:7

vib
vib θ

TQ =                                                      (3.19) 
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3.2.4. Internal-rotational partition function 

In polyatomic molecules, some of the 3N-6 vibrational degrees of freedom can exist as 

mutual rotation of the different fragments of the molecule or as more complicated 

mutually consistent motion. These additional degrees of freedom are called internal 

rotations, torsions or conformational transformations. 

 

In molecules such as ethane, the internal rotation around the single carbon-carbon bond is 

one of the most important internal degrees of freedom (see Fig. 3.2).  
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Figure 3.3. Schematic representation of the internal rotation  

about the C-C bond in ethane. 
 

 

There are three ways to treat an internal rotation depending upon its barrier to rotation 

(V0): as a free rotor, a hindered (restricted) rotor or a harmonic oscillator.3,8,10

 

If the barrier to rotation is much less than kBT (ca. 2.5 kJ/mol, or about 207 cm-1, at 298 

K), then the internal rotation may be considered free. Qint-rot for such a rotor may be 

calculated as follows:9,10
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where I ’ is the reduced or effective moment of inertia for the internal-rotation and is 

given by equation (3.21): 
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In the above expression, I1 and I2 are the moments of inertia of the rotating tops 

calculated with respect to the common axis for internal rotation:  

∑=
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where m and r are the mass (in kilograms) of each atom and its distance (in meters) to the 

common axis of internal rotation, respectively. 

 

If the barrier to internal rotation is much greater than kBT, the torsion can be considered a 

non-rotating harmonic oscillator, and its treatment is the same as for the other vibrations. 

For the intermediate cases in which the torsional barrier is comparable to kBT, the 

internal rotation may be treated as a hindered rotor for which the value of V0 needs to be 

determined and there are no simple analytic solutions.11 The internal rotation around the 

carbon-carbon single bond in ethane is a hindered internal rotation with a potential barrier 

of about 12 kJ/mol.12 There are several reviews and monographs concerned with the 

calculation of internal rotations.13

 

The free and hindered rotor models require the consideration of an internal (also called 

effective) symmetry number, that is the symmetry number for the internal rotation, σint 

(see equation (3.20)). This parameter equals the number of minima (or maxima) in the 

torsional potential energy curve; for the torsion of a methyl group, σint = 3. The 

vibrational frequencies corresponding to torsions must be deleted (i.e., ignored in the 

calculation of Qvib) if the torsion is treated as a free or hindered rotation. 

 

The centre of mass and thus, the principal moments of inertia for the overall (external) 

rotation will change as the torsional motion is executed. The approximation of 

considering these modes of motion as non-coupled could be very serious for torsions in 

big molecules such as polymers. 

 

The treatment of internal rotations is especially important in TSs, where several motions 

may have to be treated as free or hindered rotors.14 The harmonic oscillator treatment of 
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these modes of motion may cause significant error. The identification of such degrees of 

freedom by inspection of the normal modes in Cartesian coordinates is not an easy task, 

and the use of internal coordinates has been found more convenient.15

 
3.2.5. Electronic partition function 

As a general case, the electronic partition function may be calculated by: 
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where g0 is the degeneracy of the electronic ground state and ∆Eelect is the energy 

difference of the excited states with respect to the ground state. In the calculation of Qelect, 

factors such as the degeneracy of the electronic states and the existence of low lying 

excited states, have to be considered.1b,2,7  

 

The electronic levels of atoms and molecules are usually much further apart than the 

vibrational level in molecules. For the H atom for example, the first electronic excited 

state is about 1.6⋅10-18 J above the ground state, and at ordinary temperatures this state 

makes a negligible contribution to the partition function. As a useful rule it has been said 

that if the difference in energy between an excited and the ground electronic state divided 

by kB is greater than 5 K, the excited state can be ignored in the calculation of Qelect at 

usual temperatures.  

 

Another factor to consider is the degeneracy of an electronic state. If excited electronic 

states are ignored, Qelect = g0. Nearly all stable molecules are closed-shell systems and 

their excited states are high enough to be neglected except at very high temperatures, so 

for these cases the electronic partition function is unity. Important exceptions are O2, NO, 

and most free radicals.  

 

For atoms, the degeneracy of the electronic ground state is determined by the total 

electronic angular momentum, represented by the quantum number j. This magnitude is a 

combination of the spin (s) and orbital (l) angular momenta, which has positive values 
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between l + s and l – s. For every j there are (2j + 1) possible orientations in a magnetic 

field, corresponding to identical energies, so g0 = 2j + 1. 

 

For molecules, in addition to spin degeneracies, some states have spatial degeneracies. 

This situation is more common for diatomics. Linear molecules with spatial symmetry 

other than Σ (which has zero total angular momentum), e.g., Π or ∆, have spatial 

degeneracy of 2.  If there are both spin and spatial degeneracies, spin-orbit coupling lifts 

the degeneracy, often significantly.  

 

As shown in the sections above, exact analytical expressions for the calculation of the 

different contributions to the molecular partition function cannot be obtained. All modes 

of motion are considered as not being coupled and in the calculation of each contribution 

assumptions have to be made. These approximations are avoided by using the energy 

levels identified spectroscopically and by evaluating the sums explicitly, but for species 

that have not yet been detected or isolated, such as TS’s and reactant and product 

complexes, among others, there is no other alternative. 

 

The evaluation of the total molecular partition function requires only a knowledge of the 

mass of the system (Qtrans), its geometry (Qrot, Qint-rot), vibrational frequencies (Qint-rot, 

Qvib) and the energies of low-lying electronic excited states with respect to the ground 

state (Qelect).  

3.2.5. The calculation of equilibrium constants 

One of the most important thermodynamic functions is the Gibbs free energy (G). For a 

system of N indistinguishable independent particles (i.e., an ideal gas), G may be 

expressed in terms of the total molecular partition function, as follows: 
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Since N = n⋅NA (where n is the number of moles and NA Avogadro’s number), the above 

expression can be conveniently rewritten in terms of the molar partition function,  

Qm = Q/n:  
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For a species X, under standard conditions, i.e., when p = p0 = 1 atm, equation (3.25) can 

be written in as: 
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where is the standard molar partition function of X. 0
m,XQ

 

The equilibrium constant Keq for a reaction is related to the standard Gibbs energy of 

reaction: 
0

rG∆  = - RT ln Keq                                                (3.27) 

 

By combining expressions (3.26) and (3.27) the equilibrium constant for a general 

reaction:                                       aA  +  bB        cC  +  dD                                          (3.28) 

is given by the expression: 
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For simplicity, equation (3.29) will be written as: 
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where QX is the standard molar partition function of X divided by NA, and  is the 

difference in molar energies of the ground states (including ZPEs) of the products and 

reactants. In other words,  is the molar reaction internal energy at T = 0 K. 

0r E∆

0r E∆

3.3. Transition State Theory  

Collision theory and transition state theory (TST) are fundamental theories of 

bimolecular elementary reactions.16 The following chapters of this part of the thesis are 

applications of TST to rate constant calculations. 

 

In 1935, Eyring17 and, independently, Evans and Polanyi,18 developed a simple and 

general formulation for the calculation of reaction rates that has been called transition 

state theory (TST) and is still being used in many studies.19 Other names have been given 

to this theory, such as activated complex theory, absolute rate theory, classical TST and 

conventional TST.16a,20  

 

The simplest reaction profile for an elementary reaction is represented in  

Fig. 3.4. As the reaction takes place, the reactants (React) make contact with the right 

energy and geometry, and the potential energy of the system rises to a maximum. The 

molecular arrangements of the reacting species in the area around the maximum 

(represented by a circle in Fig. 3.4) is called the activated complex. The climax of the 

reaction is at the maximum of the potential energy, the point at which the reactants have 

come to such a degree of closeness and distortion (called the transition state, TS) that a 

small further distortion converts them into the products of the reaction (Prod). The TS is 

the molecular system whose configuration corresponds to the first-order saddle point on 

the potential energy surface. Sometimes, the terms activated complex and TS are used as 

synonyms.2,21

 

TST focuses its attention on the TS of a bimolecular elementary reaction and calculates 

its concentration by making use of statistical thermodynamic concepts. As in all scientific 

theories, various assumptions and approximations are involved in its implementation.16a 
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It is based on the equilibrium hypothesis which states that even when the reactants and 

products are not at equilibrium with each other, the TS is always at equilibrium with the 

reactants, whose energy distribution is in accordance with the Maxwell-Boltzmann 

distribution law. Furthermore, it is assumed that once the maximum of the potential 

energy curve has been surmounted, such molecular systems cannot turn back and form 

reactant molecules again. Another approximation is the separation of the motions of the 

system over the maximum from the motions associated with the TS. In this theory the 

chemical reaction is treated in terms of classical motion over the barrier, ignoring 

quantum effects; although as will be discussed below this is not completely true. 
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Figure 3.4. Energy profile of an elementary reaction.  
 

 

 

For a general reaction:       React    [TS]≠    Prod 

by applying basic concepts of statistical thermodynamics, the constant for the equilibrium 

between reactants and the TS can be written as: 
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where  is the hypothetical energy of activation at 0 K, calculated by: 0E∆
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The partition functions and the energy difference must be calculated with respect to the 

same reference state, in this case the zero-point vibrational energy level. 

 

Since the imaginary frequency of the TS (ν≠) corresponds to a loose vibration without 

restoring force, it is supposed to be much smaller than the frequency of an arbitrary 

vibration, i.e., hcν≠/kBT << 1, and the expression in the exponential of equation (3.18) can 

be expanded in a Taylor series, so that the partition function of the vibrational component 

of the imaginary frequency can be calculated by:  
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Further application of the assumptions discussed above leads to the following expression 

for the rate constant (k has also been referred to as specific reaction rate22 or rate 

coefficient):2,16a
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In the previous expression, κ is the tunneling factor or tunneling correction, that will be 

discussed in Section 3.4; QTS is the standard molar partition function of the TS divided by 

NA, ignoring the contribution of the imaginary frequency to the vibrational partition 

function. 

 

TST, like every theory, has limitations.16,25b That is why there have been so many 

improvements and extensions to it, such as variational TST (VTST),23 quantum TST,24 
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among others. But all the modified theories are considerably more complicated than TST 

and cannot be expressed in as compact a form.16a,25,26

3.3.1. Unimolecular reactions 

Unimolecular reactions in the gas phase have been known for nearly a century.27 

Examples of such reactions are dissociations and isomerizations. In addition, 

unimolecular fragmentation of gas phase ions forms the basis for mass spectrometry 

analysis.28

 

Following the Lindemann theory, the rate constant for a unimolecular reaction kuni is a 

function of pressure. Collisions can either energize or de-activate a gas molecule, and 

maintain a Boltzmann distribution of the reactant molecules throughout its energy levels. 

At low pressures kuni is directly proportional to the total pressure, however, at high 

pressure kuni is independent of pressure. Under high-pressure conditions collisional de-

activation is much faster than the unimolecular reaction, an equilibrium distribution of 

the reactants is maintained, and the classical TST formula can be applied to calculate the 

rate constant.16b  

 

Considerable experimental work concerning gas phase unimolecular reactions has been 

devoted to energy-selected systems.29 All detailed statistical theories of unimolecular 

reactions begin with the calculation of the rate constant as a function of the internal 

energy, k(E), also known as the microcanonical rate constant. 

 

The Rice-Ramsperger-Kassel-Marcus/quasi-equilibrium theory (RRKM/QET) assumes 

the existence of a TS. According to this theory, the expression for k(E) is given by: 

( ) ( )
( )Eh

EEN
Ek 0

ρ

−σ
=                                             (3.35) 

where E0 is the critical energy of activation (not necessarily equal to the Arrhenius 

activation energy, see below), ρ(E) is the density of vibrational states of the reactant 

molecule at energy E, N(E – E0) is the sum of the vibrational states from 0 to E – E0 in the 
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TS, and σ is the reaction path degeneracy (equivalent to the rotational symmetry number, 

see Section 3.2.2). The application of equation (3.35) requires the knowledge of the 

energy barrier and the vibrational frequencies of the reactant and of the TS. Although this 

theory has been (and still is) widely used for the quantitative description of unimolecular 

reaction kinetics,30 it is not a simple theory to be implemented; it will not be applied in 

the following chapters.  

3.3.2. Femtochemistry 

The development femtosecond pulsed lasers and their applications to chemistry in the 

form of femtochemistry has made possible the study of molecular motions in the 

ephemeral TSs of physical, chemical and biological changes.31 The significance of these 

studies was manifested in the 1999 Nobel Prize, awarded to Ahmed Zewail for his 

groundbreaking work in femtochemistry.  

 

In a typical experiment, a femtosecond pulse is used to excite a molecule to a dissociative 

state; a second pulse is fired at an interval after the first one and it is set at an absorption 

frequency of one of the free fragmentation products. The intensity of such absorption is a 

measure of the abundance of the dissociation product. In a similar study on the ICN 

molecule, it was possible to detect that the CN absorption signal remains zero until the 

fragments are separated by about 6 Å, which takes about 205 fs (1 fs = 10-15 s).  

 

Femtosecond spectroscopy has also been used to examine analogues of the activated 

complex involved in bimolecular reactions; a molecular beam can be used to produce a 

van der Waals molecule, such as IH…OCO. The H-I bond can be dissociated by a 

femtosecond pulse, in which case the H atom is ejected towards the O atom of the 

neighbouring CO2 molecule to form HOCO. Hence, the van der Waals molecule acts as a 

source of a species that resembles the activated complex of the reaction: 2

H  +  CO2 →  [HOCO]≠  →   HO  +  CO                            (3.36) 
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Tunneling calculations  3.4. 

It is sometimes necessary to correct the rate constant calculation by a factor that takes 

account of the possibility that some reactant molecules can be transformed into the 

products of the reaction without having surpassed the activation barrier and that not every 

activated complex becomes transformed into the products. Such a quantum-mechanical 

correction is achieved by what has been named the tunneling correction and will be 

discussed in the present section. The book by Bell32 has been a very important material 

source for this topic. 

 

The suggestion that quantum-mechanical tunneling might be a significant factor in some 

chemical reactions was first made more than seventy years ago by Hund.33,34 Fig. 3.5 

illustrates the meaning of the term tunnel effect: 

 

 

 

        (a)             (b) 

 

 

 

 

 

 

 

 
 

Figure 3.5. Passage of a particle across classical and quantum potential energy barriers. 
(a) Particle approaching a potential energy barrier;  
(b) Plot of the permeability (G) as a function of the energy of the particle (W). 
Reproduced from reference 32. 

 

 

Fig. 3.5(a) shows a particle of mass m and energy W approaching a potential energy 

barrier of height E. The magnitude G, called the permeability or transmission coefficient, 
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represents the probability that the particle will appear on the right-hand side of the 

barrier. G varies with W in a way that depends on the type of barrier considered.  

Fig. 3.5(b) is a plot of G as a function of W. The broken line represents the predictions of 

classical mechanics and the everyday experience with macroscopic objects: the 

probability is zero as long as W < E, and rises abruptly to unity when W = E, staying at 

this value for all higher values of G. When going from classical to quantum mechanics, 

the broken line is replaced by a continuous curve, whose exact form depends not only on 

the height of the barrier, but also on its width and shape and on the mass of the particle. 

 

The quantum-mechanical curve of G vs. W has the following limiting behaviour: 

( ) 0WGlim
0W

=
→

                         ( ) 1WGlim
W

=
∞→

                          (3.37) 

The most impressive feature of the continuous curve is that it predicts non-zero 

permeabilities even when W < E (i.e., the particle penetrates the barrier, it tunnels 

through the barrier). In addition, for some values of W > E, there is some probability that 

the particle be reflected by the barrier.  

 

The tunnel effect is a consequence of the wave-particle duality of matter postulated by de 

Broglie in 1925,35 and represented mathematically by the expression: 

mv
h

=λ                                                       (3.38) 

For macroscopic systems λ is very small compared with the dimensions of the particles 

and classical mechanics can be applied with sufficient accuracy. For molecular systems 

deviations from classical behaviour take the form of quantization  (e.g., the existence of 

discrete energy levels). For a free particle (e.g., e-, H, H+, H-) approaching an energy 

barrier such deviations are manifested as the tunnel effect. However, most reacting 

systems may involve both quantization and the tunnel effect, but it is often convenient to 

treat these phenomena separately.  
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So far reference to the tunneling effect has been made in a qualitative manner. However, 

there are ways to obtain quantitative estimates of its magnitude, named the tunneling 

correction or tunneling factor, κ.  

 

The tunneling correction is defined as the ratio of the quantum-mechanical (kQ) to the 

classical (kC) barrier-crossing rate, and can be calculated in terms of the previously 

mentioned parameters as follows: 
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∞
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κ                            (3.39) 

 

To obtain κ, the permeability G needs to be evaluated. To do so, the Schrödinger 

equation for a given potential energy barrier must be obtained, and its solutions 

interpreted. Usually several simplifications of the tunneling process are made: the barrier 

is considered unidimensional and the mass of the particle is assumed to remain constant 

during the process.    

 

Several types of one-dimensional barriers have been used to model tunneling, such as 

rectangular, triangular and parabolic, among others. The parabolic barrier (Fig. 3.6) is of 

particular importance in chemical problems since it represents a more realistic 

representation of a real barrier (at least when tunneling involves only the upper part of the 

barrier). Furthermore, for the parabolic barrier an exact expression for the permeability 

can be obtained, that can be explicitly integrated.36 Most types of barriers lead to 

expressions for G that require numerical integration, thus κ cannot be explicitly 

evaluated.  

 

The Wigner correction,37 is a very simplistic way of estimating small tunneling factors by 

assuming a parabolic potential for the nuclear motion near the TS: 

Tk
hc

24
11

B

≠ν
⋅+=κ                                                 (3.40) 
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Figure 3.6. An infinite parabolic barrier. 
Reproduced from reference 32. 

 

The above expression is obtained after truncating Bell’s formula for a parabolic barrier, at 

high temperatures or small values of ν ≠. The Wigner correction has been used in several 

kinetic applications.38

3.4.1. The Eckart barrier 

A one-dimensional barrier shape that corresponds more closely to physical reality and for 

which a solution of the quantum-mechanical problem is possible, was proposed by 

Eckart.39 The Eckart barrier was the first realistic type of barrier for which the tunneling 

problem was solved, and it has been extensively used in chemical applications.40

 

The general equation for the Eckart barrier is: 

)y1(
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++=             ⎟
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⎜
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⎛ −

=
b
xx

expy 0                       (3.41) 

where b is a characteristic length (thickness parameter) and x0 indicates the origin of the 

barrier. The parameters A, B and b are constants related to the direct (V1) and reverse 

(V2) potential energy barriers, and to the imaginary frequency of the TS.  
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Fig. 3.7 shows symmetrical and unsymmetrical Eckart barriers (V* is the potential at the 

maximum of the barrier, and F* is the second derivative of the function at its maximum, 

calculated from ν ≠). For the symmetrical function A is zero; B represents the 

endothermicity of the process for the unsymmetrical case.  

 

A graphical comparison between symmetrical parabolic and Eckart barriers is shown in 

Fig. 3.8. The parabolic and Eckart barriers behave similarly at the top of the barrier, but 

the Eckart function shows a slower decrease of the potential away from the maximum.  

 

For the Eckart barrier the Schrödinger equation can be solved exactly, thus an exact value 

of G can be obtained. The expression for the permeability of such a barrier and for the 

tunneling factor (3.42) are rather complicated in form and involve integrals which have to 

be evaluated numerically. Values of κ for a variety of conditions assuming an Eckart 

barrier have been reported.41
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Tunneling calculations considering an Eckart-type barrier are a simple (but not as simple 

as Wigner or parabolic-type barrier tunneling corrections) and practical way of 

accounting for tunneling. The Eckart method is still widely used in the literature, 

although more sophisticated methods, such as the multidimensional semiclassical zero- 

(ZCT) and small-curvature (SCT) tunneling methods have been developed.42 A few years 

ago a study on the importance of quantum mechanical tunneling effects on the kinetics of 

the hydrogen exchange reaction of methane in a zeolite was published.43 In Truong’s 

paper, the accuracy of Eckart tunneling calculations was demonstrated, in agreement with 

his previous work.44 Not only were different tunneling corrections considered, but also 

VTST results were compared with TST calculations. The success of the TST/Eckart 

combination was clearly shown. 
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Figure 3.7. Symmetrical and unsymmetrical Eckart barriers. 
Reproduced from reference 41a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Comparison of sy
Reproduced from
mmetrical parabolic and Eckart barriers. 
 reference 41a. 
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It is well known that the Eckart method tends to overestimate the tunneling contributions 

especially at very low temperatures. In the papers discussed above,43, 44 (where there is 

approximately the same degree of heavy-atom motion as the system moves along the 

reaction path, in comparison with the reactions that will be studied in Chapters 4 to 6) the 

Eckart corrections do not overestimate the rate constant at room temperature, as happens 

at much lower temperatures. 

 

A useful measure of the barrier width is the full width of the barrier at half its height in 

the forward direction, ∆s½. It may be determined by setting: V(x) = (A+B)2/8A = V*/2 

and obtaining the difference between the two roots of x. The magnitude of ∆s½ (usually 

reported in Å) depends on the direct and reverse potential energy barriers at 0 K, and on 

the characteristic tunneling temperature (T*), below which tunneling is significant. This 

magnitude can be calculated by: 

B

*

k2
hcT
π
ν

=
≠

                                                    (3.43) 

 

An arbitrary general criterion for tunneling given by Bell could be useful for certain 

applications:  

Negligible tunneling:      1 < κ < 1.1 

Small to moderate tunneling: 1.1 < κ < 4 

Large tunneling:           κ > 4 

 

As a generalization on this topic it can be said that the smaller the mass of the particle to 

be transferred in a chemical reaction, the lower the temperature, and also that the 

narrower and larger the potential energy barrier, the greater the tunneling effect. The 

width of the potential energy barrier is given by the curvature at its maximum, 

determined by the imaginary frequency of the TS; the larger ν  the greater the curvature 

and κ. 
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3.5. Arrhenius, non-Arrhenius and anti-Arrhenius kinetic behaviours  

Many rate constants show an exponential dependence on temperature that can be 

empirically fit by the well-known Arrhenius equation45,46 over a relatively narrow 

temperature range: 

⎟
⎠
⎞

⎜
⎝
⎛−=

RT
E

expAk a                                              (3.44) 

where T is the temperature in K and R is the ideal gas constant. Ea and A have been 

named the Arrhenius activation energy and pre-exponential factor, respectively. 

 

The activation energy (when referring to an elementary process) is related to the height of 

the energy barrier for a reaction, the energy required to transform the reacting substance 

into the ‘active’ form. The pre-exponential factor, also known formerly as the frequency 

factor, is the rate constant of a reaction without activation energy (a barrierless reaction), 

or at infinite temperature where all the collisions are ‘effective’.  

 

The problem of temperature dependence of reaction rates had a great deal of controversy 

and uncertainty for over 60 years (from 1850 to 1910)47 and many empirical equations to 

describe it were developed.48 Even though the Arrhenius equation was not empirically the 

best, by about 1910 it was the only one-parameter temperature-dependence equation 

(since one parameter, Ea, expresses the temperature dependence) accepted because of the 

insight it provides on how chemical reactions proceed.  

 

To a first approximation, the Arrhenius factor A is found to be independent of 

temperature for many reactions over a certain temperature range. Hence, a straight line is 

obtained when plotting ln k versus 1/T; this situation has been referred to as an Arrhenius 

behaviour. As the temperature range over which experiments are carried out is extended, 

non-linear Arrhenius plots (non-Arrhenius behaviours) are observed for some reactions.49

The failure of the Arrhenius equation in special circumstances is well known.50 

Ironically, one of the first detected reactions to fail equation (3.43) was the inversion of 

sucrose,51 a reaction whose kinetic data was used by Arrhenius in his study.45 The 
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Arrhenius equation can fail, for example, in a reaction with concurrent mechanisms with 

quite different dependencies on temperature, or in catalytic reactions where irreversible 

changes take place on the catalyst at high temperatures or while approaching an 

explosion limit. Two additional groups of reactions not obeying equation (3.44) are the 

diffusion-controlled reactions in aqueous glasses,52 and reactions where a low-mass 

particle (e.g., H, H+ or H-) is transferred, in solution or in the gas phase, and tunneling is 

significant (vide infra).  

 

For reactions in which the activation energy is small or zero, the temperature dependence 

of A can be significant. As a result, the empirical Arrhenius equation (3.44) is not 

appropriate to describe the temperature dependence, and a modified equation of the form: 

⎟
⎠
⎞

⎜
⎝
⎛−=

RT
E

expBTk 0n                                           (3.45) 

is frequently used, where B, E0 and n are temperature independent constants characteristic 

of the reaction. This is the most satisfactory two-parameter equation that can be used to 

describe the temperature dependence of rate constants when non-linear plots of ln k 

versus 1/T are obtained. There is a good theoretical basis for this equation arising from 

the temperature dependence of partition functions. 

 

It is often convenient to define the experimental Arrhenius activation energy Ea by the 

equation: 

( )T1d
klndR

dT
klndRTE 2

a −≡≡                                       (3.46) 

Hence, the slope of the ln k versus 1/T plot at any point is equal to –Ea/R and the above 

definition applies whether or not the Arrhenius plot is linear; if it is not, Ea (and thus A) 

will vary with temperature.  

 

If a reaction obeys equation (3.45), then: 

Ea = E0 + nRT                                                 (3.47) 
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where E0 is the hypothetical activation energy at absolute zero. 

 

Hence, a non-Arrhenius behaviour (curved Arrhenius plot) implies the parameters Ea and 

A to be temperature-dependent. This is illustrated in Fig. 3.9. 
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Figure 3.9. Schematic curved-Arrhenius plot showing the temperature 

dependence of Ea and A.    
 

 

When tunneling plays an important role in the kinetics of some reactions, curved 

Arrhenius plots are also obtained. This, of course, will be the case for temperatures below 

T*. 

 

Since kQ = κ ⋅ kC (see equation (3.39)), the temperature dependence of Ea and A will be 

established by the following expressions: 
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where (Ea)Q and (A)Q are the Arrhenius parameters considering tunneling, and (Ea)C and 

(A)C are the same parameters when this quantum effect is ignored. 

 

Since tunneling decreases as temperature increases, dlnκ/dT is always negative. Hence, 

equation (3.48) predicts that tunneling will reduce the Arrhenius activation energy. The 

direction in which tunneling affects the pre-exponential factor is not immediately 

obvious, but for small tunneling corrections a reduction of the A factor is expected.  

 

For a chemical reaction where tunneling is significant, the appropriate way to 

theoretically or experimentally determine the Arrhenius parameters at a temperature 

below T* requires the construction of a lnk versus 1/T plot, or the determination of the 

corresponding analytical expression. From the slope and the intercept of the tangent to 

this curve at the desired temperature, the Arrhenius parameters may be determined.  

 

Equation (3.44) is not in general obeyed in the sense that unique constants A and Ea do 

not exist for each reaction. 

 

While most reactions increase in rate as the temperature increases, there are several 

notable exceptions for which the Arrhenius activation energy is negative. The 

temperature dependence of such reactions is referred to as anti-Arrhenius. This topic will 

be discussed further in the following section. 

3.6.1. Negative Arrhenius activation energies  

The above definition or interpretation of the activation energy is only valid when 

referring to elementary reactions; even for such systems some authors have indicated that 

a complete identification of the Arrhenius activation energy with the barrier height is not 

justified.53 As more sophisticated experimental methods are developed, the number of 

accepted elementary reactions is reduced. In fact, one of the main conclusions of the 

following chapters related to computational kinetics refers to this topic.  
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Since most chemical reactions are complex, the meaning of the term activation energy 

needs to be modified. For non-elementary reactions, the Arrhenius activation energy is 

not in general simply related to the height of any single energy barrier, it is instead 

theoretically calculated by a linear combination of the activation energies of the single 

elementary steps of the proposed kinetic mechanism. The term Arrhenius activation 

energy will always refer to the experimentally determined kinetic parameter according to 

the operational definition (3.44). The validity of the proposed mechanism depends on 

how well it explains and reproduces the experimental data. 

 

The reaction:                                 2NO  +  Cl2  →  2ONCl                                      (3.50) 

is a third-order process that exhibits anti-Arrhenius behaviour, i.e., the Arrhenius 

activation energy is negative.54

 

For an elementary process, a negative Arrhenius activation energy is inconceivable on the 

basis of TST or of collision theory. The above reaction is thought to occur not by a single 

termolecular step but instead by a complex mechanism in which an NO molecule first 

forms a loose reactant complex with Cl2 in a reversible process (steps 1 and –1), followed 

by the reaction between such a complex and a second NO molecule (step 2). The 

Arrhenius activation energy is thus given by: 

Ea = Ea (1) + Ea (2) – Ea (-1)                                         (3.51) 

The negative activation energy arises because Ea (-1) is greater that the sum of Ea (1) and  

Ea (2). Negative Ea are normally encountered for termolecular reactions. 

 

A similar situation is found in the recombination reaction of I atoms, conventionally 

written as:                                         

I  +  I  +  M  →  I2  +  M                                        (3.52) 

where M symbolizes any molecule. This reaction can also have a negative Ea.55  
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Benson and coworkers have examined some ‘elementary’ gas phase reactions in which 

negative activation energies and/or curved Arrhenius plots have been observed 

experimentally.56 They have shown that activation energies as negative as –5.0 to –7.5 

kJ/mol near 300 K as well as curved Arrhenius plots can be explained by the formation of 

an intermediate complex. These results were obtained for the reactions of OH with CO, 

HNO3 and HNO4.  

 

Another type of reaction important in atmospheric chemistry that shows this somewhat 

unusual inverse temperature dependence of the rate constants is that between alkenes and 

OH and, in some cases, O(3P). 

 

The reactions of alkenes with OH radicals are very fast. The rate constants for the larger 

alkenes are approximately equal to the diffusion-controlled limit (i.e., the reaction occurs 

on every collision).57 Several explanations have been proposed to explain the anti-

Arrhenius behaviour of these reactions, one of them being the formation of a weakly 

bound complex (also called reactant complex or pre-reactive complex) as previously 

explained; Singleton and Cvetanović proposed this idea in 1976.58 In fact the role of such 

complexes has received increased attention in the recent literature. Some of these studies 

will be discussed in the following chapter.59 In recent studies the abundance of hydrated 

complexes in the atmosphere is estimated and physicochemical properties are evaluated; 

experimental evidence of their existence is also given.60

 

Another possible explanation for negative activation energies lies in the use of the 

Arrhenius equation. The data for lnk vs. 1/T can be fit to an expression similar to (3.44) 

with negative values of n that for the specific case of the alkenes + OH reaction is 

approximately –1.5.49,57  

 

A third explanation, based on collision theory, has been given by Zellner and Lorenz.61 A 

T-1.5 temperature dependence (for the alkenes + OH reactions) is predicted if the reaction 

cross section is assumed to increase rapidly at the threshold energy, reach a sharp 

maximum, and then decrease as the energy increases.   
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For the reaction of olefins with O(3P), Cvetanović and Singleton identified four possible 

explanations, some of which have aspects in common with the ones already mentioned.62 

One idea is that it is simply an elementary bimolecular reaction with an approximately 

zero activation energy so that the temperature dependence of the A factor becomes 

important. Another idea is based on the formation of a transient O(3P)-alkene complex 

that can decompose back to the reactants or form products; in this case the complex is an 

electron-donor acceptor complex with the electron donor being the alkene π bond and the 

product is not a stable radical adduct as in the OH-alkene reactions. A third explanation 

refers to the existence of two or more reaction channels whose activation energies are 

significantly different; the addition to the double bond and atom or free radical 

displacement are two such reaction channels. The other explanation given by Cvetanović 

and Singleton refers to the crossing of potential energy surfaces: if the O(3P)-olefin initial 

interaction has a shallow minimum and the rate determining step involves crossing in a 

repulsive region to an attractive potential energy surface, then intersection of the surfaces 

at energies lower than that of the separated reactants would result in negative activation 

energies. 

 

Benson explained this paradoxical result of elementary reactions having negative 

activation energies in terms of the different internal energies (vibrational excitation) of 

the reacting molecule and its dissociating fragments, which can become very pronounced 

at high temperatures. Recently, a study by Benson and Dobis on the existence of negative 

activation energies in simple bimolecular metathesis reactions of the type: 

R•  +  HX and R•  +  X2 (X = I, Br, Cl),63 blamed the artifacts of the experimental 

methods for this situation.    

 

The anti-Arrhenius behaviour of some reactions is without doubt a very interesting and 

somewhat frequent phenomenon that can be found in the recent literature.64   
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3.6. General aspects regarding Chapters 4 to 6 

In computational chemistry the activation energy of an elementary reaction is calculated 

in terms of the total energies of the TS and the reactants including their respective 

vibrational thermal corrections to the energy (TCE) that depends on temperature:  

Ea = (ETS + TCETS) – Σ(EReact + TCEReact)                           (3.53) 

In the following chapters Arrhenius activation energies measured in a temperature range 

that includes 298 K are compared with calculated activation energies using thermal 

corrections at 298.15 K. Calculations at 0 K are also reported. 

 

For the mechanisms considered in Chapters 4 to 6, these activation energies are 

calculated by expression (3.53). Reaction enthalpies (∆H) are also calculated at 0 and 

298.15 K, and reported in kJ/mol as well. The optimum situation for a theoretical 

calculation of Ea and ∆H is to be within chemical accuracy, i.e., within ca. 4 kJ/mol (that 

is equivalent to about 1 kcal/mol), with respect to experiment. For rate constant 

calculations the optimum could be expected within one order of the experimental values, 

although this non-established criterion is subject to change as better theoretical 

determinations are achieved. 

 

In Chapters 4 and 5, the calculated activation energies correspond to different 

mechanisms, as will be explained. When referring to the activation energy of a complex 

mechanism, this quantity will be named effective activation energy and will be denoted 

Ea
eff. Similarly, rate constants for complex mechanisms will be referred to as effective 

rate constants, keff, and for an elementary or direct mechanism this magnitude will be 

named direct rate constant, kD. Rate constants in units of L/mol⋅s will be calculated at 

298.15 K. 

 

The Gaussian9865 set of programs was used to perform the electronic calculations 

reported in Chapters 4 to 6. In this commercial program all the calculated harmonic 

frequencies are directly included in the calculation of the vibrational partition function, 
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hence corrections have been made to the total partition function of the TSs to account for 

internal rotations that were considered to be free. The character of all stationary points 

(minima and TSs) considered in the reactions studied was confirmed by a frequency 

calculation performed at the same level as for the geometry optimizations.  

 

The tunneling factors, κ and ∆s½, were calculated by assuming an unsymmetrical Eckart 

barrier (see Section 3.4.1). A modified version of the numerical integration program of 

Brown66 was used for the calculation of the tunneling factor; the Gaussian quadrature was 

performed at 40 points for increased accuracy. The output of the program with different 

input parameters was compared with the results reported by Johnston41a for this kind of 

barrier, with excellent agreement. The FORTRAN programs used to calculate κ and ∆s½ 

were kindly provided by Dr. P. D. Pacey, at Dalhousie University.  

The constants and conversion factors used in the calculations reported were obtained 

from reference 67. 

3.7.
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