
Chapter 2. Theoretical Background  

 
A qualitative overview of the basic aspects of quantum chemistry and computational 

methods is provided in this chapter. It is intended to give an introduction without 

excessive detail to the approximations and methods of computational chemistry applied 

throughout the thesis. These methods are neither exact nor perfect. However, qualitative 

or approximate computations can give useful insight into chemistry if the researcher 

understands what they do or do not predict. 

2.1. Introduction  

The energy and electronic properties of a stationary state of a molecule can be obtained 

by solving the time-independent Schrödinger equation.1 This is an eigenvalue equation 

that cannot be solved exactly, except for simple cases: 

Ĥ Ψ = ε Ψ                                                       (2.1) 

where is a Hermitian operator called the Hamiltonian operator, Ψ is the exact wave 

function of the system and ε is the energy of the stationary states, with the lowest energy 

state being the ground state. 

Ĥ

 

The Hamiltonian operator considers all possible contributions to the total energy of the 

system arising from the kinetic energy of electrons and nuclei, the attractive potential 

energy between the electrons and nuclei, and the interelectronic and internuclear 

repulsive potential energy. The adiabatic or Born-Oppenheimer2 approximation is one of 

the most important approximations used to simplify the mathematical expression of the 

Hamiltonian operator. Since the electron mass is much less than that of the nuclei, the 

motions of the nuclei are negligible compared to those of the electrons. Hence, the 

nuclear kinetic term in the Hamiltonian operator can be neglected, and the internuclear 

repulsion term can be treated as a constant. In other words, we can consider the electrons 

in a molecule to be moving in a field of fixed nuclei. 

 

11 
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The variational method3 is based on the variational principle and is an important 

approach for finding approximate solutions to eigenvalue equations. The variational 

principle states that, given a normalized wavefunction, Ψ, that satisfies the appropriate 

boundary conditions, the expectation value of the Hamiltonian is an upper bound to the 

exact ground state energy, ε0.                                                             

<Ψ| |Ψ> ≥ εĤ 0                                                    (2.2) 

The more accurate the wave function employed, the lower the energy obtained. The 

variational method uses a normalized trial function Ψ which can be written as a function 

of a set of parameters and the coordinates of the system; through differentiation the 

parameters are varied to minimize the energy. 

The many-electron wavefunction  2.2. 

Molecular orbital theory is an approach to molecular quantum mechanics that assigns 

individual electrons to spin-orbitals to approximate the full wavefunction. The complete 

wavefunction for a single electron is the product of a molecular orbital (MO) and a spin 

function. The MOs, φ(x,y,z), are functions of  the Cartesian coordinates x, y, z, while the 

spin functions, α(ξ) or β(ξ), depend on the spin coordinates, ξ. This product, φ(x,y,z) 

α(ξ) or φ(x,y,z) β(ξ), is called a spin-orbital, χ(x,y,z,ξ).4

 

Since electrons are fermions, the many-electron wavefunction has to be antisymmetric 

with respect to the interchange of any two of them, that is: 

 Ψ(1,…,i,…,j,…,N) = -Ψ(1,…,j,…,i,…,N)                                 (2.3) 

 

The representation of an N-electron wavefunction as a Slater determinant3,5 satisfies the 

antisymmetry requirement and also allows for the fact that electrons are 

indistinguishable: 
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The factor (N!)-1/2 is a normalization factor. In this representation N electrons occupy N 

spin-orbitals without specifying which electron is in which orbital; rows are labelled by 

electrons and columns are labelled by spin-orbitals. Interchanging the coordinates of two 

electrons corresponds to interchanging two rows of the Slater determinant, which changes 

its sign. This representation of the many-electron wavefunction is the simplest MO 

approximation to the solution of the Schrödinger equation. Within the single Slater 

determinant description, the motion of electrons with parallel spins is partially correlated 

(the probability of finding two electrons with parallel spins at the same point in space is 

zero) but the motion of electrons with opposite spins is not.  

2.3. Basis set expansions 

A basis set in a vector space is a set of vectors (basis functions) linearly independent, 

which are able to generate all the vectors of the vector space. The wavefunctions used in 

quantum chemistry are vectors of an infinite-dimensional complex vector space: the 

Hilbert space. A complete basis set for this vector space should contain an infinite 

number of basis functions, but this is impossible from a computational point of view. 

 

Practical applications of molecular orbital theory require that the individual MOs be 

expressed as a linear combination of a finite set of one-electron functions known as basis 

functions, ϕ: 

φi =         i = 1, 2, …, M                                                (2.5) ∑
=µ

µµ ϕ
M

1

ic

where the cµi are the MO expansion coefficients. The larger and more complete the set of 

basis functions the more flexible the description of the orbitals since fewer restrictions 

are imposed on the location of the electrons in space. 

 

Two types of basis functions have received widespread use: Slater-type (STO)6 and 

Gaussian-type (GTO)7 orbitals. STOs provide a reasonable representation of atomic 

orbitals but the evaluation of the two-electron integrals is very time consuming. The 

behaviour of the Gaussians near and far from the nucleus is incorrect. Thus, many more 
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GTOs than STOs are needed to approximate the orbitals to the same degree of accuracy, 

but as a consequence of the Gaussian product theorem the computation of integrals is 

relatively fast. In practice, linear combinations of Gaussians are used to represent the 

basis functions, which are called contracted basis functions. 

 

When one basis function per atomic orbital is used the basis set is said to be minimum. If 

two basis functions are used (per atomic orbital) the basis set is called double-zeta; there 

are other variants. Additional Gaussians can also be added to extend the accuracy of the 

basis set. For example, polarization functions, those with higher angular momentum than 

are needed by the atom in its electronic ground state (p and higher on hydrogen; d and 

higher on heavy atoms) are added to account for distortion of the atomic orbitals in the 

molecular environment, giving the wavefunction more flexibility to change shape. 

Diffuse functions may also be added to account for large electronic clouds in systems 

where electrons are relatively far from the nucleus, such as molecules with lone pairs, 

anions, systems in their excited states, and when describing interactions at long distances 

in systems with van der Waals interactions. These diffuse functions are primitives with 

small exponents, thus describing the shape of the wavefunction far from the nucleus. The 

selection of the basis set is a difficult computational problem and is the focus of many 

research papers.8

2.3.1. Basis set notation 

Most calculations undertaken today are performed by choosing an existing segmented 

GTO basis set. A popular family of basis sets, commonly referred to as the Pople basis 

sets, are indicated by the notation 6-31G. This notation indicates that each atomic core 

orbital is described by a single contraction of six GTO primitives, and each valence shell 

orbital is described by two contractions (basis functions), one with three primitives and 

the other with one primitive, allowing for more flexibility in the description of the 

valence electrons. This notation identifies a double-zeta basis set, and is very popular 

when treating organic systems of considerable size. Another Pople basis set is 6-311G, a 

triple-zeta basis set that will be frequently used in the following chapters. 
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The Pople basis set notations described above can be modified by adding polarization 

functions, e.g., 6-311G(d,p): d primitives are added to atoms other than hydrogen and p 

primitives are added to hydrogen as well. Another modification in this notation accounts 

for the inclusion of diffuse functions, e.g., 6-311++G(d,p): a single plus sign indicates 

that diffuse functions are added to atoms other than hydrogen and a second plus implies 

that these functions are used for all atoms.   

2.3.2. Basis set superposition error 

An artificial lowering of the interaction energy of weakly or strongly bound systems, 

such as dimers, systems with hydrogen bonding interactions, reactant or product 

complexes, and transition states, is encountered when the basis set used to optimize these 

systems is not big enough. It is an additional contribution to the inaccuracy of 

calculations when using a finite basis set. This phenomenon was discovered in 1968,9 and 

five years later10 received the name: basis set superposition error (BSSE).11

 

This phenomenon is easier to understand through an example: to calculate the 

dimerization energy of a certain molecule with a given basis set, it is possible to subtract 

the energy of the two infinitely separated monomers from the energy of the dimer, but 

this procedure involves an inconsistency. When the energy of a monomer is computed, 

only the basis set functions on its atoms are used to describe each electronic spatial 

orbital. On the other hand the electrons in the dimer have associated orbitals composed of 

linear combinations of the basis set functions for twice the number of atoms. The basis 

set for the dimer is larger than that of either monomer, and this enlargement of the basis 

results in a non-physical lowering of the energy of the dissociated dimer relative to the 

separated monomers. The BSSE would vanish in the limit of a complete set on each 

monomer.    

 

No completely reliable scheme for either eliminating or estimating the BSSE has been 

given but the approach usually taken to estimate this effect is the counterpoise (CP) 

method.12 In this procedure the energies of the “monomeric units” are computed by using 

the full basis set of the “dimer”. A basis set for each nucleus of the “monomer” is used as 
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well as the same basis set functions centred at the points in space that would correspond 

to the equilibrium positions of the other nuclei in the “dimer”. In the original procedure 

the “monomeric units” (e.g., the reactants) upon forming the “dimer” or “intermolecular 

complex” (e.g., the TS) are not further optimized, i.e., the “monomers” are frozen in their 

supermolecular geometries. 

 

Estimates of the effects of the BSSE by the CP method have been found to be misleading 

for hydrogen bonded dimers, since they do not provide quantitative information about the 

basis set deficiencies.13 Furthermore, it has been shown that the use of large enough basis 

sets so that the CP correction is small does not guarantee accurate results and that for 

smaller basis sets the inclusion of this correction does not systematically improve the 

accuracy of the calculations.14 The CP procedure provides only a crude estimate and not 

an upper bound on the error.15 Despite these criticisms and the fact that other methods for 

correcting the BSSE have been discussed in the literature,16 the CP correction continues 

to be the most widely used method for this purpose.17    

2.4. The Hartree-Fock approximation 

The Hartree-Fock (HF) approximation,4,18 which is equivalent to the MO approximation, 

has played an important role in elucidating modern chemistry. It usually constitutes the 

first step towards more accurate approximations. It is an independent particle model 

based on the variational method, which assumes that electrons are non-interacting. The 

essence of the HF approximation is to replace the complicated many-electron problem, 

that cannot be solved exactly, by a one-electron problem in which the electronic repulsion 

is treated in an average way.  

 

The HF equations are eigenvalue non-linear integro-differential equations: 

F̂χi = εi χi            i= 1,2,…,N                                              (2.6) 

where is an effective one-electron operator, called the HF Hamiltonian operator defined 

by:                                               

F̂
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F̂= Ĥ core +                                                           (2.7) ∑ −
=

N

1j
jj )K̂Ĵ2(

In equation (2.7), Ĥ core is the core or one-electron Hamiltonian operator representing the 

energy of a single electron in a field of bare nuclei,  is the Coulomb operator describing 

the repulsion energy between two charge distributions, and 

Ĵ

K̂ is the exchange operator 

arising from the antisymmetric nature of the determinantal wavefunction; it does not have 

a simple classical interpretation. The second term in equation (2.7) represents the average 

potential experienced by one electron due to the presence of the other (N-1) electrons.  

 

The operators  and Ĵ K̂  are functions of the spin-orbitals, and since F  itself depends on 

Coulomb and exchange operators, it also depends on the spin-orbitals which have to be 

found by applying the variational method. Hence these equations must be solved 

iteratively by a procedure called the self-consistent-field (SCF) method. An initial guess 

of the spin-orbitals is made, the average field seen by each electron is calculated and the 

eigenvalue equation (2.6) for a new set of spin-orbitals is solved. Using the new spin-

orbitals, one can obtain new fields and repeat the procedure until self-consistency is 

reached (i.e., until the fields no longer change and the spin-orbitals used to construct the 

HF operator are the same as its eigenfunctions). 

ˆ

 

The solution of the HF eigenvalue problem yields a set of orthonormal HF spin-orbitals 

{χi} with orbital energies {εi}. The N spin-orbitals with the lowest energies are called 

occupied spin-orbitals; the remaining members of the set are called virtual or unoccupied 

spin-orbitals. The Slater determinant formed from the occupied spin-orbitals is the HF 

ground-state wavefunction, Φ0, and is the best possible variational approximation to the 

ground state of the system from the single determinant form. 

2.5. The Roothaan-Hall method 

The HF equations can only be solved exactly for atoms. No practical procedures are 

presently available to obtain numerical solutions for molecules. The representation of the 

HF orbitals as a linear combination of basis functions and the application of the 
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variational principle lead to a set of algebraic equations, derived by Roothaan and  

Hall,4,19 that increase the applicability of the HF method. 

 

The Roothaan-Hall (RH) equations for a closed-shell system (i.e., a system where all 

electrons are spin paired) are: 

( ) 0cSF i

M

1
i =ε− ν

=ν

µνµν∑  µ = 1, … , M; i = 1, …, N                                       (2.8) 

Here, εi is the one-electron energy of the MO φi, the cνi are the MO expansion 

coefficients, the Sµν are the overlap matrix elements indicating the overlap between the 

orbitals, and the Fµν are the elements of the HF matrix: 

( ) (∑
σλ

λσµνµν ⎥⎦
⎤

⎢⎣
⎡ νσµλ−λσµν+=

M

,

|
2
1|PHF )                                (2.9) 

The Hµν are the elements of a matrix representing the energy of a single electron in a field 

of bare nuclei, (µν|λσ) and (µλ|νσ) represent the Coulomb and exchange two-electron 

integrals respectively, and Pλσ are the elements of the one-electron density matrix. These 

equations also must be solved iteratively by the SCF procedure. As the basis set 

approaches completeness the spin-orbitals obtained in the RH method approach the exact 

HF spin-orbitals. 

 

The above method, called restricted HF (RHF), is applied only to closed-shell system. 

For open-shell systems, in which electrons are not completely assigned to orbitals in 

pairs, the RH equations need modification. The most reasonable procedure is to assign 

different spatial orbitals to the α and β electrons, resulting in two sets of MOs defined by 

two sets of coefficients. Hence, two different Fock matrices are generated. This 

generalization of the RH equations is called the spin-unrestricted HF (UHF) method. 

Another variant to treat open-shell systems is called the spin-restricted open-shell 

calculation (ROHF).  

 

 



Chapter 2. Theoretical Background 19

2.5.1. Spin contamination 

In UHF calculations there are two complete sets of orbitals that use the same set of basis 

functions but different MO coefficients. These calculations can be performed very 

efficiently but have the disadvantage that the wavefunctions generated are no longer 

eigenfunctions of the total spin 2S  and an error called spin contamination, can be 

introduced into the calculation.20  

 

The solutions to the UHF equations may not be pure spin states, but instead are often 

contaminated by higher spin states. Spin contaminated wavefunctions have lower total 

energies associated with them; unrestricted wavefunctions have lower energies than the 

corresponding restricted wavefunctions. A high spin contamination can affect the 

geometry, the population analysis, and significantly affects the spin density. Furthermore, 

spin contamination can slow down the convergence of Møller-Plesset (MP) calculations 

(vide infra). Calculations of transition states and high-spin transition metal complexes 

tend to be particularly affected by this phenomenon. Values of 2S  greater than 0.75 (for 

radicals) show spin contamination, but as derived from experience, when the difference 

is less than 10%, i.e., 2S <0.82, spin contamination is negligible. 

 

Spin contamination is often detected in unrestricted MP (UMP2, UMP3, UMP4) and 

UHF calculations. It is less common to find spin contamination in unrestricted density 

functional theory (DFT) calculations, and it has little effect on configuration interaction 

(CI) and coupled cluster (CC) calculations (these methods are described below). 

Unrestricted calculations often incorporate a spin annihilation step that removes a large 

percentage of spin contamination from the wavefunction, but does not prevent it.   

 

In an ROHF procedure the orbitals are separated into two classes: doubly and singly 

occupied orbitals. The doubly occupied orbitals are treated under the RHF formalism 

while the orbitals with unpaired electrons are treated separately with more complex 

expressions. In ROHF calculations there is no spin contamination but they require 
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additional CPU time. ROHF computations give good total energies and wavefunctions, 

however, they do not include spin polarization and hence are not useful for some 

purposes. 

 

An approach to obtaining reliable wavefunctions in cases of spin contamination is to run 

an unrestricted calculation and then to project out the spin contamination after the 

wavefunction has been obtained (PUHF, PMP2).21 Spin projection nearly always 

improves ab initio results (except in cases of very high spin contamination) but seriously 

affects the accuracy of DFT calculations.  

 

If spin contamination is small, unrestricted methods can be used preferably with spin-

annihilated wavefunctions and spin projected energies. When spin contamination 

becomes significant, spin-restricted open-shell or highly correlated methods should be 

used. 

2.5.2. Symmetry breaking 

The symmetry breaking or ‘symmetry dilemma’, as named by Löwdin,22 is an artefact 

caused by the inadequate approximate solution of the electronic Schrödinger equation 

(due to oversimplified forms assumed for the wavefuction). Apparently, this phenomenon 

results from a dominance of the orbital localization effect over the resonance effect and 

leads to different solutions for the ground electronic state of certain chemical species 

corresponding to equilibrium geometries that are not connected on the same potential 

energy surface. An example of such a case is the NO3 radical23 which will be discussed in 

Chapter 6, but this problem can also be encountered in closed-shell systems. It is usually 

confronted in systems of high nuclear symmetry, although completely unsymmetrical 

molecules can also have geometries at which there is more than one optimal 

wavefunction of a limited functional form with the same energy. In such cases the 

potential energy surface will incorrectly display a cusp, and the calculated wavefunction 

will be discontinuous.24   
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The benzene molecule has D6h ground-state symmetry, but calculations performed a few 

years ago indicated the existence of single determinants associated with the D3h 

symmetry, which has a considerably lower energy than the corresponding determinants of 

symmetry D6h.25 More examples of this phenomenon can be found in solid state theory. 

 

Imposition of symmetry conditions constitutes a reduction in flexibility in the 

wavefunction: a variational constraint. Consequently, even though the exact 

wavefunction may possess certain symmetry properties, in practical calculations a 

variationally better result can be achieved, i.e., a lower energy, by not constraining the 

calculation to display these properties.26

 

The Jahn-Teller (JT) effect27 is a consequence of the degeneracy of states in a symmetric 

molecule. It is encountered when two or more electronic states that coincide (degenerate) 

or are relatively close in energy (pseudo-degenerate) become sufficiently strongly mixed 

when the nuclei are displaced from their initial reference configuration. The potential 

energy surface has a double cone structure for small displacements from the high-

symmetry point. As a result of this interaction between states the symmetric system 

becomes distorted to a lower symmetry structure. The simplest example of a JT unstable 

state involves a 2E state of a molecule with D3h symmetry. If the highest occupied MOs 

are degenerate and partially occupied, such as for the CH3O radical, the highest 

symmetric structure C3v will distort to a Cs structure because of the JT effect. Another 

example is the JT distortion (Td → C2v) in the methane radical cation, CH4
+.28

 

It should be clear that the symmetry breaking phenomenon and the JT effect are 

consequences of two different situations, although these topics could lead to some 

confusion. 

2.6. The correlation energy 

Electron motion is correlated, i.e., the motion of every electron depends on the motion of 

its neighbours. HF theory describes this incompletely, considering only some correlation 

of the motions of electrons with the same spin (“exchange hole”). This is a consequence 
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of the single-determinant representation of the many-electron wavefunction and leads to 

calculated (HF) energies which are above the exact values, and also to a number of 

qualitative deficiencies in the description of electronic structures.  

 

The SCF or HF approximation implies that an electron of the system interacts with the 

other electrons according to their average location. In reality, however, the electronic 

motion occurs according to the electrons’ actual placement. The Coulomb repulsion 

between electrons becomes sufficiently reduced only when a correlated motion of the 

electronic system takes place. This aspect of the electron motion is not contained in the 

independent-electron or SCF approximation.29 What is missing is the correlation hole 

every electron carries along to prevent other electrons from coming too close, and thus 

reducing their mutual Coulomb repulsion. This correlation hole can be seen as a 

combination of the Coulomb hole, that keeps two electrons apart due to coulombic 

interactions, and the Fermi hole, that prevents electrons of the same spin from being in 

the same point of space. The Fermi hole is a purely quantum mechanical phenomenon 

and is not related to the charge of electrons. 

 

The difference between the exact N-electron wavefunction and its HF counterpart is 

related to the correlation aspect of the electron motion. Löwdin gave the most often used 

definition of the correlation energy:30

 

“The correlation energy for a certain state with respect to a specified Hamiltonian 
is the difference between the exact eigenvalue of the Hamiltonian and its 
expectation value in the Hartree-Fock approximation for the state under 
consideration.”  

 

There are a variety of procedures for improving upon the HF approximation, which are 

classified as post-HF or post-SCF methods. Some of these methods are discussed in the 

following sections.31

 

If electron correlation is viewed as an inadequacy of the single configuration HF 

approximation, two different effects can be identified. The first is the influence of other 
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configurations that are low-lying in energy and that mix strongly with the HF 

configuration. These give rise to non-dynamical correlation, which can usually be dealt 

with by multiconfigurational SCF techniques (vide infra). This effect is very important 

when dealing with open-shell systems like excited states, radicals or transition metals. 

The second effect (dynamical correlation) arises from the interelectronic repulsion, 

described by the term (rij
-1) in the Hamiltonian operator, and gives rise to dynamical 

correlation. This term (rij
-1) is singular as rij → 0, but mathematical studies of the 

properties of exact wavefunctions show that they must contain cusps in rij to cancel this 

singularity. Thus, the cusp behaviour must be described to properly treat dynamical 

electron correlation. Methods such as MP, CI and CC (vide infra) are frequently used for 

this purpose, among others. There is no sharp dividing line between non-dynamical and 

dynamical correlation, and methods for treating one will undoubtedly account in some 

part for the other. 

2.6.1. Configuration interaction 

The configuration interaction (CI) method32,33 is conceptually the simplest procedure to 

account for correlation energy. The exact wavefunction Ψ is represented as a linear 

combination of N-electron trial functions (Slater determinants) often referred to as 

“configurations”, “configuration state functions”, or simply “configuration functions” 

(CFs): 

∑ ∑ Φ+Φ=Ψ
R S

SSRR cc                                                 (2.10) 

where cR and cS  are the variational parameters and ΦR denotes the so-called reference 

CFs, i.e., those CFs that are dominant from the point of view of the energy criterion. ΦS 

denotes the CFs obtained from the reference CFs by replacing one or more of the 

occupied spin-orbitals by virtual spin-orbitals, and the collective indexes R, S indicate the 

orbital structure of the individual CF. 

 

In most cases the first sum in (2.10) contains just one term, and the expansion is called 

“single-reference CI” or simply “CI”. In this case the reference function is usually the 

HF-SCF wavefunction and the CI expansion can be expressed as: 
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∑ Φ+Φ=Ψ
>0s

ss000 cc                                                  (2.11) 

Only those CFs of the same symmetry and multiplicity as the reference configuration will 

have nonzero coefficients in the CI expansion. They are called spin- and space-adapted 

configurations. 

 

When all possible CFs are included in the CI expansion and no further approximations 

are made, the CI procedure is called “full CI”. The full CI method represents the most 

complete non-relativistic treatment possible for a molecular system within a certain basis 

set, but it is impractical except for very small systems. There are various approximations 

to the full CI calculation where different subsets of all possible CFs are selected. For 

example, CIS includes only single excitations (but the inclusion of only single excitations 

does not improve upon the ground state HF energy and wave function, as stated by 

Brillouin’s theorem), CID includes only double excitations and CISD includes single and 

doubles, etc. 

 

The most important criteria for an accurate electron correlation theory are the properties 

of size-consistency and size-extensivity.34,35 A size-consistent method36 is one in which 

the energy obtained for two fragments at sufficiently large separation is equal to the sum 

of the energies of those fragments computed separately. This property is of primary 

importance for correctly describing the energetics of a system relative to its separated 

parts. A method is size-extensive37 if the energy is a linear function of the number of 

electrons. This property is very important if systems with different numbers of atoms are 

to be compared. Size-extensivity is a more general concept than size-consistency. While a 

full CI expansion is size-consistent and size-extensive, limited CI expansions are not. 

Improvements in the theory have been considered to account for this.  

 

The multiconfiguration self-consistent field method (MCSCF) is another CI variant in 

which a truncated CI expansion is used and both the expansion coefficients and the spin 

orbitals are determined variationally. This simultaneous optimization makes MCSCF 

computationally demanding, but accurate results can be obtained with the inclusion of 
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even a relatively small number of configurations. The complete active-space self-

consistent field (CASSCF)38 method is a special form of the MCSCF method in which the 

orbital space is divided into three subspaces: inactive, virtual and active orbitals. The 

active electrons are those that are not in the doubly occupied inactive orbital set. Within 

the active subspace a full CI treatment is performed.  

 

When the first sum in the expansion (2.10) contains more than one term the CI procedure 

is called multi-reference CI (MR-CI).32,39 In this method the set of reference 

configurations is usually determined through a previous CI calculation. All the single and 

double excitations from the reference configurations, often singly or doubly excited with 

respect to Φ0, are included in the CI expansion. Therefore, the final MR-CI wavefunction 

will include determinants which are triply and quadruply excited from Φ0. This method is 

computationally very expensive. 

 

CI techniques can be classified into two categories, those that start from the SCF 

approximation and those that bypass the SCF level. Moreover, they can be intended just 

to improve ground-state wavefunctions or to complete excited-states wavefunctions. 

2.6.2. Møller-Plesset perturbation theory  

A different systematic procedure for finding the correlation energy that is not variational 

(i.e., it does not give an upper bound to the exact energy), is perturbation theory (PT). In 

this approach, the total (perturbed) Hamiltonian of the system is divided in two parts: the 

unperturbed (zero-order) Hamiltonian, , which has known eigenfunctions and 

eigenvalues, and the perturbation, λV, where λ is a dimensionless parameter determining 

the order of the expansion in the perturbation.  

0Ĥ

 

The appropriate solutions to the Schrödinger equation may be expanded in powers of λ: 

Ψλ = Ψ(0) + λΨ(1) + λ2 Ψ(2) + ... + λn Ψ(n)                                 (2.12) 

 ελ = ε(0) + λε(1) + λ2 ε(2) + ... + λn ε(n)                                       (2.13) 
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If   is chosen wisely, the perturbation is small and the perturbation expansion, i.e., the 

sum of the 1

0Ĥ
st, 2nd, …, nth order energies, converges quickly. When the HF Hamiltonian is 

chosen as the zero-order Hamiltonian the procedure is called Møller-Plesset  perturbation 

theory. It is the most economical multi-determinant method and furthermore, is size-

extensive. 

 

The Møller-Plesset (MP) energy to first order is the HF energy. The inclusion of the 

second-order energy correction is designated MP2 and gives the simplest approximate 

expression for the correlation energy. When third- and fourth-order energy corrections 

are included the procedures are then referred to as MP3 and MP4, and so on. The results 

of increasing the order of the MP calculation vary depending on the nature of the 

chemical system; monotonic, oscillating and diverging convergence can be found. 

2.6.3. Coupled cluster theory  

The foundations of coupled cluster (CC) theory in the context of quantum chemistry were 

laid by Čížek40 in the late 1960s, but it was not until the late 1970s that practical 

implementations started to take place. CC calculations are similar to CI calculations in 

that the wavefunction is a linear combination of many determinants, but the way of 

choosing the determinants in a CC procedure is more complex. 

 

The simplest practical application of the CC approach is to include only double 

excitations, CCD; single excitations can also be added, CCSD. There have been a variety 

of approaches to incorporate the effects of triplets.41 The direct inclusion of triplets, 

CCSDT, is not practical for large systems. The approach used in this thesis includes the 

effects of triplets in a perturbative way, CCSD(T).35,42 This method is probably the most 

commonly used triples correction, and is empirically observed to be the best behaved.   

 

CC is the most accurate approach so far to treat electronic correlation. These methods are 

size-consistent, size-extensive and variational (as long as the excitations are included 
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successively, i.e., CCSD is variational, but CCD is not). A full CC calculation is 

equivalent to a full CI calculation. 

2.6.4. Density functional theory 

An alternative to the HF based methods that has been growing in popularity over the past 

decade is density functional theory (DFT). 32,43 It can be used to do calculations on large 

systems in significantly less time than the methods previously discussed. Even though 

DFT is primarily a theory of electronic ground state structure, a variant called time-

dependent DFT (TD-DFT) has proved to be successful in the calculation of excited 

states.44 So far its application has been restricted to single-reference systems, although 

various ways to develop DFT for multi-reference systems has been discussed.45

 

Hohenberg and Kohn46 proved that the ground state energy of an electronic system and 

all other ground-state electronic properties are uniquely determined by the electron 

probability density, ρ, although the exact functional (a function of a function) dependence 

of the energy on density, E[ρ], remains unknown. In addition, for any trial density the 

energy obtained is an upper bound to the exact energy of the ground state. These are the 

basic principles behind DFT. 

 

Kohn and Sham,47 solving equations analogous to the HF equations, obtained an 

expression for the exact ground-state electronic energy. This energy is expressed in terms 

of the kinetic energy of the electrons, the attractive potential energy between electrons 

and nuclei, the Coulomb interaction between the total charge distribution, and the 

exchange-correlation energy of the system (Exc).  

 

The exchange-correlation energy is also a functional of the density and takes into account 

all non-classical electron-electron interactions. If Exc is ignored, the physical content of 

the theory becomes identical to that of the HF approximation. It is the only term for 

which an exact expression is not known. The main source of error in DFT arises from this 

functional.  
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Since DFT depends on an adequate knowledge of Exc[ρ], functionals are constantly being 

developed, but there is no known systematic way to improve upon a calculation, i.e., a 

lower energy by a certain DFT method does not guarantee that such a functional leads to 

more accurate molecular properties. Some functionals are developed from fundamental 

quantum mechanics, while some are developed by parameterizing functions to best 

reproduce experimental results. Thus, there are in essence ab initio and semi-empirical 

versions of DFT. The simplest approximation, based only on the electron density, was 

achieved by making use of the exchange correlation energy per particle of a uniform 

interacting electron gas. This method is named: local spin density approximation 

(LSDA).47

 

A more complex generation of functionals uses the electron density and its gradient. 

Several gradient-corrected (or non-local) exchange and correlation functionals were 

developed and are known collectively as generalized gradient approximations (GGAs).48 

The most popular correlation functionals include those of Perdew (P86),49 Lee, Yang and 

Parr (LYP),50 and Perdew and Wang (PW91).51 The exchange functionals more widely 

used are those derived by Perdew and Wang (PW86)52 and Becke (B or B88).53

 

A new class of hybrid HF/GGA theories was developed, with precision surpassing that of 

pure GGAs.54 These hybrid methods combine functionals from other methods with parts 

of a HF calculation, usually the exchange integrals. The hybrid functionals developed by 

Becke can be expressed as a linear combination of HF, LSDA and Becke’s gradient-

corrected exchange (B or B88) contributions, together with LSDA and gradient-corrected 

correlation functionals such as: P86, LYP or PW91. A very popular DFT method is 

named B3LYP. This method combines the B3 hybrid exchange functional  (that contains 

20% of HF exchange) with the correlation functional LYP. The first exchange functional 

to be suggested was the Becke half-and-half (BH&H),55 which includes 50% HF 

exchange. B3LYP and BH&HLYP will be the functionals used in some chapters of the 

thesis. 
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2.7. Semi-empirical methods  

The main difficulty in the solution of the RH equations is the evaluation of the two-

electron integrals. The bigger the molecular system, the greater the number of integrals to 

solve. Based on the way computational methods deal with this problem they are classified 

into ab initio and semi-empirical methods. In ab initio methods, the integrals are solved 

for all the electrons of the system and all necessary quantities are computed accurately 

from the very beginning. On the other hand, semi-empirical methods32,56 usually employ 

a minimal basis set for the valence electrons, neglect some of the two-electron integrals 

and determine the others directly from experimental data, from the corresponding 

analytical formulae, or from suitable parametric expressions.  

 

Semi-empirical methods were first developed for conjugated π-electron systems, ignoring 

the σ electrons. The most famous and simplest π-electron theory is Hückel57 molecular 

orbital (HMO) theory where all two-electron integrals are set to zero and the π-electron 

Hamiltonian is written as a sum of one-electron terms; thus electronic repulsions are 

treated very poorly. 

 

The Pariser-Parr-Pople (PPP) method58 is a much more substantial π-electron procedure 

where the inter-electronic repulsions are included in the π-electron Hamiltonian. It was 

the first SCF scheme for molecular calculations. Some of the two-electron integrals are 

neglected through the zero differential overlap (ZDO) approximation:  

(µν|λσ) = δµν δλσ (µµ|λλ)                                              (2.14) 

that is, all three- and four-centre two-electron integrals are neglected. For atomic orbitals 

centred on atoms that are not bonded together, the Hamiltonian matrix elements are set to 

zero, and for those centred on bonded atoms the matrix elements are taken to be empirical 

parameters. 

 

Extended Hückel theory59 is the first semi-empirical method where all the valence 

electrons are considered, but the two-electron repulsion integrals are neglected, among 
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other simplifications. Since 1965 a variety of SCF semi-empirical procedures were 

developed. They are generalizations of the PPP method where the ZDO approximation is 

applied to all the valence electrons at three different levels: CNDO, INDO and NDDO. 

 

In the complete neglect of differential overlap (CNDO) methods,60 the two-electron 

integrals (on one and two centres) that involve different atomic orbitals (AOs) centred on 

the same atom are neglected, and the remaining integrals are assumed to depend only on 

the atoms to which the AOs belong and not on the actual forms of these AOs. 

 

In the methods based on the intermediate neglect of differential overlap (INDO) 

approximation,61,62 one-centre repulsion integrals between AOs on the same atom are not 

neglected, and thus some exchange integrals enter the expressions for the matrix 

elements. As in CNDO, parameters are chosen in INDO to give as close agreement as 

possible to the results of minimal basis set HF-SCF calculations. Other methods (vide 

infra) were developed later with the aim of reproducing not the HF-SCF wavefunctions 

but rather four gas phase molecular properties, namely molecular geometries, enthalpies 

of formation, dipole moments and ionization energies.63, ,64 65

 

A variant of the INDO scheme is the Zerner’s INDO method (ZINDO) that will be 

explained in Section 7.4.1. Another variant, SINDO1 (symmetrically orthogonalized 

INDO)66 was designed for the prediction of the binding energies and geometries of 

compounds containing elements of the 1st and 2nd rows, as well as 3rd row transition 

metals. 

 

A much less severe approximation than INDO is the neglect of diatomic differential 

overlap (NDDO), in which none of the one-centre integrals are neglected. The two-centre 

integrals (µν|λσ), where µ and ν are different orbitals on one atom, and λ and σ are 

different orbitals on another atom, neglected as well in the INDO methods, are also 

retained. The most popular NDDO methods currently used are AM163 (Austin method 1) 

and PM3 (parametric method 3). Both are improved versions of the MNDO65 (modified 

neglect of differential overlap) method (also based on the NDDO approximation) where 
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the core-core repulsion function is represented by a more flexible function with several 

additional adjustable parameters, reducing the overestimated nonbonding repulsions in 

MNDO. Depending on the nature of the system and information desired, either AM1 or 

PM3 will usually give the most accurate results obtainable for organic molecules with 

semi-empirical methods. 

 

Other more recently developed semi-empirical methods are: Feske-Hall (designed for the 

description of inorganic metal-ligand systems), TNDO (typed neglect of differential 

overlap, specially parameterized to reproduce NMR chemical shifts) and SAM1 (semi-ab 

initio method 1, that uses a parameterization to estimate correlation effects; this method 

gives results slightly more accurate than with AM1 or PM3.67

 

The Gaussian methods (G1, G2 and G3) are unique types of computations.68 These are 

compound methods that combine the results of several ab initio calculations, carried out 

at relatively low levels of theory, to approximate the result of a single, high level 

calculation that is too expensive to be practical. These methods arose from the 

observation that certain ab initio methods tend to show a systematic error in the 

prediction of ground state energies of organic molecules. 

 

Semi-empirical methods continue to be developed because there is always room for 

improvement of the parameterization scheme and the use of experimental data. They are 

very practical methods for describing electronic effects in large molecules. 

Geometry optimizations  2.8. 

A potential energy hypersurface (PEH) describes the energy of a molecule with respect to 

its nuclear coordinates. Stationary points are places on the PEH with a zero gradient 

vector (the first derivative of the energy with respect to nuclear coordinates). If all the 

eigenvalues of the Hessian matrix (the second derivative of the energy with respect to 

nuclear coordinates) are positive, the stationary point is a minimum. If there is one, and 

only one, negative curvature, the stationary point is a transition state (TS). Points with 

more than one negative curvature do exist, but are not important in chemistry. Because 
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vibrational frequencies are basically the square roots of the curvatures, a minimum has all 

real frequencies, and a saddle point (of first order) has one imaginary vibrational 

frequency. 

 

All geometry optimizations69 require an initial guess for which the SCF equations are 

solved and the energy gradient is calculated. The gradient indicates the direction along 

the PEH in which the energy decreases most rapidly from the current point as well as the 

steepness of that slope. The structure is then varied along the energy gradient, and the 

process is repeated until the gradient of each nuclear coordinate is zero or, in practice, 

below a pre-set threshold. At this point the geometry has converged and a stationary point 

has been obtained that can be characterized by a frequency analysis. 

 

There are many different optimization algorithms for finding the set of coordinates 

corresponding to the minimum energy of a stationary point. Some of these methods are: 

simplex, Fletcher-Powell, quasi-Newton (Berny algorithm), steepest decent, scaled 

steepest decent, GDIIS (geometric direct inversion of the iterative subspace), EF 

(eigenvector following), DFP (Davidson-Fletcher-Powell) and Newton-Raphson.70

 

To find a TS structure, the Hessian matrix has to be computed. The nuclei are moved in a 

manner that increases the energy in directions corresponding to negative values of the 

Hessian and decreases energy where there are positive values of the Hessian. A transition 

structure is a maximum on the reaction pathway and a minimum in all the other 

coordinates. TSs are more difficult to describe and find than equilibrium geometries. 

 

To verify that the desired TS has been optimized, the frequencies must be calculated. The 

vibrational mode associated with the negative frequency should describe the motion 

toward reactants in one direction and products in the other direction. If after visualizing 

this vibrational mode it is still not clear whether the TS is correct, an intrinsic reaction 

coordinate (IRC)71 calculation should be performed; sometimes artefacts of the method 

employed could lead to erroneous conclusions.   
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TSs have been computationally determined for many years. Experimentally, it has only 

recently become possible to examine reaction mechanisms directly using femtosecond 

pulsed laser spectroscopy.72 This technique cannot yet be applied to all the compounds 

that are computationally accessible, and furthermore, they yield vibrational information 

rather than an actual geometry for the TS. 

 

Usually after a geometry has been optimized at a certain level of theory, the energy of the 

molecular system is calculated at a higher level that includes more electronic correlation. 

Computations that do not involve geometry optimization are called single-point 

calculations. 

2.8.1. Notation 

The conventional notation, used in this thesis, to describe a particular method or level of 

theory is as follows: 

method 1 / basis set 1 // method 2 / basis set 2 

This notation means that after a geometry optimization has been carried out using method 

2 with basis set 2, a single point energy calculation is performed using method 1 with 

basis set 1. Method 1 generally accounts for more electronic correlation energy than 

method 2; basis set 1 is usually larger than basis set 2, but could also be the same. For 

example, the notation: 

CCSD(T)/6-311G(d,p)//BH&HLYP/6-311G(d,p) 

describes a CCSD(T) single-point calculation, using a geometry optimized at the 

BH&HLYP level, with the 6-311G(d,p) basis set. 
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